-
聚二甲基硅氧烷(PDMS)是一类人工合成化学品,由于具有表面张力低、热稳定性强、润滑性能好等特点,被广泛应用于工业过程和消费产品中,如润滑剂、消泡剂、电气绝缘剂及个人护理品等[1-6]。低分子量的环挥发性甲基硅氧烷(cyclic volatile methylsiloxanes,cVMSs;一般用Dn表示,n表示硅原子的数目),如八甲基环四硅氧烷(D4)、十甲基环五硅氧烷(D5)和十二甲基环六硅氧烷(D6)(表1)等,通常是合成PDMS的重要单体[7]。近年来,由于其广泛的生产和应用,在水、沉积物、空气、土壤等多种环境基质乃至生物体内都能检测到cVMSs的存在[8-12]。cVMS的理化性质较为特殊,典型cVMSs的物理化学性质见表2。较高的辛醇水分配系数(lgKOW)和饱和蒸气压使cVMSs具有疏水性,又由于有机碳分配系数(lgKOC)较高以及其亲脂性较强且难以生物降解,导致其在水生生物体内积累并产生潜在的毒性作用[13-15]。因此,cVMSs作为潜在生物累积性和环境危害性有机污染物而广受关注。2017年,欧洲化学品管理局将D4列为持久性、生物累积性和毒性物质(PBT),将D5和D6列为高持久性和生物累积性(vPvB)物质,并建议限制其在个人护理产品中的浓度。
近年来全球硅氧烷的产能增长主要来自亚洲国家,尤其是中国。2009年我国环形硅氧烷总产量达10万吨,2010年的总产量上升至80万吨,超越美国成为全球第一生产大国,约占世界总产量的30%[19]。据统计,2018年中国硅氧烷产能达每年131万吨,年消费量约104万吨,同比增长7.4%。根据美国环境保护署(USEPA)和经济合作与发展组织(OECD)的信息,D4、D5和D6已被列为高产量化学品(年产量超过1000万吨)[19-20]。
PDMS主要通过D4开链聚合生成,但由于聚合反应为平衡反应,这导致了低分子量D4以及其重排产物(D5和D6)等杂质的存在[21]。因此,PDMS产品在使用过程中D4-D6等cVMSs物质可排放进入各类环境介质。如图1所示,cVMSs通过挥发及吸附等诸多迁移途径可进入各种环境介质。由于其较高排放量和强挥发性,排放的cVMSs超过90%进入大气中,10%进入污水中[22-23]。挥发进入大气中的硅氧烷少部分可发生光解作用,大部分又经过干湿沉降迁入土壤等地球表层;排入污水厂的cVMSs,9.42%—48.2%挥发进入大气,48.2%—84.1%被污泥吸附,3.55%—6.48%排入地表水体中[24-26]。地表水体中的cVMSs又可通过吸附作用在沉积物中积累,最终达到动态平衡;污泥吸附的硅氧烷可通过在生物质改良迁入农业土壤。土壤中94.5%的cVMS挥发进入大气,0.8%随地表径流进入水体[27]。
由于其亲脂性较强,环境中的cVMSs易进入生物体的器官及组织中。近年来,已有相关文献陆续报道了cVMSs在生物体内的残留水平及归趋。本文综述了全球范围内3种典型cVMSs(D4、D5和D6)在生物及人体内的残留水平,并总结了3种cVMSs的生态毒性、生物效应、生物体内代谢行为等方面相关研究。
生物体内环形挥发性甲基硅氧烷的分布、行为及效应研究进展
Research progress on the distribution, behavior and effects of cyclic volatile methylsiloxanes in organisms
-
摘要: 近年来,环形挥发性甲基硅氧烷(cVMSs)因其优异的物化特性而被广泛应用在工业生产和日常生活的各个方面,特别是经常被添加到个人护理品(PCPs)等各类消费品中。目前,人们对cVMSs在环境介质中的污染水平及其迁移转化行为有了一定的了解。另外,cVMSs兼有疏水性和挥发性,且难以进行生物降解,因此该类物质进入环境后潜在的生态风险,特别是其生物富集、生物累积、生物放大和毒性效应等已成为关注的热点。本文综述了cVMSs在全球生物体内的残留水平,并在此基础上总结了cVMSs生物效应等相关研究成果。总体上,众多研究表明cVMSs在某些水生生物体内呈现中等的生物富集性和累积性。然而,与其相对明确的生物富集/累积性相比,目前文献针对cVMSs生物放大效应的研究结果存在明显差异。建议后续的研究能够深入探索其生物效应,尤其是结合其在生物体内的降解过程以及中间产物的毒性数据,进一步评估其生态环境效应和人类健康风险。Abstract: Due to their excellent physicochemical properties, cyclic volatile methylsiloxanes (cVMSs) have been widely used in both industrial production and daily life, especially in various consumer products, such as personal care products (PCPs). At present, there have been some researches on distribution, migration and transformation behaviors of cVMSs in environmental matrices. In addition, cVMSs have both hydrophobicity and volatility, and were difficult to be biodegraded. Therefore, the potential ecological risks of cVMSs, especially their bioconcentration, bioaccumulation, biomagnificatioon and toxicity hadbecome a global concern. In this study, the residual levels of cVMS in organisms around the world were reviewed, and then research results on their ecological effects were summarized. In general, cVMSs underwent moderate bioconcentration and bioaccumulation in some aquatic organisms. However, compared with the relatively confirmed bioconcentration / bioaccumulatiion, biomagnification of cVMSs was still a controversial issue. The following research should further explore their biological effects. Especially, combing both their degradation process in organisms and toxic data of intermediate products, the ecological effects and human health risks of these compounds should be further evaluated.
