高级氧化技术去除水中碘代X射线造影剂研究进展

向伟铭, 杨绍贵, 孙敦宇, 季秋忆, 周文武, 许晨敏, 何欢, 李时银. 高级氧化技术去除水中碘代X射线造影剂研究进展[J]. 环境化学, 2022, 41(1): 260-275. doi: 10.7524/j.issn.0254-6108.2020101602
引用本文: 向伟铭, 杨绍贵, 孙敦宇, 季秋忆, 周文武, 许晨敏, 何欢, 李时银. 高级氧化技术去除水中碘代X射线造影剂研究进展[J]. 环境化学, 2022, 41(1): 260-275. doi: 10.7524/j.issn.0254-6108.2020101602
XIANG Weiming, YANG Shaogui, SUN Dunyu, JI Qiuyi, ZHOU Wenwu, XU Chenmin, HE Huan, LI Shiyin. Research progress of advanced oxidation technology to remove iodine X-ray contrast media in water[J]. Environmental Chemistry, 2022, 41(1): 260-275. doi: 10.7524/j.issn.0254-6108.2020101602
Citation: XIANG Weiming, YANG Shaogui, SUN Dunyu, JI Qiuyi, ZHOU Wenwu, XU Chenmin, HE Huan, LI Shiyin. Research progress of advanced oxidation technology to remove iodine X-ray contrast media in water[J]. Environmental Chemistry, 2022, 41(1): 260-275. doi: 10.7524/j.issn.0254-6108.2020101602

高级氧化技术去除水中碘代X射线造影剂研究进展

    通讯作者: Tel:025-85891849, E-mail:yangsg@njnu.edu.cn
  • 基金项目:
    国家自然科学基金 (21777067),江苏省重点研发计划(社会发展) (BE2019743)和江苏省“六大人才高峰”高层次人才项目(JNHB-105)资助.

Research progress of advanced oxidation technology to remove iodine X-ray contrast media in water

    Corresponding author: YANG Shaogui, yangsg@njnu.edu.cn
  • Fund Project: the National Natural Science Foundation of China (21777067), Primary Research & Development Plan of Jiangsu Province(BE2019743) and the Six Talent Peaks Project in Jiangsu Province (JNHB-105).
  • 摘要: 碘代X射线造影剂在医学上的大量使用导致其在水环境中普遍存在,对生态系统和人体健康构成巨大威胁。传统的污水处理技术对碘代X射线造影剂去除效果不佳,应用高级氧化技术去除水中碘代X射线造影剂成为研究热点。本文系统分析了水环境中碘代X射线造影剂的理化性质、来源、危害及污染现状。综述了声化学氧化、光催化、过硫酸盐活化、芬顿和电化学等5种高级氧化技术对碘代X射线造影剂的去除效果、机理及影响因素等,并指出了各自应用优势和限制,最后对高级氧化技术应用于碘代X射线造影剂的研究提出多种单一高级氧化技术协同降解的展望。
  • 加载中
  • 图 1  超声辐射技术降解有机污染物机理

    Figure 1.  Degradation mechanism of organic pollutants by ultrasonic radiation technology

    图 2  BN/Bi2MoO6模拟太阳光催化降解有机污染物机理

    Figure 2.  Mechanism of BN/Bi2MoO6 simulating solar photocatalytic degradation of organic pollutants

    图 3  EIEL/UV/PS系统降解泛影酸路径[81]

    Figure 3.  EIEL/UV/PS system degradation pathway of diatrizoic acid[81]

    表 1  常见ICMs的物理化学性质

    Table 1.  The physical and chemical properties of common ICMs

    碘代X射线
    造影剂
    ICMs
    CAS结构式
    Structural
    formula
    相对分子质量
    Relative
    molecular mass
    熔点/℃
    Melting
    point
    溶解度/(g·L−1)
    Solubility
    沸点/℃
    Boiling point
    ( 760 mmHg)
    类型
    Type
    泛影酸
    Diatrizoate
    50978-11-5613.91>30020 ℃ 6×105离子型
    碘克沙酸59017-64-01268.8830225 °C 3.27×10−8887.9离子型
    碘羟拉酸
    Ioxithalamic Acid
    28179-44-4643.94253—255582.8离子型
    碘帕醇
    Iopamidol
    60166-93-0777.08785.3非离子型
    碘美普尔
    Iomeprol
    78649-41-9777.09263—265813.2非离子型
    碘海醇
    Iohexol
    66108-95-0821.14254—25620 ℃ 7.96×10−1891.5非离子型
    碘普罗胺
    Iopromide
    73334-07-3791.11840.9非离子型
      注:数据来源(data source):https://baike.molbase.cn/; http://msds.chemicalbook.com/;http://search.ichemistry.cn/.
    碘代X射线
    造影剂
    ICMs
    CAS结构式
    Structural
    formula
    相对分子质量
    Relative
    molecular mass
    熔点/℃
    Melting
    point
    溶解度/(g·L−1)
    Solubility
    沸点/℃
    Boiling point
    ( 760 mmHg)
    类型
    Type
    泛影酸
    Diatrizoate
    50978-11-5613.91>30020 ℃ 6×105离子型
    碘克沙酸59017-64-01268.8830225 °C 3.27×10−8887.9离子型
    碘羟拉酸
    Ioxithalamic Acid
    28179-44-4643.94253—255582.8离子型
    碘帕醇
    Iopamidol
    60166-93-0777.08785.3非离子型
    碘美普尔
    Iomeprol
    78649-41-9777.09263—265813.2非离子型
    碘海醇
    Iohexol
    66108-95-0821.14254—25620 ℃ 7.96×10−1891.5非离子型
    碘普罗胺
    Iopromide
    73334-07-3791.11840.9非离子型
      注:数据来源(data source):https://baike.molbase.cn/; http://msds.chemicalbook.com/;http://search.ichemistry.cn/.
    下载: 导出CSV

    表 2  污水处理厂进出水ICMs检出浓度

    Table 2.  Detected concentrations of ICMs in the influent and effluent water of sewage treatment plants

    ICMs进水含量/(μg·L−1)
    Concentration at influent
    出水含量/(μg·L−1)
    Concentration at effluent
    进出水浓度减少量/(μg·L−1)
    Reduction of concentration
    参考文献
    Reference
    碘帕醇 4.3 4.7 0 [18]
    泛影酸 3.3 4.1 0.8 [18]
    碘美普尔 1.6 1.3 0 [18]
    碘海醇 0.55 0.74 0 [19]
    碘普罗胺 0.1 0.025 0.075 [19]
    碘羟拉酸 0.17 0.16 0.01 [4,18]
    碘他拉酸 0.18 0.14 0.04 [4,18]
    ICMs进水含量/(μg·L−1)
    Concentration at influent
    出水含量/(μg·L−1)
    Concentration at effluent
    进出水浓度减少量/(μg·L−1)
    Reduction of concentration
    参考文献
    Reference
    碘帕醇 4.3 4.7 0 [18]
    泛影酸 3.3 4.1 0.8 [18]
    碘美普尔 1.6 1.3 0 [18]
    碘海醇 0.55 0.74 0 [19]
    碘普罗胺 0.1 0.025 0.075 [19]
    碘羟拉酸 0.17 0.16 0.01 [4,18]
    碘他拉酸 0.18 0.14 0.04 [4,18]
    下载: 导出CSV

