-
硒是人体生长必需的矿质元素,可抗氧化、抗肿瘤、抗衰老,对维持人体新陈代谢和生命健康具有重要作用[1-3]。农作物中的硒主要来自于土壤,土壤中硒的缺乏可能会影响农作物生理生长,并最终影响种植作物的产量[4]。例如,低硒土壤中施加适量浓度的硒可以促进叶绿素的合成、增强抗氧化能力,从而促进农作物的生长和发育,显著提高水稻(10%−14%)、小麦(6%−12%)、小白菜(22%)等农作物的产量[4-6]。此外,土壤硒的含量决定了谷物、蔬菜中硒的浓度[7],土壤硒含量的不足会导致农作物硒含量偏低[8]。我国被证实有一条低硒带(小于0.175 mg·kg−1),从东北部的黑龙江省延伸至西南部的云南省,覆盖了我国约70%农田和约7亿人口[9-13]。人体硒的补充主要以膳食为主,缺硒可能会导致慢性软骨病(大骨节病)、慢性心脏病(克山病)等人类缺硒疾病的发生[11-15]。世界卫生组织建议人通过膳食摄入硒的量为50−200 μg·d−1,但目前多个国家和地区居民的硒摄入量普遍低于该推荐值,其中我国居民人均硒摄入量仅为44.4 μg·d−1[15-16]。因此,关注土壤中硒含量对维系居民身体健康具有重要意义。
除了土壤成土母质和大气沉降外,土壤总硒含量主要受到硒挥发的影响[11,18]:土壤中各种形态的有机硒或无机硒,在微生物(多种细菌、真菌和微藻)介导下被甲基化,生成挥发性二甲基硒和二甲基二硒醚,从而造成土壤中硒的流失[19-20]。由于硒和硫同为氧族元素并具有相似的化学性质,土壤硒可能具有与硫类似的吸收、迁移和同化路径,并可能发生相互竞争作用[21-22],因此,硫可能会对土壤中硒的形态转化产生重要调控作用。例如,在陆地系统中,各种形态的硫先转化成甲硫氨酸,并在甲硫氨酸裂解酶的作用下转化为甲硫醇,然后以腺苷甲硫氨酸为甲基供体,在甲基转移酶的作用下转化为二甲基硫,二甲基二硫醚则为甲硫醇的自动氧化产物,土壤硒可能也是通过竞争硫的甲基化通路以合成二甲基硒和二甲基二硒醚[23]。此外,我国缺硫耕地面积超过总耕地面积的30%且逐年扩大[24],硫肥施用是促进农作物增收、增产的重要农艺措施。因此,有必要关注外源硫的输入对土壤中硒的形态和含量的调控作用。
为了探究稻田土壤硒对外源硫输入的响应,本研究模拟稻田淹水环境,通过添加典型有机硫(甲硫氨酸)和无机硫(硫酸钠),测定土壤硒挥发量以及土壤残留硒含量,以揭示外源硫输入对硒形态转化的影响机制。本研究将为土壤缺硒的原因提供科学认识,同时有助于全面评估硫肥施用带来潜在风险,为制定科学、合理的农业措施提供支撑。
外源硫输入对稻田土壤硒流失的影响
Effects of exogenous sulfur input on selenium loss in paddy soils
-
摘要: 土壤中硒的甲基化可能会导致硒的挥发,加剧土壤硒的流失,而农田土壤硒的缺乏会造成农作物中硒含量偏低。施用硫肥是保障作物增产、增收的一种重要农艺措施,外源硫输入对土壤硒的含量可能产生重要的调控作用。本研究模拟稻田淹水环境,通过添加典型有机硫(甲硫氨酸)和无机硫(硫酸钠),测定硒的挥发量以及土壤中残留的硒含量,以揭示外源硫输入对土壤硒流失的影响机制。结果显示,外源性有机硫和无机硫的输入均会促进土壤中硒的流失。其中,甲硫氨酸的输入会导致土壤总硒含量下降了15.9%−35.7%,这可能是由于甲硫氨酸向土壤提供甲基供体并促进硒的甲基化(土壤硒挥发量增加88.4%−308%);而添加硫酸盐可能会促进土壤亚硒酸盐的溶出,进而导致土壤总硒含量下降了4.67%−25.5%。以上结果表明农田土壤播撒硫肥所引起的“硒流失”应予以重视。Abstract: Selenium methylation can promote the production of volatile organic selenium, which could lead to selenium loss in soils, and subsequently result in lower selenium levels in crops. Considering that applying sulfur fertilizers for a high and stable yield in crop production is common in agricultural activities, the input of exogenous sulfur may play a key role in regulating the forms or contents of selenium in soils. To explore the migration and transformation of selenium in response to the exogenous sulfur input, we simulated flooded paddy soil environment, added organic sulfur (i.e., methionine) and inorganic sulfur (i.e., sodium sulfate) in paddy soils under an anaerobic and dark condition, and