-
Key words:
- cyclic volatile methylsiloxanes /
- toxicity effect /
- bioconcentration /
- bioaccumulation /
- biomagnification /
- metabolism
-
表 1 cVMS的分子式及结构信息
Table 1. Molecular formula and structure information of cVMS
化合物名称
Compound name缩写
AbbreviationCAS号
CAS Number分子式
Molecular formula分子量
Molecular mass化学结构
Chemical construction八甲基环四硅氧烷 D4 555-67-2 C8H24O4Si4 296.62 十甲基环五硅氧烷 D5 541-02-6 C10H30O5Si5 370.77 十二甲基环六硅氧烷 D6 540-97-6 C12H36O6Si6 444.92 化合物
Compound饱和蒸汽压/Pa
Saturated vapor
pressure (25 ℃)溶解度/(mg·L−1)
Solubility亨利常数/ (Pa·m3 ·mol−1)
Henry constantlgKow lgKoc lgKoa lgKaw D4 140 0.056 1.21×106 6.49 4.22 4.34 2.69 D5 33.2 0.017 3.34×106 8.03 6.17 5.06 3.13 D6 4.60 0.005 4.94×106 9.06 6.10 5.76 3.30 表 3 生物体中典型cVMSs的浓度
Table 3. The concentrations of cVMS in different organisms
采样地区
Sampling area生物样品
Biological samplescVMSs/(ng·g−1ww) 参考文献
ReferenceD4 D5 D6 加拿大 鳄龟 0.077—0.122 0.143—3.59 0.125—0.458 [28] 鸬鹚 0.051—0.085 1.12—7.39 0.327—0.967 加拿大 欧洲椋鸟蛋 26.4 536 191 [29] 海鸥蛋 2.9 88 16 英国亨伯河口 沙蚕 <1.4—20 51—762 2.5—27 [30] 比目鱼肌肉 <0.8—10.4 12—299 0.12—4.7 加拿大伊利湖 浮游生物 <2 5.2 <2 [31] 钻穴浮游生物 7.0 11 5.7 白眼鱼和淡水石首鱼 9—13 15—36 7—14 加拿大 湖鳟鱼 2.5—28 45—719 4.7—16 [32] 中国渤海 软体动物 <LOQ—47.6 <LOQ—77.3 <LOQ—90.4 [35] 奥斯陆峡湾 贻贝 2.66—3.77 27.8—252 1.35—8.69 [36] 北欧地区① 海鱼 <5—70 <5—2200 <5—74 [38] 淡水鱼 <5—8.9 <5—84 <5 海洋哺乳动物 <5—12 <5—24 <5—7.9 北极地区 大西洋鳕鱼 <2.2—<10.8③ 12.7—358③ 5.3—52.8③ [39] 杜父鱼 <2.2—<10.8③ <1.5—2150③ <0.7—30.6③ 浮游动物② <8.7 <4.7 <4.8 海豹 — <1.5—1.9③ <0.7—1.1③ 波罗海域及
瑞典湖泊鲱鱼 <0.64—37 15—718 <0.3—128 [40] 灰海豹 <3 9—24 4.4—9.5 注:①包括丹麦、法罗群岛、芬兰、冰岛、挪威、瑞典;②主要包括水蚤、磷虾与浮游端足类动物;③单位为ng·g−1 lw.