    表 3  常见ICMs降解过程DBPs的细胞毒性

    Table 3.  Cytotoxicity of DBPs in common degradation process of ICMs

    消毒副产物类别
    Disinfection byproducts
    category
    消毒副产物
    Disinfection byproducts
    CHO细胞最低致死浓度/(mol·L−1)
    Lowest toxic concentration
    CHO细胞半致死浓度/
    (mol·L−1)
    The C½ value
    参考文献
    Reference
    碘代三卤甲烷
    Iodo-trihalomethanes
    碘代二氯甲烷4.0×10−3[8]
    碘代溴氯甲烷2.4×10−3
    氯代碘甲烷4.0×10−3
    三碘甲烷4.0×10−3
    卤代酸
    Haloacids
    碘乙酸5.0×10−63.0×10−6[8,25-26]
    溴碘乙酸2.5×10−49.0×10−4
    二溴乙酸7.5×10−4
    氯乙酸3.0×10−4
    溴氯乙酸3.0×10−3
    卤代乙腈
    Haloacetonitriles
    碘乙腈1.0×10−73.3×10−6[27]
    溴乙腈1.0×10−63.2×10−6
    二溴乙腈1.0×10−62.9×10−6
    溴氯乙腈7.0×10−68.5×10−6
    二氯乙腈1.0×10−55.7×10−5
    卤代乙酰胺
    Haloacetamides
    碘乙酰胺5.0×10−71.4×10−6[28]
    二碘乙酰胺2.5×10−86.8×10−7
    溴乙酰胺5×10−71.9×10−6
    溴氯乙酰胺1.0×10−61.7×10−5
    氯乙酰胺7.5×10−51.5×10−4
    消毒副产物类别
    Disinfection byproducts
    category
    消毒副产物
    Disinfection byproducts
    CHO细胞最低致死浓度/(mol·L−1)
    Lowest toxic concentration
    CHO细胞半致死浓度/
    (mol·L−1)
    The C½ value
    参考文献
    Reference
    碘代三卤甲烷
    Iodo-trihalomethanes
    碘代二氯甲烷4.0×10−3[8]
    碘代溴氯甲烷2.4×10−3
    氯代碘甲烷4.0×10−3
    三碘甲烷4.0×10−3
    卤代酸
    Haloacids
    碘乙酸5.0×10−63.0×10−6[8,25-26]
    溴碘乙酸2.5×10−49.0×10−4
    二溴乙酸7.5×10−4
    氯乙酸3.0×10−4
    溴氯乙酸3.0×10−3
    卤代乙腈
    Haloacetonitriles
    碘乙腈1.0×10−73.3×10−6[27]
    溴乙腈1.0×10−63.2×10−6
    二溴乙腈1.0×10−62.9×10−6
    溴氯乙腈7.0×10−68.5×10−6
    二氯乙腈1.0×10−55.7×10−5
    卤代乙酰胺
    Haloacetamides
    碘乙酰胺5.0×10−71.4×10−6[28]
    二碘乙酰胺2.5×10−86.8×10−7
    溴乙酰胺5×10−71.9×10−6
    溴氯乙酰胺1.0×10−61.7×10−5
    氯乙酰胺7.5×10−51.5×10−4
    下载: 导出CSV

    表 4  不同国家水环境中ICMs浓度(ng·L−1)

    Table 4.  Concentration of ICMs in the water environment of different countries (ng·L−1)

    国家/地区
    Country/Region
    源水
    Water source
    碘帕醇
    Iopamidol
    碘海醇
    Iohexol
    泛影酸
    Diatrizoic acid
    碘普罗胺
    Iopromide
    参考文献
    Reference
    乌泽多姆波罗的海14—36[33]
    德国,乌尔姆多瑙河上游,污水处理厂40—47040—12540—19040—125[34]
    德国,哥廷根莱茵河685—8851126—1302238—298[34]
    西班牙,巴塞罗那略夫雷加特河86—66.122.9—18113.5—1813[35]
    西班牙饮用水处理厂0.5—5.00.4—1.0[36]
    法国医院原水1.91×106—3.81×106[5]
    法国城市废水处理厂500—65003310—8770500—2360[14]
    澳大利亚,珀斯水回收厂进水240—610790—9200980—2910280—670[37]
    中国,江苏太湖86.0—91.62.3—28[13]
    中国,上海黄浦江1.0—90.773.6—1007.1—51.4[13]
    中国,长兴岛自来水11—1323—255.1—6.3[7]
    中国,长兴岛饮用水厂进水15.3—16.729—338.1—8.9[7]
    中国,长兴岛污水处理厂进水8000—100002000—2400125—1110[7]
    国家/地区
    Country/Region
    源水
    Water source
    碘帕醇
    Iopamidol
    碘海醇
    Iohexol
    泛影酸
    Diatrizoic acid
    碘普罗胺
    Iopromide
    参考文献
    Reference
    乌泽多姆波罗的海14—36[33]
    德国,乌尔姆多瑙河上游,污水处理厂40—47040—12540—19040—125[34]
    德国,哥廷根莱茵河685—8851126—1302238—298[34]
    西班牙,巴塞罗那略夫雷加特河86—66.122.9—18113.5—1813[35]
    西班牙饮用水处理厂0.5—5.00.4—1.0[36]
    法国医院原水1.91×106—3.81×106[5]
    法国城市废水处理厂500—65003310—8770500—2360[14]
    澳大利亚,珀斯水回收厂进水240—610790—9200980—2910280—670[37]
    中国,江苏太湖86.0—91.62.3—28[13]
    中国,上海黄浦江1.0—90.773.6—1007.1—51.4[13]
    中国,长兴岛自来水11—1323—255.1—6.3[7]
    中国,长兴岛饮用水厂进水15.3—16.729—338.1—8.9[7]
    中国,长兴岛污水处理厂进水8000—100002000—2400125—1110[7]
    下载: 导出CSV

    表 5  高级氧化技术优缺点对比

    Table 5.  Comparison of advantages and disadvantages of advanced oxidation technology

    高级氧化技术
    AOPs
    主要活性物种
    Main active species
    优点
    Advantages
    缺点
    Disadvantages
    参考文献
    Reference
    声化学 H· 、HO· 自由基氧化,超声热裂解 耗能高,易造成二次噪声污染 [127-128]
    光催化 HO·${\rm{O}}_2^{ \cdot - } $ 能量来源绿色可循环,降解效果好,矿化率高 降解速率慢,光催化剂使用寿命容易受复杂水环境影响 [129-130]
    过硫酸盐活化 ${\rm{SO}}_4^{ \cdot - } $HO·${\rm{O}}_2^{ \cdot - } $ 降解速率快,${\rm{SO}}_4^{ \cdot - } $半衰期长,矿化率高 物质能量消耗较大,反应中需不断投加PS [59, 131]
    芬顿法 HO· 技术应用成熟,可以实际应用 受环境因素影响较大(pH, T) [132-133]
    电化学 HO· 降解速率快,小分子物质阳极直接被氧化去除 阴阳极材料使用寿命,耗能高 [134]
    协同催化技术 ${\rm{SO}}_4^{ \cdot - } $HO·${\rm{O}}_2^{ \cdot - } $ 根据污染物灵活设计 较少 [89,135-138]
    高级氧化技术
    AOPs
    主要活性物种
    Main active species
    优点
    Advantages
    缺点
    Disadvantages
    参考文献
    Reference
    声化学 H· 、HO· 自由基氧化,超声热裂解 耗能高,易造成二次噪声污染 [127-128]
    光催化 HO·${\rm{O}}_2^{ \cdot - } $ 能量来源绿色可循环,降解效果好,矿化率高 降解速率慢,光催化剂使用寿命容易受复杂水环境影响 [129-130]
    过硫酸盐活化 ${\rm{SO}}_4^{ \cdot - } $HO·${\rm{O}}_2^{ \cdot - } $ 降解速率快,${\rm{SO}}_4^{ \cdot - } $半衰期长,矿化率高 物质能量消耗较大,反应中需不断投加PS [59, 131]
    芬顿法 HO· 技术应用成熟,可以实际应用 受环境因素影响较大(pH, T) [132-133]
    电化学 HO· 降解速率快,小分子物质阳极直接被氧化去除 阴阳极材料使用寿命,耗能高 [134]
    协同催化技术 ${\rm{SO}}_4^{ \cdot - } $HO·${\rm{O}}_2^{ \cdot - } $ 根据污染物灵活设计 较少 [89,135-138]
    下载: 导出CSV
  • [1] ABD EL-RAHMAN M K, RIAD S M, GAWAD S A A, et al. Stability indicating spectrophotometric and spectrodensitometric methods for the determination of diatrizoate sodium in presence of its degradation product [J]. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 2015, 136: 1167-1174. doi: 10.1016/j.saa.2014.10.002
    [2] NOWAK A, PACEK G, MROZIK A. Transformation and ecotoxicological effects of iodinated X-ray contrast media [J]. Reviews in Environmental Science and Bio-Technology, 2020, 19(2): 337-354. doi: 10.1007/s11157-020-09534-0
    [3] HIRSCH R, TERNES T A, LINDART A, et al. A sensitive method for the determination of iodine containing diagnostic agents in aqueous matrices using LC-electrospray-tandem-MS detection [J]. Fresenius Journal of Analytical Chemistry, 2000, 366(8): 835-841. doi: 10.1007/s002160051581
    [4] PEREZ S, BARCELO D. Fate and occurrence of X-ray contrast media in the environment [J]. Analytical and Bioanalytical Chemistry, 2007, 387: 1235-1246. doi: 10.1007/s00216-006-0953-9
    [5] SORDET M, BULETE A, VULLIET E. A rapid and easy method based on hydrophilic interaction chromatography coupled with tandem mass spectrometry (HILIC-MS/MS/MS) to quantify iodinated X-ray contrast in wastewaters [J]. Talanta, 2018, 190: 480-486. doi: 10.1016/j.talanta.2018.08.006
    [6] DREWES J E, FOX P, JEKEL M. Occurrence of iodinated X-ray contrast media in domestic effluents and their fate during indirect potable reuse [J]. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering, 2001, 36(9): 1633-1645.
    [7] 陈皇博, 程心滢, 叶晓枫, 等. 碘代X射线造影剂的分析方法及其污染现状研究进展 [J]. 环境化学, 2019, 38(8): 1919-1929. doi: 10.7524/j.issn.0254-6108.2018101001