determined the volatilization of selenium and residual selenium content in soils. Our results indicate that the input of both inorganic and organic sulfur promoted the loss of selenium in paddy soils. Compared with the blank control group, methionine input enhanced a decrease in residual selenium content of 15.9%−35.7%, because selenium methylation provided large numbers of methyl donors, leading to an increase in selenium volatilization of 88.4%−308%. While sulfate input could promote the dissolution of selenite in soils, resulting in a reduction of 4.67%−25.5% in residual selenium content. Hence, selenium loss induced by sulfur input should be taken into consideration when applying sulfur fertilizers in in farmland soil.
-
Key words:
- selenium methylation /
- selenium deficiency /
- sulfur /
- paddy soil
-
图 2 微生物体内的硒甲基化通路以及硫酸盐和甲硫氨酸的干扰位点
Figure 2. Pathways of selenium methylation in microbes and potential interference sites of methionine and sulfate in pathways [30].
表 1 供试土壤的基本性质
Table 1. Basic properties of the studied soil
土壤基本性质
Properties of soils数值
Values黏粒/(g·kg−1) 332 粉粒/(g·kg−1) 446 砂粒/(g·kg−1) 222 阳离子交换量/(cmol·kg−1) 25.1 总硫/(g·kg−1) 0.4 总氮/(g·kg−1) 2 总碳/(g·kg−1) 21 pH 6.5 总有机质/(g·kg−1) 38 溶解性硫酸盐/(mg·kg−1) 174 总硒/(mg·kg−1) 0.26 注:表1中总硒含量和溶解性硫酸盐含量为土壤自身硒和硫的含量,不包含外源添加量。 表 2 处理组设置
Table 2. Settings of treatments
名称
Name灭菌情况
Sterilization situation硒添加量 /(mg·kg−1)
Se addition amount硫添加量 /(mg·kg−1)
S addition amount对照组 Control 否 0.05 0 灭菌组 Sterilization 是 0.05 0 甲硫氨酸组Methionine 否 0.05 528 硫酸盐组 Na2SO4 否 0.05 528 -
[1] LI Z, LIANG D, PENG Q, et al. Interaction between selenium and soil organic matter and its impact on soil selenium bioavailability: A review [J]. Geoderma, 2017, 295: 69-79. doi: 10.1016/j.geoderma.2017.02.019 [2] 熊咏民, 杨晓莉, 张丹丹, 等. 硒的生物学效应与环境相关性疾病的研究进展 [J]. 土壤, 2018, 50(6): 1105-1112. XIONG Y M, YANG X L, ZHANG D D, et al. Research progress in biological function of selenium and environmentally associated diseases [J]. Soils, 2018, 50(6): 1105-1112(in Chinese).
[3] 王张民, 袁林喜, 朱元元, 等. 我国富硒农产品与土壤标准研究 [J]. 土壤, 2018, 50(6): 1080-1086. WANG Z M, YUAN L X, ZHU Y Y, et al. On standards of selenium enriched agricultural products and selenium-rich soil in China [J]. Soils, 2018, 50(6): 1080-1086(in Chinese).