Notes: ① Including Denmark, Falklands, Finland, Iceland, Norway and Sweden;② It mainly includes Daphnia, krill and planktonic Amphipoda;③ The unit is ng·g−1 lw (lipid weight). -
[1] 兰永超, 李娇敏, 钱程, 等. 污水处理厂进出水中环状挥发性甲基硅氧烷(cVMS)浓度季节性变化 [J]. 环境化学, 2019, 38(5): 1171-1179. LAN Y C, LI J M, QIAN C, et al. Seasonal variation of cVMS concentrations in the influents and effluents of wastewater treatment plants [J]. Environmental Chemistry, 2019, 38(5): 1171-1179(in Chinese).
[2] 周川琪, 袁涛. 挥发性甲基硅氧烷的环境分布与行为归趋研究进展 [J]. 环境化学, 2014, 33(3): 386-396. doi: 10.7524/j.issn.0254-6108.2014.03.003 ZHOU C Q, YUAN T. The environmental occurrences and behaviors of volatile methylsiloxanes: A review [J]. Environmental Chemistry, 2014, 33(3): 386-396(in Chinese). doi: 10.7524/j.issn.0254-6108.2014.03.003
[3] LU Y, YUAN T, WANG W H, et al. Concentrations and assessment of exposure to siloxanes and synthetic musks in personal care products from China [J]. Environmental Pollution, 2011, 159(12): 3522-3528. doi: 10.1016/j.envpol.2011.08.015 [4] GENUALDI S, HARNER T, CHENG Y, et al. Global distribution of linear and cyclic volatile methyl siloxanes in air [J]. Environmental Science & Technology, 2011, 45(8): 3349-54. [5] KROGSETH I S, KIERKEGAARD A, MCLACHLAN M S, et al. Occurrence and seasonality of cyclic volatile methyl siloxanes in arctic air [J]. Environmental Science & Technology, 2013, 47(1): 502-509. [6] LU Y, YUAN T, YUN S H, et al. Occurrence of Cyclic and linear siloxanes in indoor dust from china, and implications for human exposures [J]. Environmental Science & Technology, 2010, 44(16): 6081. [7] WANG R, MOODY R P, KONIECKI D, et al. Low molecular weight cyclic volatile methylsiloxanes in cosmetic products sold in Canada: Implication for dermal exposure [J]. Environment International, 2009, 35(6): 900-904. doi: 10.1016/j.envint.2009.03.009 [8] COMPANIONI-Damas E Y, SANTOS F J, GALCERAN M T. Linear and cyclic methylsiloxanes in air by concurrent solvent recondensation-large volume injection-gas chromatography-mass spectrometry [J]. Talanta, 2014, 118: 245-252. doi: 10.1016/j.talanta.2013.10.020 [9] DEWIL R, APPELS L, BAEYENS J, et al. The analysis of volatile siloxanes in waste activated sludge [J]. Talanta, 2008, 74(1): 14-19. [10] KIERKEGAARD A, ADOLFSSON-ERICI M, MCLACHLAN M S. Determination of cyclic volatile methylsiloxanes in biota with a purge and trap method [J]. Analytical Chemistry, 2010, 82(22): 9573-9578. doi: 10.1021/ac102406a [11] LEE S, MOON H B, SONG G J, et al. A nationwide survey and emission estimates of cyclic and linear siloxanes through sludge from wastewater treatment plants in Korea [J]. Science of the Total Environment, 2014, 497-498(Nov.1): 106-112. [12] WANG D G, AGGARWAL M, TAIT T, et al. Fate of anthropogenic cyclic volatile methylsiloxanes in a wastewater treatment plant [J]. Water Research, 2015, 72(apr.1): 209-217. [13] 吴婧娴, 栾晓新, 李清波, 等. 市政污水中环形挥发性甲基硅氧烷浓度水平与去除效率 [J]. 环境化学, 2016, 35(9): 1833-1841. WU J X, LUAN X X, LI Q B et al. Occurrence and removal efficiency of cyclic volatile methylsiloxanes in municipal wastewater [J]. Environmental Chemistry, 2016, 35(9): 1833-1841(in Chinese).