    CHEN H B, CHENG X Y, YE X F, et al. Research progress on analysis methods and pollution status of iodine-based X-ray contrast agents [J]. Environmental Chemistry, 2019, 38(8): 1919-1929(in Chinese). doi: 10.7524/j.issn.0254-6108.2018101001

    [8] BALAN G G, PAVEL L, SFARTI C V, et al. Exposure to iopamidol after endoscopic retrograde cholangiopancreatography assessing pancreatic toxicity [J]. Revista De Chimie, 2016, 67(5): 987-990.
    [9] WENDEL F M, TERNES T A, RICHARDSON S D, et al. Comparative toxicity of high-molecular weight iopamidol disinfection byproducts [J]. Environmental Science & Technology Letters, 2016, 3(3): 81-84.
    [10] YANGIN-GOMEC C, OLMEZ-HANCI T, ARSLAN-ALATON I. et al. Iopamidol degradation with ZVI- and ZVA-activated chemical oxidation: Investigation of toxicity, anaerobic inhibition and microbial communities [J]. Journal of Environmental Chemical Engineering, 2018, 6(6): 7318-7326. doi: 10.1016/j.jece.2018.09.028
    [11] DUIRK S E, LINDELL C, CORNELISON C C, et al. Formation of toxic iodinated disinfection by-products from compounds used in medical imaging [J]. Environmental Science & Technology, 2011, 45(16): 6845-6854.
    [12] PAL A, HE Y L, JEKEL M, et al. Emerging contaminants of public health significance as water quality indicator compounds in the urban water cycle [J]. Environment International, 2014, 71: 46-62. doi: 10.1016/j.envint.2014.05.025
    [13] XU Z F, LI X, HU X L, et al. Distribution and relevance of iodinated X-ray contrast media and iodinated trihalomethanes in an aquatic environment [J]. Chemosphere, 2017, 184: 253-260. doi: 10.1016/j.chemosphere.2017.05.048
    [14] FABBRI D, CALZA P, DALMASSO D, et al. Iodinated X-ray contrast agents: Photoinduced transformation and monitoring in surface water [J]. Science of the Total Environment, 2016, 572: 340-351. doi: 10.1016/j.scitotenv.2016.08.003
    [15] LI X, HU J J, YIN D Q, et al. Solid-phase extraction coupled with ultra high performance liquid chromatography and electrospray tandem mass spectrometry for the highly sensitive determination of five iodinated X-ray contrast media in environmental water samples [J]. Journal of Separation Science, 2015, 38(11): 1998-2005. doi: 10.1002/jssc.201401296
    [16] WEGRZYN A, ZABCZYNSKI S. Monitoring of bacterial biodiversity in anaerobic membrane bioreactors (anmbrs) dealing with wastewater containing X-ray contrast media compounds [J]. Environment Protection Engineering, 2014, 40(1): 151-164.
    [17] REDEKER M, WICK A, MEERMANN B, et al. Removal of the iodinated X-ray contrast medium diatrizoate by anaerobic transformation [J]. Environmental Science & Technology, 2014, 48(17): 10145-10154.
    [18] TERNES T A, HIRSCH R. Occurrence and behavior of X-ray contrast media in sewage facilities and the aquatic environment [J]. Environmental Science & Technology, 2000, 34: 2741-2748.
    [19] WATANABE Y, BACH L T, DINH P V, et al. Ubiquitous detection of artificial sweeteners and iodinated x-ray contrast media in aquatic environmental and wastewater treatment plant samples from Vietnam, the Philippines, and Myanmar [J]. Archives of Environmental Contamination and Toxicology, 2016, 70: 671-681. doi: 10.1007/s00244-015-0220-1
    [20] ALLARD S, CRIQUET J, PRUNIER A, et al. Photodecomposition of iodinated contrast media and subsequent formation of toxic iodinated moieties during final disinfection with chlorinated oxidants [J]. Water Research, 2016, 103: 453-461. doi: 10.1016/j.watres.2016.07.050
    [21] JEONG C H, MACHEK E J, SHAKERI M, et al. The impact of iodinated X-ray contrast agents on formation and toxicity of disinfection by-products in drinking water [J]. Journal of Environmental Sciences, 2017, 58: 173-182. doi: 10.1016/j.jes.2017.03.032
    [22] WENDEL F M, EVERSLOH C L, MACHEK E J, et al. Transformation of iopamidol during chlorination [J]. Environmental Science & Technology, 2014, 48(21): 12689-12697.
    [23] MATSUSHITA T, KOBAYASHI N, HASHIZUKA M, et al. Changes in mutagenicity and acute toxicity of solutions of iodinated X-ray contrast media during chlorination [J]. Chemosphere, 2015, 135: 101-107. doi: 10.1016/j.chemosphere.2015.03.082
    [24] HU C Y, HUA S J, LIN Y L, et al. Kinetics and formation of disinfection byproducts during iohexol chlor(am) ination [J]. Separation and Purification Technology, 2020, 243: 116747.
    [25] PLEWA M J, SIMMONS J E, RICHARDSON S D, et al. Mammalian cell cytotoxicity and genotoxicity of the haloacetic acids, a major class of drinking water disinfection by-products[J], Environmental and Molecular Mutagenesis, 2010, 51: 871-878.
    [26] RICHARDSON S D, FASANO F, ELLINGTON J J, et al. Occurrence and mammalian cell toxicity of iodinated disinfection byproducts in drinking water [J]. Environmental Science & Technology, 2008, 42: 8330-8338.
    [27] MUELLNER M G, WAGNER E D, MCCALLA K, et al. Haloacetonitriles vs. regulated haloacetic acids: Are nitrogen-containing DBPs more toxic? [J]. Environmental Science & Technology, 2007, 41: 645-651.
    [28] PLEWA M J, MUELLNER M G, RICHARDSON S D, et al. Occurrence, synthesis, and mammalian cell cytotoxicity and genotoxicity of haloacetamides: An emerging class of nitrogenous drinking water disinfection byproducts, Environmental Science & Technology, 2008, 42: 955-961.
    [29] ENS W, SENNER F, GYGAX B, et al. Development, validation, and application of a novel LC-MS/MS trace analysis method for the simultaneous quantification of seven iodinated X-ray contrast media and three artificial sweeteners in surface, ground, and drinking water [J]. Analytical and Bioanalytical Chemistry, 2014, 406(12): 2789-2798. doi: 10.1007/s00216-014-7712-0
    [30] KORMOS J L, SCHULZ M, KOHLER H P E, et al. Biotransformation of selected iodinated X-ray contrast media and characterization of microbial transformation pathways [J]. Environmental Science & Technology, 2010, 44(13): 4998-5007.
    [31] ECHEVERRIA S BORRULL F FONTANALS N, et al. Determination of iodinated X-ray contrast media in sewage by solid-phase extraction and liquid chromatography tandem mass spectrometry [J]. Talanta, 2013, 116: 931-936. doi: 10.1016/j.talanta.2013.07.080
    [32] KOVALOVA L, SIEGRIST H, SINGER H, et al. Hospital wastewater treatment by membrane bioreactor: performance and efficiency for organic micropollutant elimination [J]. Environmental Science & Technology, 2012, 46(3): 1536-1545.
    [33] NODLER K, LICHA T, BESTER K, et al. Development of a multi-residue analytical method, based on liquid chromatography-tandem mass spectrometry, for the simultaneous determination of 46 micro-contaminants in aqueous samples [J]. Journal of Chromatography A, 2010, 1217(42): 6511-6521. doi: 10.1016/j.chroma.2010.08.048
    [34] SEITZ W, WEBER W H, JIANG J Q, et al. Monitoring of iodinated X-ray contrast media in surface water [J]. Chemosphere, 2006, 64(8): 1318-1324. doi: 10.1016/j.chemosphere.2005.12.030
    [35] ZONJA B, DELGADO A, PEREZ S, et al. LC-HRMS suspect screening for detection-based prioritization of iodinated contrast media photodegradates in surface waters [J]. Environmental Science & Technology, 2015, 49(6): 3464-3472.
    [36] MENDOZA A, ZONJA B, MASTROIANNI N, et al. Drugs of abuse, cytostatic drugs and iodinated contrast media in tap water from the Madrid region (central Spain): A case study to analyse their occurrence and human health risk characterization [J]. Environment International, 2016, 86: 107-118. doi: 10.1016/j.envint.2015.11.001
    [37] BUSETTI F, LINGE K L, BLYTHE J W, et al. Rapid analysis of iodinated X-ray contrast media in secondary and tertiary treated wastewater by direct injection liquid chromatography-tandem mass spectrometry [J]. Journal of Chromatography A, 2008, 1213(2): 200-208. doi: 10.1016/j.chroma.2008.10.021
    [38] ONG C, LEE K, CHANG Y. Biodegradation of mono azo dye-reactive orange 16 by acclimatizing biomass systems under an integrated anoxic-aerobic react sequencing batch moving bed biofilm reactor [J]. Journal of Water Process Engineering, 2020, 36: 101268. doi: 10.1016/j.jwpe.2020.101268
    [39] ZHANG Q, CHEN X, ZHANG Z Y, et al. Performance and microbial ecology of a novel moving bed biofilm reactor process inoculated with heterotrophic nitrification-aerobic denitrification bacteria for high ammonia nitrogen wastewater treatment [J]. Bioresource Technology, 2020, 315: 123813. doi: 10.1016/j.biortech.2020.123813
    [40] FALAS P, LONGREE P, LA COUR JANSEN J, et al. Micropollutant removal by attached and suspended growth in a hybrid biofilm-activated sludge process [J]. Water Research, 2013, 47(13): 4498-4506. doi: 10.1016/j.watres.2013.05.010
    [41] HAPESHI E , LAMBRIANIDES A, KOUTSOFTAS P, et al. Investigating the fate of iodinated X-ray contrast media iohexol and diatrizoate during microbial degradation in an MBBR system treating urban wastewater [J]. Environmental Science and Pollution Research, 2013, 20(6): 3592-3606. doi: 10.1007/s11356-013-1605-1
    [42] 阎虹, 韦朝海, 张亚平, 等. 水污染控制化学中高级氧化技术的研究及发展 [J]. 精细与专用化学品, 2008, 16(3/4): 19-22.