[4] 段曼莉, 付冬冬, 王松山, 等. 亚硒酸盐对四种蔬菜生长、吸收及转运硒的影响 [J]. 环境科学学报, 2011, 31(3): 658-665. DUAN M L, FU D D, WANG S H, et al. Effects of different selenite concentrations on plant growth, absorption and transportation of selenium in four different vegetables [J]. Acta Scientiae Circumstantiae, 2011, 31(3): 658-665(in Chinese).
[5] 贾宏昉, 宋家永, 王海红, 等. 硒对作物生理、生长发育及产量、品质的影响研究进展 [J]. 河南农业大学学报, 2006(4): 449-454. doi: 10.3969/j.issn.1000-2340.2006.04.027 JIA H F, SONG J Y, WANG H H, et al. Research progress on the effect of selenium on physiological functions, growth, yield and quality of crops [J]. Journal of Henan Agricultural University, 2006(4): 449-454(in Chinese). doi: 10.3969/j.issn.1000-2340.2006.04.027
[6] 覃思跃, 赵文龙, 李俊, 等. 硒与硫单一及交互作用对小白菜生长及硒生物有效性的影响 [J]. 环境科学学报, 2016, 36(4): 1500-1507. QIN S Y, ZHAO W L, LI J, et al. Single and combined effects of sulfate and selenate on growth and selenium bioavailability of pak choi [J]. Acta Scientiae Circumstantiae, 2016, 36(4): 1500-1507(in Chinese).
[7] LI Y H, WANG W Y, LUO K L, et al. Environmental behaviors of selenium in soil of typical selenosis area, China [J]. Journal of Environmental Sciences, 2008, 20(7): 859-864. doi: 10.1016/S1001-0742(08)62138-5 [8] TEMMERMAN L D, WAEGENEERS N, THIRY C, et al. Selenium content of Belgian cultivated soils and its uptake by field crops and vegetables [J]. Science of the Total Environment, 2014, 468/469: 77-82. doi: 10.1016/j.scitotenv.2013.08.016 [9] NATASHA, SHAHID M, NIAZI N K, et al. A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human health [J]. Environmental Pollution, 2018, 234: 915-934. doi: 10.1016/j.envpol.2017.12.019 [10] LI S H, XIAO T F, ZHENG B S. Medical geology of arsenic, selenium and thallium in China [J]. Science of the Total Environment, 2012, 421: 31-40. [11] 孙国新, 李媛, 李刚, 等. 我国土壤低硒带的气候成因研究 [J]. 生物技术进展, 2017, 7(5): 387-394. SUN G X, LI Y, LI G, et al. Climatic causes of the selenium-deficient soil belt in China [J]. Current Biotechnology, 2017, 7(5): 387-394(in Chinese).
[12] 刘晓波, 张华, 金立新, 等. 四川省屏山县土壤硒地球化学特征及影响因素 [J]. 环境化学, 2017, 36(10): 2246-2252. doi: 10.7524/j.issn.0254-6108.2017022101 LIU X B, ZHANG H, JIN L X, et al. Geochemical characteristics and influencing factors of soil selenium in pingshan of Sichuan Province [J]. Environmental Chemistry, 2017, 36(10): 2246-2252(in Chinese). doi: 10.7524/j.issn.0254-6108.2017022101
[13] 陈娟, 宋帅, 史雅娟, 等. 富硒农业生产基地土壤硒资源空间分布特征及评价 [J]. 环境化学, 2015, 34(12): 2185-2190. doi: 10.7524/j.issn.0254-6108.2015.12.2015040302 CHEN J, SONG S, SHI Y J, et al. Spatial distribution and assessment of selenium in soils of a Se-enrich agricultural production base [J]. Environmental Chemistry, 2015, 34(12): 2185-2190(in Chinese). doi: 10.7524/j.issn.0254-6108.2015.12.2015040302
[14] 汤超华, 赵青余, 张凯, 等. 富硒农产品研究开发助力我国营养型农业发展[J]. 中国农业科学, 2019, 52(18): 3122-3133. TANG C H, ZHAO Q Y, ZHANG K, et al. Promoting the development of nutritionally-guided agriculture in research and development of selenium-enriched agri-products in China [J], Scientia Agricultura Sinica, 2019, 52(18): 3122-3133 (in Chinese).