[14] WHELAN M J, SANDERS D, EGMOND R V. Effect of Aldrich humic acid on water-atmosphere transfer of decamethylcyclopentasiloxane [J]. Chemosphere, 2008, 74(8): 1111-1116. [15] KNOERR S M, DURHAM J A, MCNETT D A. Development of collection, storage and analysis procedures for the quantification of cyclic volatile methylsiloxanes in wastewater treatment plant effluent and influent [J]. Chemosphere, 2017, 182: 114-121. doi: 10.1016/j.chemosphere.2017.04.136 [16] SURITA S C, TANSEL B. A multiphase analysis of partitioning and hazard index characteristics of siloxanes in biosolids [J]. Ecotoxicology and Environmental Safety, 2014, 102: 79-83. doi: 10.1016/j.ecoenv.2014.01.012 [17] XU S, KOZERSKI G, MACKAY D. Critical review and interpretation of environmental data for volatile methylsiloxanes: Partition properties [J]. Environmental Science & Technology, 2014, 48(20): 11748-11759. [18] HOWARD P H, MUIR D C G. Identifying new persistent and bioaccumulative organics among chemicals in commerce [J]. Environmental Science & Technology, 2013, 47(10): 5259-5266. [19] DUDZINA T, VON GOETZ N, BOGDAL C, et al. Concentrations of cyclic volatile methylsiloxanes in European cosmetics and personal care products: prerequisite for human and environmental exposure assessment [J]. Environment International, 2014, 62(4): 86-94. [20] 曲垚, 徐琳, 蔡亚岐, 等. 山东某污水处理厂中环型和线型甲基硅氧烷的行为归趋 [J]. 环境化学, 2019, 38(02): 422-432. QU Y, XU L, CAI Y Q, et al. Occurrence and fate of cyclic and linear methylsiloxanes in a wastewater treatment plant in Shandong Province, China [J]. Environmental Chemistry, 2019, 38(02): 422-432(in Chinese).
[21] KENT B, WOODBURN R M, SESTON, J K, et al. Benthic invertebrate exposure and chronic toxicity risk analysis for cyclic volatile methylsiloxanes: Comparison of hazard quotient and probabilistic risk assessment approaches. 2018, 192: 337-347. [22] XU L, SHI Y, CAI Y. Occurrence and fate of volatile siloxanes in a municipal Wastewater Treatment Plant of Beijing, China [J]. Water Research, 2013, 47(2): 715-724. doi: 10.1016/j.watres.2012.10.046 [23] SHEN M, ZHANG Y, TIAN Y, et al. Recent advances in research on cyclic volatile methylsiloxanes in sediment, soil and biosolid: A review [J]. Chemistry and Ecology, 2018, 34(7): 675-695. doi: 10.1080/02757540.2018.1475561 [24] BROOK D N, CROOKES M J, GRAY D, et al. Environmental risk assessment report: Octamethylcyclotetrasiloxane[R]. Environment Agency of England and Wales, Bristol, UK, 2009. [25] BROOK D N, CROOKES M J, GRAY D, et al. Environmental risk assessment report: Decamethylcyclopentasiloxane[R]. Environment Agency of England and Wales: Bristol, UK, 2009. [26] BROOK D N, CROOKES M J, GRAY D, et al. Environmental risk assessment report: Dodecamethylcyclohexasiloxane[R]. Environment Agency of England and Wales: Bristol, UK, 2009. [27] MACKAY D, COWAN-ELLSBERRY C E, POWELL D E, et al. Decamethylcyclopentasiloxane (D5) environmental sources, fate, transport, and routes of exposure [J]. Environmental Toxicology & Chemistry, 2016, 34.(12): 2689-2702. [28] WANG D G, SOLLA S R D, LEBEUF M, et al. Determination of linear and cyclic volatile methylsiloxanes in blood of turtles, cormorants, and seals from Canada [J]. Science of the Total Environment, 2017, 574: 1254-1260. doi: 10.1016/j.scitotenv.2016.07.133 [29] LU Z, MARTIN PAMELA A, BURGESS NEIL M, et al. Volatile methylsiloxanes and organophosphate esters in the eggs of European starlings (Sturnus vulgaris) and congeneric gull species from locations across Canada[J[. Environmental Science and Technology , 2017, 51(17): 9836-9845. [30] KIERGAARD A, VAN EGMOND R, MCLACHLAN M