    YAN H, WEI C H, ZHANG Y P, et al. Research and development of advanced oxidation technologies in water pollution control chemistry [J]. Fine and Specialty Chemicals, 2008, 16(3/4): 19-22(in Chinese).

    [43] 程丽华, 黎明, 倪福祥. 高级氧化技术在水处理中的应用 [J]. 青岛理工大学学报, 2003, 24(1): 22-25. doi: 10.3969/j.issn.1673-4602.2003.01.006

    CHENG L H, LI M, NI F X. Application of advanced oxidation technology in water treatment [J]. Journal of Qingdao Technological University, 2003, 24(1): 22-25(in Chinese). doi: 10.3969/j.issn.1673-4602.2003.01.006

    [44] 黄洪勋, 孙亚全, 陈明发, 等. 高级氧化技术在水处理中的应用 [J]. 黑龙江环境通报, 2012, 36(3): 60-63. doi: 10.3969/j.issn.1674-263X.2012.03.017

    HUANG H X, SUN Y Q, CHEN M F, et al. Application of advanced oxidation technology in water treatment [J]. Heilongjiang Environmental Bulletin, 2012, 36(3): 60-63(in Chinese). doi: 10.3969/j.issn.1674-263X.2012.03.017

    [45] 王杨杨, 席北斗, 常明, 等. 高级氧化技术在医疗废水处理中的应用 [J]. 中国新技术新产品, 2020, 3(5): 132-134. doi: 10.3969/j.issn.1673-9957.2020.05.061

    WANG Y Y, XI B D, CHANG M, et al. Application of advanced oxidation technology in medical wastewater treatment [J]. New Technology & New Products of China, 2020, 3(5): 132-134(in Chinese). doi: 10.3969/j.issn.1673-9957.2020.05.061

    [46] FEDOROV K, PLATA-GRYL, M KHAN J A, et al. Ultrasound-assisted heterogeneous activation of persulfate and peroxymonosulfate by asphaltenes for the degradation of BTEX in water [J]. Journal of Hazardous Materials, 2020, 397: 122804. doi: 10.1016/j.jhazmat.2020.122804
    [47] THARI F Z, TACHALLAIT H, EL ALAOUI N E, et al. Ultrasound-assisted one-pot green synthesis of new N- substituted-5-arylidene-thiazolidine-2, 4-dione-isoxazoline derivatives using NaCl/Oxone/Na3PO4 in aqueous media [J]. Ultrasonics Sonochemistry, 2020, 68: 105222. doi: 10.1016/j.ultsonch.2020.105222
    [48] MORADI S, SOBHGOL S A, HAYATI F, et al. Performance and reaction mechanism of MgO/ZnO/Graphene ternary nanocomposite in coupling with LED and ultrasound waves for the degradation of sulfamethoxazole and pharmaceutical wastewater [J]. Separation and Purification Technology, 2020, 251: 117373. doi: 10.1016/j.seppur.2020.117373
    [49] VASSILEV D, PETKOVA N, KOLEVA M, et al. Ultrasound-assisted method for the synthesis of tertiary fatty aliphatic esters with potential antimicrobial activity [J]. Biointerface Research in Applied Chemistry, 2020, 10(6): 6829-6836. doi: 10.33263/BRIAC106.68296836
    [50] MERONI D, JIMENEZ-SALCEDO M, FALLETTA E, et al. Sonophotocatalytic degradation of sodium diclofenac using low power ultrasound and micro sized TiO2 [J]. Ultrasonics Sonochemistry, 2020, 67: 105123. doi: 10.1016/j.ultsonch.2020.105123
    [51] NING B, GRAHAM N J D, LICKISS P D, et al. A comparison of ultrasound-based advanced oxidation processes for the removal of X-ray contrast media [J]. Water Science and Technology, 2009, 60(9): 2383-2390. doi: 10.2166/wst.2009.661
    [52] 龚安华, 罗亚田, 李端林. 超声波技术及其在水处理中的应用 [J]. 四川化工, 2006, 9(1): 48-50. doi: 10.3969/j.issn.1672-4887.2006.01.016

    GONG A H, LUO Y T, LI D L. Ultrasonic technology and its application in water treatment [J]. Sichuan Chemical Industry, 2006, 9(1): 48-50(in Chinese). doi: 10.3969/j.issn.1672-4887.2006.01.016