[15] QIN H B, ZHU J M, SU H. Selenium fractions in organic matter from Se-rich soils and weathered stone coal in selenosis areas of China [J]. Chemosphere, 2012, 86(6): 626-633. doi: 10.1016/j.chemosphere.2011.10.055 [16] 刘慧, 杨月娥, 王朝辉, 等. 中国不同麦区小麦籽粒硒的含量及调控[J]. 中国农业科学, 2016, 49(9): 1715-1728. LIU H, YANG Y E, WANG C H, et al. Selenium content of wheat grain and its regulation in different wheat production regions of China [J], Scientia Agricultura Sinica, 2016, 49(9): 1715-1728 (in Chinese).
[17] WANG S S, LIANG D L, WANG D, et al. Selenium fractionation and speciation in agriculture soils and accumulation in corn (Zea mays L. ) under field conditions in Shanxi Province, China [J]. Science of the Total Environment, 2012, 427: 159-164. [18] 梁若玉, 和娇, 史雅娟, 等. 典型富硒农业基地土壤硒的生物有效性与剖面分布分析 [J]. 环境化学, 2017, 36(7): 1588-1595. doi: 10.7524/j.issn.0254-6108.2017.07.2016111501 LIANG R Y, HE J, SHI Y J, et al. Bioavailability and profile distribution of selenium in soil of typical Se-enriched agricultural base [J]. Environmental Chemistry, 2017, 36(7): 1588-1595(in Chinese). doi: 10.7524/j.issn.0254-6108.2017.07.2016111501
[19] 徐巧林, 吴文良, 赵桂慎, 等. 微生物硒代谢机制研究进展 [J]. 微生物学通报, 2017, 44(1): 207-216. XU Q L, WU W L, ZHAO G S, et al. Selenium metabolism in microorganisms [J]. Microbiology China, 2017, 44(1): 207-216(in Chinese).
[20] 郑世学, 粟静, 王瑞, 等. 硒是双刃剑?——谈微生物中的硒代谢 [J]. 华中农业大学学报, 2013, 32(5): 1-8. doi: 10.3969/j.issn.1000-2421.2013.05.001 ZHENG S X, LI J, WANG R, et al. Metabolism of selenium in microorganisms [J]. Journal of Huazhong Agricultural University, 2013, 32(5): 1-8(in Chinese). doi: 10.3969/j.issn.1000-2421.2013.05.001
[21] GUPTA M, GUPTA S. An overview of selenium uptake, metabolism, and toxicity in plants [J]. Frontiers in Plant Science, 2017, 7: 2074. [22] SANTIAGO F E M, SILVA M L, RIBEIRO F O, et al. Influence of sulfur on selenium absorption in strawberry [J]. Acta Scientiarum-Agronomy, 2018, 40(1): 1-7. [23] CARRION O, CURSON A R J, KUMARESAN D, et al. A novel pathway producing dimethylsulphide in bacteria is widespread in soil environments [J]. Nature Communications, 2015, 6: 6579. doi: 10.1038/ncomms7579 [24] 王丽, 吴忠东, 沈新磊. 土壤硫肥研究进展 [J]. 河南农业, 2019, 28(13): 20. WANG L, WU Z D, SHEN X L. Research progress of sulfur fertilizer in soil [J]. Agriculture of Henan, 2019, 28(13): 20(in Chinese).
[25] VREINS B, MATHIS M, WINKEL L H E, et al. Quantification of volatile-alkylated selenium and sulfur in complex aqueous media using solid-phase microextraction [J]. Journal of Chromatography A, 2015, 1407: 11-20. doi: 10.1016/j.chroma.2015.06.054 [26] 宋晓珂, 王金贵, 李宗仁, 等. 青海省富硒土壤中硒的形态和价态分析 [J]. 江苏农业科学, 2017, 45(16): 272-275,285. SONG X K, WANG J G, LI Z R, et al. Speciation and valence state transformation analysis of selenium-rich soil in eastern Qinghai [J]. Jiangsu Agricultural Sciences, 2017, 45(16): 272-275,285(in Chinese).