S. Cyclic volatile methylsiloxane bioaccumulation in flounder and ragworm in the Humber Estuary [J]. Environmental Science and Technology, 2011, 45(14): 5936-5942. doi: 10.1021/es200707r [31] MCGOLDRICK D J, CHAN C, DROUILLARD K G, et al. Concentrations and trophic magnification of cyclic siloxanes in aquatic biota from the Western Basin of Lake Erie, Canada [J]. Environmental Pollution, 2014, 186(mar.): 141-148. [32] KROGSETH I S, UNDEMAN E M, EVENSET A, et al. Elucidating the behavior of cyclic volatile methylsiloxanes in a subarctic freshwater food web: A modeled and measured approach [J]. Environmental Science & Technology, 2017, 51(21): 12489. [33] MCGOLDRICK D J, LETCHER R J, BARRESI E, et al. Organophosphate flame retardants and organosiloxanes in predatory freshwater fish from locations across Canada [J]. Environmental Pollution, 2014, 193(oct.): 254-261. [34] KIERGAARD A, BIGNERT A, MCLACHLAN M S. Bioaccumulation of decamethylcyclopentasiloxane in perch in Swedish lakes [J]. Chemosphere, 2013, 93(5): 789-793. doi: 10.1016/j.chemosphere.2012.10.050 [35] ZHI L Q, XU L, HE X D, et al. Distribution of methylsiloxanes in benthic mollusks from the Chinese Bohai Sea [J]. Journal of Environmental Sciences, 2019, 76(02): 202-210. [36] POWELL D E, MERETE SCHØYEN, SIGURD ØXNEVAD, et al. Bioaccumulation and trophic transfer of cyclic volatile methylsiloxanes (cVMS) in the aquatic marine food webs of the Oslofjord, Norway [J]. Science of the Total Environment, 2018, 622/623(may1): 127-139. [37] KAJ L, ANDERSSON J, COUSINS A P, et al. Results from the Swedish national screening programme 2004. Subreport 4: Siloxanes [M]. Stockholm: IVL Swedish Environmental Research Institute Ltd. , 2005: 11. [38] KAJ L, SCHLABACH M, ANDERSSON J, PALM COUSINS A, et al. Siloxanes in the nordic environment[M]. Nordic Council of Ministers: Copenhagen, 2005. [39] WARNER N A, EVENSET A, CHRISTENSEN G, et al. Volatile siloxanes in the European arctic: assessment of sources and spatial distribution [J]. Environmental Science and Technology, 2010, 44(19): 7705-7710. doi: 10.1021/es101617k [40] KIERGAARD A, BIGNERT A, MCLACHLAN M S. Cyclic volatile methylsiloxanes in fish from the Baltic Sea [J]. Chemosphere, 2013, 93(5): 774-778. doi: 10.1016/j.chemosphere.2012.10.048 [41] XU L, SHI Y, WANGT, et al. Methyl siloxanes in environmental matrices around a siloxane production facility, and their distribution and elimination in plasma of exposed population [J]. Environmental Science and Technology, 2012, 46(21): 11718-211726. doi: 10.1021/es3023368 [42] XU L, SHI Y, LIU N, et al. Methyl siloxanes in environmental matrices and human plasma/fat from both general industries and residential areas in China [J]. Science of the Total Environment, 2015, 505(1): 454-463. [43] HANSSEN L, WARNER N A, BRAATHEN T, et al. Plasma concentrations of cyclic volatile methylsiloxanes (cVMS) in pregnant and postmenopausal Norwegian women and self-reported use of personal care products (PCPs) [J]. Environment International, 2013, 51: 82-87. doi: 10.1016/j.envint.2012.10.008 [44] FLASSBECK D, PFLEIDERER B, et al. Determination of low molecular weight silicones in plasma and blood of women after exposure to silicone breast implants by GC/MS [J]. Analytical Chemistry, 2001, 73(3): 606-611. doi: 10.1021/ac000738z [45] FLASSBECK D, PFLEIDERER B, KLEMENS P, et al. Determination of siloxanes, silicon, and platinum in tissues of women with silicone gel-filled implants [J]. Analytical & Bioanalytical Chemistry, 2003, 375(3): 356-362. [46] ROSENDAHL P, HIPPLER J, SCHMITZ O J, et al. Cyclic volatile methylsiloxanes in human blood