    [53] DOLL T E , FRIMMEL F H. Kinetic study of photocatalytic degradation of carbamazepine, clofibric acid, iomeprol and iopromide assisted by different TiO2 materials - determination of intermediates and reaction pathways [J]. Water Research, 2004, 38(4): 955-964. doi: 10.1016/j.watres.2003.11.009
    [54] DOLL T E , FRIMMEL F H. Photocatalytic degradation of carbamazepine, clofibric acid and iomeprol with P25 and Hombikat UV100 in the presence of natural organic matter (NOM) and other organic water constituents [J]. Water Research, 2005, 39(2/3): 403-411.
    [55] SUGIHARA M N , MOELLER D, PAUL T, et al. TiO2-photocatalyzed transformation of the recalcitrant X-ray contrast agent diatrizoate [J]. Applied Catalysis B Environmental, 2013, 129: 114-122. doi: 10.1016/j.apcatb.2012.09.013
    [56] PAGANINI M C, DALMASSO D, GIONCO C, et al. Beyond TiO2: Cerium‐doped zinc oxide as a new photocatalyst for the photodegradation of persistent pollutants [J]. ChemistrySelect, 2016, 1(12): 3377-3383. doi: 10.1002/slct.201600645
    [57] DURAN-ALVAREZ J C, HERNANDEZ-MORALES V A, RODRIGUEZ-VARELA M, et al. Ag2O/TiO2 nanostructures for the photocatalytic mineralization of the highly recalcitrant pollutant iopromide in pure and tap water[R]. Catalysis Today, 2020, 341(S1): 71-81.
    [58] HE H, WANG W, XU C M, et al. Highly efficient degradation of iohexol on a heterostructured graphene-analogue boron nitride coupled Bi2MoO6 photocatalyst under simulated sunlight [J]. Science of the Total Environment, 2020, 730: 139100. doi: 10.1016/j.scitotenv.2020.139100
    [59] WU Z L, WANG Y P, XIONG Z K, et al. Core-shell magnetic Fe3O4@Zn/Co-ZIFs to activate peroxymonosulfate for highly efficient degradation of carbamazepine [J]. Applied Catalysis B Environmental, 2020, 277: 119136. doi: 10.1016/j.apcatb.2020.119136
    [60] ZHOU J, AN X Q, TANG Q W, et al. Dual channel construction of WO3 photocatalysts by solution plasma for the persulfate-enhanced photodegradation of bisphenol A [J]. Applied Catalysis B Environmental, 2020, 277: 119221. doi: 10.1016/j.apcatb.2020.119221
    [61] CHI H Y, WAN J Q, MA Y W, et al. ZSM-5-(C@Fe) activated peroxymonosulfate for effectively degrading ciprofloxacin: In-depth analysis of degradation mode and degradation path [J]. Journal of Hazardous Materials, 2020, 398: 123024. doi: 10.1016/j.jhazmat.2020.123024
    [62] HE J, YANG J L, JIANG F X, et al. Photo-assisted peroxymonosulfate activation via 2D/2D heterostructure of Ti3C2/g-C3N4 for degradation of diclofenac [J]. Chemosphere, 2020, 258: 127339. doi: 10.1016/j.chemosphere.2020.127339
    [63] NOORISEPEHR M, KAKAVANDI B, ISARI A A, et al. Sulfate radical-based oxidative degradation of acetaminophen over an efficient hybrid system: Peroxydisulfate decomposed by ferroferric oxide nanocatalyst anchored on activated carbon and UV light [J]. Separation and Purification Technology, 2020, 250: 116950. doi: 10.1016/j.seppur.2020.116950
    [64] XUE H H, GAO S Y, LI M, et al. Performance of ultraviolet/persulfate process in degrading artificial sweetener acesulfame [J]. Environmental Research, 2020, 188: 109804. doi: 10.1016/j.envres.2020.109804
    [65] JUN B M, ELANCHEZHIYAN S S, YOON Y, et al. Accelerated photocatalytic degradation of organic pollutants over carbonate -rich lanthanum -substituted zinc spinel ferrite assembled reduced graphene oxide by ultraviolet (UV) -activated persulfate [J]. Chemical Engineering Journal, 2020, 393: 124733. doi: 10.1016/j.cej.2020.124733
    [66] ZHANG Y X, LIU H L, DAI X H, et al. Impact of application of heat -activated persulfate oxidation treated erythromycin fermentation residue as a soil amendment: Soil chemical properties and antibiotic resistance [J]. Science of the Total Environment, 2020, 736: 139668. doi: 10.1016/j.scitotenv.2020.139668
    [67] LI H, YANG L, HE L Y, et al. Kinetics and mechanisms of chloramphenicol degradation in aqueous solutions using heat-assisted nZVI activation of persulfate [J]. Journal of Molecular Liquids, 2020, 313: 113511. doi: 10.1016/j.molliq.2020.113511
    [68] ZHANG Y X, LIU H L, DAI X H, et al. The release of organic matter, nitrogen, phosphorus and heavy metals from erythromycin fermentation residue under heat-activated persulfate oxidation conditioning [J]. Science of the Total Environment, 2020, 724: 138349. doi: 10.1016/j.scitotenv.2020.138349
    [69] FAGAN W P, ZHAO J, VILLAMENA F A, et al. Synergistic, aqueous PAH degradation by ultrasonically-activated persulfate depends on bulk temperature and physicochemical parameters [J]. Ultrasonics Sonochemistry, 2020, 67: 105172. doi: 10.1016/j.ultsonch.2020.105172
    [70] SHARIFI Z, ASGARI G, SEID-MOHAMMADI A, et al. Sonocatalytic degradation of p-chlorophenol by nanoscale zero-valent copper activated persulfate under ultrasonic irradiation in aqueous solutions [J]. International Journal of Engineering, 2020, 33(6): 1061-1069.
    [71] LEI Y J, TIAN Y, SOBHANI Z, et al. Synergistic degradation of PFAS in water and soil by dual -frequency ultrasonic activated persulfate [J]. Chemical Engineering Journal, 2020, 388: 124215. doi: 10.1016/j.cej.2020.124215
    [72] ZHANG T T, YANG Y L, LI X, Degradation of sulfamethazine by persulfate activated with nanosized zero-valent copper in combination with ultrasonic irradiation[J]. Separation and Purification Technology, 2020, 239: 116537.
    [73] ZHANG H, YU K, HE J, et al. Droplet spray ionization mass spectrometry for real-time monitoring of activation of peroxymonosulfate by 1, 4-benzoquinone [J]. Microchemical Journal, 2018, 139: 437-442. doi: 10.1016/j.microc.2018.03.031
    [74] WANG Y, LIU Y X, SHI S, et al. Removal of nitric oxide from flue gas using novel microwave -activated double oxidants system [J]. Chemical Engineering Journal, 2020, 393: 124754. doi: 10.1016/j.cej.2020.124754
    [75] CHEN W S, HUANG C P. Mineralization of aniline in aqueous solution by electro-activated persulfate oxidation enhanced with ultrasound [J]. Chemical Engineering Journal, 2015, 266: 279-288. doi: 10.1016/j.cej.2014.12.100
    [76] YANG Y, PIGNATELLO J J, MA J, et al. Comparison of halide impacts on the efficiency of contaminant degradation by sulfate and hydroxyl radical-based Advanced Oxidation Processes (AOPs) [J]. Environmental Science & Technology, 2014, 48(4): 2344-2351.
    [77] OH W D, DONG Z L, LIM T T, et al. Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: Current development, challenges and prospects [J]. Applied Catalysis B-Environmental, 2016, 194: 169-201. doi: 10.1016/j.apcatb.2016.04.003
    [78] CAI J Z, NIU T Z, SHI P H, et al. Boron-doped diamond for hydroxyl radical and sulfate radical anion electrogeneration, transformation, and voltage-free sustainable oxidation[R]. Small, 2019, 15: 1900153.
    [79] ZHOU L, FERRONATO C, CHOVELON J M, et al. Investigations of diatrizoate degradation by photo-activated persulfate [J]. Chemical Engineering Journal, 2017, 311: 28-36. doi: 10.1016/j.cej.2016.11.066
    [80] CHAN T W, GRAHAM N J D, CHU W, et al. Degradation of iopromide by combined UV irradiation and peroxydisulfate [J]. Journal of Hazardous Materials, 2010, 181(1-3): 508-513. doi: 10.1016/j.jhazmat.2010.05.043