[27] WADGAONKAR S L, NANCHARAIAH Y V, ESPOSITO G, et al. Environmental impact and bioremediation of seleniferous soils and sediments [J]. Critical Reviews in Biotechnology, 2018, 38(6): 941-956. doi: 10.1080/07388551.2017.1420623 [28] 马友华, 张继榛, 竺伟民, 等. 土壤中硒和硫相互作用的研究 [J]. 土壤通报, 2000, 32(4): 162-165. doi: 10.3321/j.issn:0564-3945.2000.04.014 MA Y H, ZHANG J Z, ZHU W M, et al. The interaction between sulfur and selenium in soils [J]. Chinese Journal of Soil Science, 2000, 32(4): 162-165(in Chinese). doi: 10.3321/j.issn:0564-3945.2000.04.014
[29] ESWAYAH A S, SMITH T J, GARDINER P H E. Microbial transformations of selenium species of relevance to bioremediation [J]. Applied and Environmental Microbiology, 2016, 82(16): 4848-4859. doi: 10.1128/AEM.00877-16 [30] WINKEL L H E, VRIENS B, JONES G D, et al. Selenium cycling across soil-plant-atmosphere interfaces: A critical review [J]. Nutrients, 2015, 7(6): 4199-4239. doi: 10.3390/nu7064199 [31] 易志刚, 王新明, 盛国英, 等. 甲硫氨酸和水分对土壤挥发性有机硫化物通量的影响 [J]. 环境化学, 2009, 28(4): 574-577. doi: 10.3321/j.issn:0254-6108.2009.04.023 YI Z G, WANG X M. SHENG G Y, et al. Influence of methionine and soil moisture on soil-atmosphere exchange fluxes of volatile organic sulfur compounds [J]. Environmental Chemistry, 2009, 28(4): 574-577(in Chinese). doi: 10.3321/j.issn:0254-6108.2009.04.023
[32] 胡正义, 夏旭, 吴丛, 等. 硫在稻根微域中化学行为及其对水稻吸收重金属的影响机理 [J]. 土壤, 2009, 41(1): 27-31. doi: 10.3321/j.issn:0253-9829.2009.01.005 HU Z Y, XIA X, WU C, et al. Chemical behaviors of sulfur in the rhizosphere of rice and its impacts on heavy metals uptake in rice [J]. Soils, 2009, 41(1): 27-31(in Chinese). doi: 10.3321/j.issn:0253-9829.2009.01.005
[33] SODERLUND M, VIRKANEN J, HOLGERSSON S, et al. Sorption and speciation of selenium in boreal forest soil [J]. Journal of Environmental Radioactivity, 2016, 164: 220-231. doi: 10.1016/j.jenvrad.2016.08.006 [34] LUSA M, BOMBERG M, AROMAA H, et al. The microbial impact on the sorption behaviour of selenite in an acidic, nutrient-poor boreal bog [J]. Journal of Environmental Radioactivity, 2015, 147: 85-96. doi: 10.1016/j.jenvrad.2015.05.014 [35] KARLSON U, FRANKENBERGER W T. Accelerated rates of selenium volatilization from california soils [J]. Soil Science Society of America Journal, 1989, 53(3): 749-753. doi: 10.2136/sssaj1989.03615995005300030019x [36] 刘新伟, 段碧辉, 夏全杰, 等. 硫对土壤中硒形态变化及油菜硒吸收的影响 [J]. 环境科学, 2014, 35(9): 3564-3571. LIU X W, DUAN B H, XIA Q J, et al. Effects of sulfur on transformation of selenium in soil and uptake of selenium in rape [J]. Environmental Science, 2014, 35(9): 3564-3571(in Chinese).
[37] 洪丽. 甲硫氨酸合成相关基因调控稻瘟病菌生长发育及致病性的机制研究[D]. 南京: 南京农业大学, 2014. HONG L. Functional analysis of methionine biosysnthesis associated genes in development and pathogenicity of magnaporthe oryzae [D]. Nanjing: Nanjing Agricultural University, 2014 (in Chinese).