as markers for ruptured silicone gel-filled breast implants. [J]. Analytical & Bioanalytical Chemistry, 2016, 408(12): 3309-3317. [47] QUINN A L, DALU A, MEEKER L S, et al. Effects of octamethyl- cyclotetrasiloxane (D4) on the luteinizing hormone (LH) surge and levels of various reproductive hormones in female Sprague-Dawley rats [J]. Reproductive Toxicology, 2007, 23(4): 532-540. doi: 10.1016/j.reprotox.2007.02.005 [48] SIDDIQUI W H, STUMP D G, PLOTZKE K P, et al. A two-generation reproductive toxicity study of octamethylcyclotetrasiloxane (D4) in rats exposed by whole-body vapor inhalation [J]. Reproductive Toxicology, 2007, 23(2): 202-215. doi: 10.1016/j.reprotox.2006.11.011 [49] MCKIM J M, WILGA P C, KOLESAR G B, et al. Evaluation of octamethyl-cyclotetrasiloxane (D4) as an inducer of rat hepatic microsomal cytochrome P450, UDP-glucuronosyltransferase, and epoxide hydrolase: A 28-day inhalation study [J]. Toxicological Sciences, 1998, 41(1): 29-41. doi: 10.1093/toxsci/41.1.29 [50] MCKIM J M, KOLESAR G B, JEAN P A, et al. Repeated inhalation exposure to octamethylcyclotetrasiloxane produces hepatomegaly, transient hepatic hyperplasia, and sustained hypertrophy in female fischer 344 rats in a manner similar to phenobarbital [J]. Toxicology & Applied Pharmacology, 2001, 172(2): 83-92. [51] HE B, RHODES-BROWER S, MILLER M R, et al. Octamethylcyclotetrasiloxane exhibits estrogenic activity in mice via ERα [J]. Toxicology and Applied Pharmacology, 2003, 192(3): 254-261. doi: 10.1016/S0041-008X(03)00282-5 [52] QUINN A L, REGAN J M, TOBIN J M, et al. In vitro and in vivo evaluation of the estrogenic, andorgenic, and progestagenic potential of two cyclic siloxanes [J]. Toxicological Sciences, 2007, 96(1): 145-153. [53] MCKIM J M, WILGA P C, BRESLIN W J, et al. Potential estrogenic and antiestrogenic activity of the cyclic siloxane octamethylcyclotetrasiloxane (D4) and the linear siloxane hexamethyldisiloxane (HMDS) in immature rats using the uterotrophic assay [J]. Toxicological Sciences, 2001, 63(1): 37-46. doi: 10.1093/toxsci/63.1.37 [54] LASSEN C, HANSEN C L, MIKKELSEN S H, et al. Environmental Project No. 1031 – Siloxanes - Consumption, toxicity and alternatives [J]. Danish Environmental Protection Agency, 2005, 54(1): 1-5. [55] SIDDIQUI W H, STUMP D G, REYNOLDS V L, et al. A two-generation reproductive toxicity study of decamethylcyclopentasiloxane (D5) in rats exposed by whole-body vapor inhalation [J]. Reproductive Toxicology, 2007, 23(2): 216-225. doi: 10.1016/j.reprotox.2006.11.006 [56] BURNS-NAAS L A, MAST R W, MEEKS R G, et al. Inhalation toxicology of decamethylcyclopentasiloxane (D5) following a 3-month nose-only exposure in fischer 344 rats [J]. Toxicological Sciences An Official Journal of the Society of Toxicology, 1998, 43(2): 230-240. doi: 10.1093/toxsci/43.2.230 [57] DEKANT W, KLAUNIG J E. Toxicology of decamethylcyclopentasiloxane (D5) [J]. Regulatory Toxicology & Pharmacology, 2016, 74: S67-S76. [58] MCKIM J M, CHOUDHURI S, WILGA P C, et al. Induction of hepatic xenobiotic metabolizing enzymes in female Fischer- 344 rats following repeated inhalation exposure to decamethylcyclopentasiloxane (D5) [J]. Toxicological Sciences, 1999, 50(1): 10-19. doi: 10.1093/toxsci/50.1.10 [59] ZHANG J, FALANY J L, XIE X, et al. Induction of rat hepatic drug metabolizing enzymes by dimethylcyclosiloxanes [J]. Chemico-Biological Interactions, 2000, 124(2): 133-147. doi: 10.1016/S0009-2797(99)00153-2 [60] SOUSA J V, MCNAMARA P C, PUTT A E, et al. Effects of octamethylcyclotetrasiloxane (OMCTS) on freshwater and marine organisms [J]. Environmental Toxicology and