    [81] MENG L J, YANG S G, SUN C, et al. A novel method for photo-oxidative degradation of diatrizoate in water via electromagnetic induction electrodeless lamp [J]. Journal of Hazardous Materials, 2017, 337: 34-46. doi: 10.1016/j.jhazmat.2017.05.005
    [82] ZHU J P, LIN Y L, ZHANG T Y, et al. Modelling of iohexol degradation in a Fe(II)-activated persulfate system [J]. Chemical Engineering Journal, 2019, 367: 86-93. doi: 10.1016/j.cej.2019.02.120
    [83] SHANG W T, DONG Z J, LI M, et al. Degradation of diatrizoate in water by Fe(II)-activated persulfate oxidation [J]. Chemical Engineering Journal, 2019, 361: 1333-1344. doi: 10.1016/j.cej.2018.12.139
    [84] HU C Y, HOU Y Z, LIN Y L, et al. Investigation of iohexol degradation kinetics by using heat-activated persulfate [J]. Chemical Engineering Journal, 2020, 379: 122403. doi: 10.1016/j.cej.2019.122403
    [85] WANG Z H, WANG X X, YUAN R X, et al. Resolving the kinetic and intrinsic constraints of heat-activated peroxydisulfate oxidation of iopromide in aqueous solution [J]. Journal of Hazardous Materials, 2020, 384: 121281. doi: 10.1016/j.jhazmat.2019.121281
    [86] FARHAT A, KELLER J, TAIT S, et al. Removal of persistent organic contaminants by electrochemically activated sulfate [J]. Environmental Science & Technology, 2015, 49(24): 14326-14333.
    [87] GUO X J, XU Y N, ZHA F, et al. Alpha-Fe2O3/Cu2O(SO4) composite as a novel and efficient heterogeneous catalyst for photo-Fenton removal of Orange II [J]. Applied Surface Science, 2020, 530: 147144. doi: 10.1016/j.apsusc.2020.147144
    [88] JIANG J J, WANG X Y, LIU Y, et al. Photo-Fenton degradation of emerging pollutants over Fe-POM nanoparticle/porous and ultrathin g-C3N4 nanosheet with rich nitrogen defect: Degradation mechanism, pathways, and products toxicity assessment [J]. Applied Catalysis B-Environmental, 2020, 278: 119349. doi: 10.1016/j.apcatb.2020.119349
    [89] ZHOU Y, ZHOU L, ZHOU Y B, et al. Z-scheme photo-Fenton system for efficiency synchronous oxidation of organic contaminants and reduction of metal ions [J]. Applied Catalysis B-Environmental, 2020, 279: 119365. doi: 10.1016/j.apcatb.2020.119365
    [90] HU X, DENG Y, ZHOU J T, et al. N- and O self-doped biomass porous carbon cathode in an electro-Fenton system for chloramphenicol degradation [J]. Separation and Purification Technology, 2020, 251: 117376. doi: 10.1016/j.seppur.2020.117376
    [91] LIU X C, HE C S, SHEN Z Y, et al. Mechanistic study of Fe(III) chelate reduction in a neutral electro-Fenton process [J]. Applied Catalysis B-Environmental, 2020, 278: 119347. doi: 10.1016/j.apcatb.2020.119347
    [92] DU X D, FU W Y, SU P, et al. Internal-micro-electrolysis-enhanced heterogeneous electro-Fenton process catalyzed by Fe/Fe3C@PC core-shell hybrid for sulfamethazine degradation [J]. Chemical Engineering Journal, 2020, 398: 125681. doi: 10.1016/j.cej.2020.125681
    [93] MATYSZCZAK G, FIDLER A, POLESIAK E, et al. Application of sonochemically synthesized SnS and SnS2 in the electro-Fenton process: Kinetics and enhanced decolorization [J]. Ultrasonics Sonochemistry, 2020, 68: 105186. doi: 10.1016/j.ultsonch.2020.105186
    [94] ALI N, YEOH C B, LAU S, et al. An enhanced treatment efficiency for diluted palm oil mill effluent using a photo-electro-Fenton hybrid system [J]. Journal of the Serbian Chemical Society, 2019, 84(5): 517-526. doi: 10.2298/JSC181016103A
    [95] BAI X Y, LI Y, XIE L B, et al. A novel Fe-free photo-electro-Fenton-like system for enhanced ciprofloxacin degradation: bifunctional Z-scheme WO3/g-C3N4 [J]. Environmental Science-Nano, 2019, 6(9): 2850-2862. doi: 10.1039/C9EN00528E
    [96] BECERRIL-ESTRADA V, ROBLES I, MARTINEZ-SANCHEZ C, et al. Study of TiO2/Ti4O(7) photo-anodes inserted in an activated carbon packed bed cathode: Towards the development of 3D-type photo-electro-Fenton reactors for water treatment [J]. Electrochimica Acta, 2020, 340: 135972. doi: 10.1016/j.electacta.2020.135972
    [97] WANG W, LI Y, LI Y, et al. Electro-Fenton and photoelectro-Fenton degradation of sulfamethazine using an active gas diffusion electrode without aeration [J]. Chemosphere, 2020, 250: 126177. doi: 10.1016/j.chemosphere.2020.126177
    [98] LIU C F, HUANGB C P, HU C C, et al. A dual TiO2/Ti-stainless steel anode for the degradation of orange G in a coupling photoelectrochemical and photo-electro-Fenton system [J]. Science of the Total Environment, 2019, 659: 221-229. doi: 10.1016/j.scitotenv.2018.12.224
    [99] LOPEZ-SAAVEDRA N, MUNNOZ-DELGADO L F, LARA-RAMOS J A, et al. Experimental data on the degradation of caffeine by photo-electro-Fenton using BDD electrodes at pilot plant [J]. Data in Brief, 2018, 21: 1709-1715. doi: 10.1016/j.dib.2018.10.174
    [100] PELLENZ L, BORBA F H, DAROIT D J, et al. Landfill leachate treatment by a boron-doped diamond-based photo-electro-Fenton system integrated with biological oxidation: A toxicity, genotoxicity and by products assessment [J]. Journal of Environmental Management, 2020, 264: 110473. doi: 10.1016/j.jenvman.2020.110473
    [101] SEIBERT D, BORBA F H, BUENO F, et al. Two-stage integrated system photo-electro-Fenton and biological oxidation process assessment of sanitary landfill leachate treatment: An intermediate products study [J]. Chemical Engineering Journal, 2019, 372: 471-482. doi: 10.1016/j.cej.2019.04.162
    [102] ZHAO C, ARROYO-MORA L E, DECAPRIO A P, et al. Reductive and oxidative degradation of iopamidol, iodinated X-ray contrast media, by Fe(III)-oxalate under UV and visible light treatment [J]. Water Research, 2014, 67: 144-153. doi: 10.1016/j.watres.2014.09.009
    [103] GIANNAKIS S, ANDROULAKI B, COMNINELLIS C, et al. Wastewater and urine treatment by UVC-based advanced oxidation processes: Implications from the interactions of bacteria, viruses, and chemical contaminants [J]. Chemical Engineering Journal, 2018, 343: 270-282.
    [104] LI W, NANABOINA V, ZHOU Q X. Effects of Fenton treatment on the properties of effluent organic matter and their relationships with the degradation of pharmaceuticals and personal care products [J]. Water Research, 2012, 46(2): 403-412. doi: 10.1016/j.watres.2011.11.002
    [105] BOCOS E, OTURAN N, SANROMAN M A, et al. Elimination of radiocontrast agent diatrizoic acid from water by electrochemical advanced oxidation: Kinetics study, mechanism and mineralization pathway [J]. Journal of Electroanalytical Chemistry, 2016, 772: 1-8. doi: 10.1016/j.jelechem.2016.04.011
    [106] BOCOS E, OTURAN N, PAZOS M, et al. Elimination of radiocontrast agent diatrizoic acid by photo-Fenton process and enhanced treatment by coupling with electro-Fenton process [J]. Environmental Science and Pollution Research, 2016, 23(19): 19134-19144. doi: 10.1007/s11356-016-7054-x
    [107] BANASCHIK R, JABLONOWSKI H, BEDNARSKI P J, et al. Degradation and intermediates of diclofenac as instructive example for decomposition of recalcitrant pharmaceuticals by hydroxyl radicals generated with pulsed corona plasma in water [J]. Journal of Hazardous Materials, 2018, 342: 651-660. doi: 10.1016/j.jhazmat.2017.08.058
    [108] POLO A M S, LOPEZ-PENALVER J J, SANCHEZ-POLO M, et al. Oxidation of diatrizoate in aqueous phase by advanced oxidation processes based on solar radiation [J]. Journal of Photochemistry and Photobiology A-Chemistry, 2016, 319: 87-95.
    [109] 王建中, 王辉, 张萍. 电化学高级氧化技术处理难降解有机废水研究进展 [J]. 甘肃联合大学学报:自然科学版, 2005, 19(2): 49-54.