Chemistry, 1995, 14: 1639-1647. doi: 10.1002/etc.5620141003 [61] KENT D J, MCNAMARA P C, PUTT A E, et al. Octamethylcyclotetrasiloxane in aquatic sediment: Toxicity and risk assessment [J]. Ecotoxicology and Environmental Safety, 1994, 29(3): 372-389. doi: 10.1016/0147-6513(94)90010-8 [62] European Commission. Amending Regulation (EC) No 1907/2006 of the European Parliament and of the Council on the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) as Regards Annex XIII[S]. [2020.04]. European Commission, 2010. http://register.consilium.europa.eu/pdf/en/10/st14/st14860.en10.pdf. [63] PARROTT J L, ALAEE M, WANG D, et al. Fathead minnow (Pimephales promelas) embryo to adult exposure to decamethylcyclopentasiloxane (D5) [J]. Chemosphere, 2013, 93(5): 813-818. doi: 10.1016/j.chemosphere.2012.10.053 [64] WOODBURN K, DROTTAR K, DOMORADZKI J, et al. Determination of the dietary biomagnification of octamethylcyclotetrasiloxane and decamethylcyclopentasiloxane with the rainbow trout (Oncorhynchus mykiss) [J]. Chemosphere, 2012, 93(5): 779-788. [65] KRUEGER H O, THOMAS S T, KENDALL T Z, et al. D4: A prolonged sediment toxicity test with Chironomus riparius using spiked sediment. wildlife international, LTD[R]. Silicones Environmental, Health and Safety Council (SEHSC), 2008. [66] Springborn Smithers Laboratories. Decamethylcyclopentasiloxane (D5)-the Full Life-Cycle Toxicity to Midge (Chironomous riparius) under static conditions[R]. Silicones Environmental, Health and Safety Council (SEHSC), 2003. [67] NORWOOD W P, ALAEE M, SVERKO E, et al. Decamethylcyclopentasiloxane (D5) spiked sediment: Bioaccumulation and toxicity to the benthic invertebrate Hyalella azteca [J]. Chemosphere, 2013, 93(5): 805-812. doi: 10.1016/j.chemosphere.2012.10.052 [68] KRUEGER H O, THOMAS S T, KENDALL T Z. D5: A prolonged sediment toxicity test with Lumbriculus variegatus using spiked sediment. Wildlife international, LTD[R]. Centre Européen des Silicones (CES), 2007. [69] KRUEGER H O, THOMAS S T, KENDALL T Z. D5: A prolonged sediment toxicity test with Chironomus riparius using spiked sediment. wildlife international, LTD[R]. Silicones Environmental, Health and Safety Council (SEHSC), 2008. [70] WANG D G, NORWOOD W, ALAEE M, et al. Review of recent advances in research on the toxicity, detection, occurrence and fate of cyclic volatile methyl siloxanes in the environment [J]. Chemosphere, 2013, 93(5): 711-725. doi: 10.1016/j.chemosphere.2012.10.041 [71] VELICOGNA J, RITCHIE E, PRINCZ J, et al. Ecotoxicity of siloxane D5 in soil [J]. Chemosphere, 2012, 87(1): 77-83. doi: 10.1016/j.chemosphere.2011.11.064 [72] ANNELIN R B, FRYE C L. The piscine bioconcentration characteristics of cyclic and linear oligomeric permethylsiloxanes [J]. Science of the Total Environment, 1989, 83(1/2): 1-11. [73] KENT D, FACKLER P, HARTLEY D, et al. Interpretation of data from nonstandard studies: The fate of octamethylcyclotetrasiloxane in a sediment/water microcosm system [J]. Environmental Toxicology and Water Quality, 1996, 11(2): 145-149. doi: 10.1002/(SICI)1098-2256(1996)11:2<145::AID-TOX10>3.0.CO;2-C [74] DROTTAR K R. 14C-Decamethylcyclopentasiloxane (14C-D5): Bioconcentration in the fathead minnow (Pimephales Promelas) under flow-through test conditions[R]. Technical Dow Corning Corporation: Silicones Environment, Health and Safety Council (SEHSC), 2005. [75] DROTTAR K R. 14C-Dodecamethylcyclohexasiloxane (14C-D6): Bioconcentration in the fathead minnow (Pimephales Promelas) under flow-through test conditions[R]. Technical Dow Corning Corporation: Silicones Environment, Health and Safety Council (SEHSC), 2005. [76] OZKOC H B, BAKAN G E, ARIMAN S. Distribution and bioaccumulation of organochlorine pesticides along the Black Sea coast [J]. Environmental Geochemistry & Health, 2007, 29(1): 59-68. [77] POWELL D E, WOODBURN K B, DROTAR K D , et al. Trophic dilution of cyclic volatile methylsiloxane (cVMS) materials in a temperate freshwater lake[R]. Internal Report Conducted for Centre Européen des Sililcones, 2009, Report Number 2009-I0000-60988. [78] HONG W J, JIA H L, LIU C, et al. Distribution, source, fate and bioaccumulation of methyl siloxanes in marine environment [J]. Environmental Pollution, 2014, 191: 175-181. doi: 10.1016/j.envpol.2014.04.033 [79] BORGA K, FJELD E, KIERKEGAARD A, MICHAEL S, et al. Consistency in trophic magnification factors of cyclic methyl siloxanes in pelagic freshwater food webs leading to brown trout [J]. Environmental Science and Technology, 2013, 47: 14392-14402. [80] JIA H, ZHANG Z, WANG C, et al. Trophic transfer of methyl siloxanes in the marine food web from coastal area of northern China [J]. Environmental Science and Technology, 2015, 49(5): 2833-2840. doi: 10.1021/es505445e [81] POWELL D E, SUGANUMA N, KOBAYASHI K, et al. Trophic dilution of cyclic volatile methylsiloxanes (cVMS) in the pelagic marine food web of Tokyo Bay, Japan [J]. Science of the Total Environment, 2017, 578: 366-382. doi: 10.1016/j.scitotenv.2016.10.189 [82] MEEKS R G, STUMP D G, SIDDIQUI W H, et al. An inhalation reproductive toxicity study of octamethylcyclotetrasiloxane (D4) in female rats using multiple and single day exposure regimens [J]. Reproductive Toxicology, 2007, 23(2): 192-201. doi: 10.1016/j.reprotox.2006.12.005 [83] CUI S, FU Q, AN L, et al. Trophic transfer of cyclic methyl siloxanes in the marine food web in the Bohai Sea, China [J]. Ecotoxicology and Environmental Safety, 2019, 178(AUG.): 86-93. [84] HUTTER L J C. Bioavailability of octamethylcyclotetrasiloxane (D(4)) after exposure to silicones by inhalation and implantation [J]. Environmental Health Perspectives, 2001, 109(11): 1095-1101. [85] REDDY M B, ANDERSEN M E, MORROW P E, et al. Physiological modeling of inhalation kinetics of octamethylcyclotetrasiloxane in humans during rest and exercise [J]. Toxicological Sciences, 2003, 72(1): 3-18. doi: 10.1093/toxsci/kfg001 [86] REDDY M B, DOBREV I D, MCNETT D A, et al. Inhalation dosimetry modeling with decamethylcyclopentasiloxane in rats and humans [J]. Toxicological Sciences, 2008(2): 275-285. [87] REDDY M B, LOONEY R J, UTELL M J, et al. Modeling of human dermal absorption of octamethylcyclotetrasiloxane (D4) and decamethylcyclopentasiloxane (D5) [J]. Toxicological Sciences, 2007, 99(2): 422-431. doi: 10.1093/toxsci/kfm174 [88] ANDERSEN M E, REDDY M B, PLOTZKE K P. Are highly lipophilic volatile compounds expected to bioaccumulate with repeated exposures? [J]. Toxicology Letters, 2008, 179(2): 85-92. doi: 10.1016/j.toxlet.2008.04.007 [89] TOBIN J M, MCNETT D A, DURHAM J A, et al. Disposition of decamethylcyclopentasiloxane in Fischer 344 rats following single or repeated inhalation exposure to 14C-decamethylcyclopentasiloxane (14C-D5) [J]. Inhalation Toxicology, 2008, 20(5): 513-531. doi: 10.1080/08958370801935075 [90] ANDERSEN M E, RAMESH S, REITZ R H, et al. Physiological modeling reveals novel pharmacokinetic behavior for inhaled octamethylcyclotetrasiloxane in rats [J]. Toxicological Sciences, 2001(2): 214-231. [91] VARAPRATH S. Metabolites of hexamethyldisiloxane and decamethylcyclopentasiloxane in Fischer 344 rat urine-a comparison of a linear and a cyclic siloxane [J]. Drug Metabolism & Disposition, 2003, 31(2): 206-214.