    WANG J Z, WANG H, ZHANG P. Research progress in the treatment of refractory organic wastewater by electrochemical advanced oxidation technology [J]. Journal of Gansu Lianhe University:Natural Science Edition, 2005, 19(2): 49-54(in Chinese).

    [110] RADJENOVIC J, FLEXER V, DONOSE B C, et al. Removal of the X-ray contrast media diatrizoate by electrochemical reduction and oxidation [J]. Environmental Science & Technology, 2013, 47(23): 13686-13694.
    [111] KORSHIN G, YAN M Q. Electrochemical dehalogenation of disinfection by-products and iodine-containing contrast media: A review [J]. Environmental Engineering Research, 2018, 23(4): 345-353. doi: 10.4491/eer.2018.054
    [112] YAN M Q, CHEN Z H, LI N, et al. Electrochemical reductive dehalogenation of iodine-containing contrast agent pharmaceuticals: Examination of reactions of diatrizoate and iopamidol using the method of rotating ring-disc electrode (RRDE) [J]. Water Research, 2018, 136: 104-111. doi: 10.1016/j.watres.2018.02.045
    [113] LI A, ZHAO X, HOU Y, et al. The electrocatalytic dechlorination of chloroacetic acids at electrodeposited Pd/Fe-modified carbon paper electrode [J]. Applied Catalysis B:Environmental, 2012, 111-112: 628-635. doi: 10.1016/j.apcatb.2011.11.016
    [114] TALUKDAR K, JUN B M, YOON Y, et al. Novel Z-scheme Ag3PO4/Fe3O4-activated biochar photocatalyst with enhanced visible-light catalytic performance toward degradation of bisphenol A [J]. Journal of Hazardous Materials, 2020, 398: 123025. doi: 10.1016/j.jhazmat.2020.123025
    [115] LI N, LI R, YU Y, et al. Efficient degradation of bentazone via peroxymonosulfate activation by 1D/2D gamma-MnOOH-rGO under simulated sunlight: Performance and mechanism insight [J]. Science of the Total Environment, 2020, 741: 140492. doi: 10.1016/j.scitotenv.2020.140492
    [116] JIN C Y, WANG M, LI Z L, et al. Two dimensional Co3O4/g-C3N4 Z-scheme heterojunction: Mechanism insight into enhanced peroxymonosulfate-mediated visible light photocatalytic performance [J]. Chemical Engineering Journal, 2020, 398: 125569. doi: 10.1016/j.cej.2020.125569
    [117] WEI H R, LOEB S K, HALAS N J, et al. Plasmon-enabled degradation of organic micropollutants in water by visible-light illumination of Janus gold nanorods [J]. Proceedings of The National Academy of Sciences of The United States of America, 2020, 117(27): 15473-15481. doi: 10.1073/pnas.2003362117
    [118] ZHANG Y, ZHOU J B, CHEN J H, et al. Rapid degradation of tetracycline hydrochloride by heterogeneous photocatalysis coupling persulfate oxidation with MIL-53(Fe) under visible light irradiation [J]. Journal of Hazardous Materials, 2020, 392: 122315. doi: 10.1016/j.jhazmat.2020.122315
    [119] CHEN P, ZHANG Q X, SHEN L Z, et al. Insights into the synergetic mechanism of a combined vis-RGO/TiO2/peroxodisulfate system for the degradation of PPCPs: Kinetics, environmental factors and products [J]. Chemosphere, 2019, 216: 341-351. doi: 10.1016/j.chemosphere.2018.10.096
    [120] FENG Q Q, ZHOU J B, LUO W J, et al. Photo-Fenton removal of tetracycline hydrochloride using LaFeO3 as a persulfate activator under visible light [J]. Ecotoxicology and Environmental Safety, 2020, 198: 110661. doi: 10.1016/j.ecoenv.2020.110661
    [121] TRELLU C, RIVALLIN M, CERNEAUX S, et al. Integration of sub-stoichiometric titanium oxide reactive electrochemical membrane as anode in the electro-Fenton process [J]. Chemical Engineering Journal, 2020, 400: 125936. doi: 10.1016/j.cej.2020.125936
    [122] DOS SANTOS A J, CABOT P L, BRILLAS E, et al. A comprehensive study on the electrochemical advanced oxidation of antihypertensive captopril in different cells and aqueous matrices [J]. Applied Catalysis B-Environmental, 2020, 277: 119240. doi: 10.1016/j.apcatb.2020.119240
    [123] 肖鹏飞, 安璐, 韩爽. 炭质材料在活化过硫酸盐高级氧化技术中的应用进展 [J]. 化工进展, 2020, 39(8): 3293-3306.

    XIAO P F, AN L, HAN S. The application progress of carbonaceous materials in activated persulfate advanced oxidation technology [J]. Chemical Industry and Engineering Progress, 2020, 39(8): 3293-3306(in Chinese).

    [124] 林金华. Fenton氧化法和过硫酸盐氧化法深度处理焦化废水对比研究[D]. 太原: 太原理工大学, 2014.

    LIN J. Comparative study of Fenton oxidation method and persulfate oxidation method for advanced treatment of coking wastewater[D]. Taiyuan: Taiyuan University of Technology, 2014 (in Chinese).

    [125] 朱应良. 基于电化学过硫酸盐技术氧化降解有机污染物的研究[D]. 广州: 华南理工大学, 2016.

    ZHU Y L. Research on the oxidative degradation of organic pollutants based on electrochemical persulfate technology[D]. Guangzhou: South China University of Technology, 2016 (in Chinese).

    [126] 李四辉. 过硫酸钠活化法深度氧化竹材制浆废水的研究[D]. 北京: 中国林业科学研究院, 2014.

    LI S H. Research on deep oxidation of bamboo pulping wastewater by sodium persulfate activation method[D]. Beijing: Chinese Academy of Forestry, 2014 (in Chinese).

    [127] WOOD R J, SIDNELL T, ROSS I, et al. Ultrasonic degradation of perfluorooctane sulfonic acid (PFOS) correlated with sonochemical and sonoluminescence characterisation [J]. Ultrasonics Sonochemistry, 2020, 68: 105196. doi: 10.1016/j.ultsonch.2020.105196
    [128] MAO Y H, SONG A X, LI L Q, et al. A high-molecular weight exopolysaccharide from the Cs-HK1 fungus: Ultrasonic degradation, characterization and in vitro fecal fermentation [J]. Carbohydrate Polymers, 2020, 246: 116636. doi: 10.1016/j.carbpol.2020.116636
    [129] LV S W, LIU J M, ZHAO N, et al. MOF-derived CoFe2O4/Fe2O3 embedded in g-C3N4 as high-efficient Z-scheme photocatalysts for enhanced degradation of emerging organic pollutants in the presence of persulfate [J]. Separation and Purification Technology, 2020, 253: 117413. doi: 10.1016/j.seppur.2020.117413
    [130] MAFA P J, MAMBA B B, KUVAREGA A T. Construction of hierarchical BiPW12O40/BiOI p-n heterojunction with enhanced visible light activity for degradation of endocrine disrupting Bisphenol A [J]. Separation and Purification Technology, 2020, 253: 117349. doi: 10.1016/j.seppur.2020.117349
    [131] ZHAO Y, SONG M, CAO Q, et al. The superoxide radicals' production via persulfate activated with CuFe2O4@ Biochar composites to promote the redox pairs cycling for efficient degradation of o-nitrochlorobenzene in soil [J]. Journal of Hazardous Materials, 2020, 400: 122887. doi: 10.1016/j.jhazmat.2020.122887
    [132] CHEN J Z, MENG X R, TIAN Y R, et al. Fabrication of a superhydrophilic PVDF-g-PAA@FeOOH ultrafiltration membrane with visible light photo-fenton self-cleaning performance [J]. Journal of Membrane Science, 2020, 616: 118587. doi: 10.1016/j.memsci.2020.118587
    [133] SENTHILNATHAN J, YOUNIS S A, KWON E E, et al. An efficient system for electro-Fenton oxidation of pesticide by a reduced graphene oxide-aminopyrazine@3DNi foam gas diffusion electrode [J]. Journal of Hazardous Materials, 2020, 400: 123323. doi: 10.1016/j.jhazmat.2020.123323
    [134] MIN S J, KIM J G, BAEK K, et al. Role of carbon fiber electrodes and carbonate electrolytes in electrochemical phenol oxidation [J]. Journal of Hazardous Materials, 2020, 400: 123083. doi: 10.1016/j.jhazmat.2020.123083
    [135] LI C H, LIU S Y, SONG Y. A facile and eco-friendly method to extract apocynum venetum fibers using microwave-assisted ultrasonic degumming [J]. Industrial Crops and Products, 2020, 151: 112443. doi: 10.1016/j.indcrop.2020.112443
    [136] ZHANG C J, FEI W H, WANG H Q, et al. p-n Heterojunction of BiOI/ZnO nanorod arrays for piezo-photocatalytic degradation of bisphenol A in water [J]. Journal of Hazardous Materials, 2020, 399: 123109. doi: 10.1016/j.jhazmat.2020.123109
    [137] JIA J L, LIU D M, WANG S X, et al. Visible-light-induced activation of peroxymonosulfate by TiO2 nano-tubes arrays for enhanced degradation of bisphenol A [J]. Separation and Purification Technology, 2020, 253: 117510. doi: 10.1016/j.seppur.2020.117510
    [138] SHEN Z Y, ZHOU H Y, PAN Z C, et al. Degradation of atrazine by Bi2MoO6 activated peroxymonosulfate under visible light irradiation [J]. Journal of Hazardous Materials, 2020, 400: 123187. doi: 10.1016/j.jhazmat.2020.123187
  • 加载中
图( 3) 表( 5)
计量
  • 文章访问数:  4056
  • HTML全文浏览数:  4056
  • PDF下载数:  60
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-10-16
  • 录用日期:  2021-12-19
  • 刊出日期:  2022-01-27

高级氧化技术去除水中碘代X射线造影剂研究进展

    通讯作者: Tel:025-85891849, E-mail:yangsg@njnu.edu.cn
  • 南京师范大学环境学院,南京,210023
基金项目:
国家自然科学基金 (21777067),江苏省重点研发计划(社会发展) (BE2019743)和江苏省“六大人才高峰”高层次人才项目(JNHB-105)资助.

摘要: 碘代X射线造影剂在医学上的大量使用导致其在水环境中普遍存在,对生态系统和人体健康构成巨大威胁。传统的污水处理技术对碘代X射线造影剂去除效果不佳,应用高级氧化技术去除水中碘代X射线造影剂成为研究热点。本文系统分析了水环境中碘代X射线造影剂的理化性质、来源、危害及污染现状。综述了声化学氧化、光催化、过硫酸盐活化、芬顿和电化学等5种高级氧化技术对碘代X射线造影剂的去除效果、机理及影响因素等,并指出了各自应用优势和限制,最后对高级氧化技术应用于碘代X射线造影剂的研究提出多种单一高级氧化技术协同降解的展望。

English Abstract

  • 碘代X射线造影剂(Iodinated X-ray contrast media, ICMs)作为一类个人护理用品(pharmaceutical and personal care products, PPCPs)被大量使用,引起人们的广泛关注。ICMs是最常用的血管药物之一,用于诊断人体结构并使得软组织、内脏和血管可视化。碘原子的电子密度高,X射线吸收效率高,因此可以使被测器官与周围组织形成对比,从而清晰成像[1-2]。ICMs高度稳定,摄入后会在很短的时间内通过排泄进入公共排水系统[3]

    据报道,全世界2006年生产ICMs总量就达到了3500 t,每位病人每次使用量约为200 g[4]。ICMs通过医疗废水等排入环境中,而由于其化学结构等原因,传统污水净化工艺去除率极低,因而在自然环境中分布广泛。如今ICMs在全世界各地,如德国[3]、法国[5]、美国[6]、中国[5]等水体中均有检出,且在环境中检测级别最高达到了μg·L−1[7]。ICMs具有极性和持久性,使其能够长期稳定存在于水生环境中,并通过土壤渗透到地下水蓄水层中。ICMs还显示出肾脏毒性,影响生物体的甲状腺稳态[8-10]。除此以外,ICMs可以在自然水环境中转化为有毒的消毒副产物[11],产生环境风险。综上所述,ICMs对生态系统存在潜在危险并对人体健康产生威胁[2],因此,亟需对水环境中的ICMs进行有效去除。

    传统的污水处理工艺无法有效去除水中ICMs,而高级氧化技术可以有效去除水中ICMs。但目前国内外关于高级氧化技术应用于ICMs的去除的最新研究进展论述较少,因此本文阐述了当前水环境中ICMs的污染状况,综述了五种高级氧化技术去除ICMs的研究进展,分析比较了各技术的优缺点,并对今后高级氧化技术的研究方向和研究前景做出展望。

    • ICMs是一类2,4,6-三碘苯甲酸的派生物,根据侧链基团结构的不同,可以将其分为离子型化合物和非离子型化合物。其中离子型ICMs一般含有游离的羧基,如泛影酸、碘克沙酸、碘羟拉酸等,而非离子型化合物的羧基被酰胺衍生物所取代,如碘帕醇、碘美普尔、碘海醇、碘普罗胺等。两类ICMs化学结构和理化性质如表1所示。ICMs的沸点较高(500—900 ℃),分子量较大(600—1300),具有强亲水性,易溶于水进入生态系统中。非离子型ICMs相对于离子型ICMs渗透性更低、毒副反应更小、生物安全性更大。

    • ICMs在污水处理厂浓度具体情况如表2所示,进出水浓度变化不大,说明传统污水处理厂工艺对ICMs去除效率不高。除此以外,某些高级的污水处理技术中加入臭氧去除,但是臭氧对ICMs的去除率范围为35%—55%;而对于离子型ICMs去除率更低,去除率仅为20%,仅碘普罗米去除率较高,可以被降解60%—70%[12-14]。由于使用频率高、注射量大、生物降解性低以及污水处理厂的减排率低,ICMs普遍存在于水生环境中,在地表水[13]、城市[15]和医院废水[5]、地下水[16]或饮用水[17]中检测限高达几十甚至几百μg·L−1。因此ICMs主要来源于城市污水处理厂无法完全有效处理的医疗废水。

      由于ICMs极易在环境中赋存,因此它的毒性及毒理引起了人们广泛的关注[2]。ICMs虽然本身毒性不高,但是极易与自然水体中的物质发生反应,生成有毒的消毒副产物(disinfection by-products, DBPs)[8,20-21]。Wendel等[22]发现了碘帕醇和水中的氯结合后会形成具有急性毒性的副产物,且在中国仓鼠卵巢细胞中研究了氯化过程中含碘帕醇溶液的细胞毒性变化,发现氯化过程可增强碘帕醇的细胞毒性。Matsushita等[23]进一步通过具有代谢活化作用的Ames测试仪TA98菌株以及活性-结构定量关系(Quantitative Structure–activity Relationship, QSAR)分析模型,发现了碘帕醇和水中的氯结合可以形成过渡产物(Transformation Products, TPs),且其会诱发生物细胞突变。Hu等[24]测量了在pH=7时,碘海醇的氯化反应遵循第三级动力学,最大表观速率常数为3.78×10−6 mol∙L−1∙s−1,发现了溴可以抑制氯化过程中碘海醇的降解。但是,在存在溴化物的情况下,氯化过程中碘海醇向有毒碘代DBPs的转化显著增加,与氯化相比,溴化导致更高毒性的碘代DBPs形成。

      综上所述,碘代X射线造影剂分布广泛,环境内浓度相对较高,虽然其本身物理化学性质稳定,但是极易与自然环境中其他物质形成DBPs,并进一步形成剧毒的污染物。ICMs降解过程产生的DBPs毒性具体情况如表3所示。其中卤代乙腈类和卤代乙酰胺类的DBPs细胞毒性较高,中国仓鼠卵巢细胞(Chinese hamster ovary, CHO)最低致死浓度和半致死浓度达到了10−7 mol·L−1,最低达到了10−8。除此以外,溴代和碘代DBPs毒性一般比氯代DBPs要强。

    • 由于ICMs的理化稳定性、高度亲水性等,在全球范围内均有检出,其中城市污水处理厂进出水、河流地表水等浓度较高。Xu等[13]测出太湖和黄浦江的总ICMs浓度范围分别为88.7—131 ng·L−1和102—252 ng·L−1。Ens等[29]用仪器分析了泛影酸盐和碘帕醇在饮用水中的浓度,分别为(28±20) ng·L−1和(19±9) ng·L−1。由于ICMs的结构稳定,它们无法在传统的污水处理厂中有效去除,从而被排放到环境中。Kormos等[30]在德国Mainz市政污水处理厂出水中,检测出碘帕醇浓度为(1.87±0.52) μg·L−1;Echeverria等[31]在西班牙Tarragona城镇污水处理厂进水检出碘普罗胺浓度为6.8—8.9 μg·L−1,出水检出其浓度为6.7—7.1 μg·L−1。Kovalova等[32]在比利时Gent医药废水中检出泛影酸盐浓度进水为(814±28) μg·L−1,出水为(292±17) μg·L−1。因此ICMs在传统的污水处理工艺下难以被去除,从而排放到环境中。

      表4所示可见在各国家各个地区均有分布。医院原水ICMs检出浓度较高,达到了mg·L−1。污水处理厂、水回收厂、地表河流也均有ICMs检出,如德国莱茵河碘海醇检出浓度达到了μg·L−1;中国长兴岛污水处理厂、法国城市废水处理厂,以及澳大利亚水回收厂进水泛影酸、碘海醇检出浓度都在μg·L−1;除此以外,波罗的海也能检测出ICMs。

      目前,关于我国水环境中ICMs污染的调查研究刚刚起步,主要是同济大学尹大强教授团队[7]对ICMs分布、环境赋存浓度和其迁移转化规律等进行研究。其中不容乐观的是,尹大强团队对江苏太湖、上海黄浦江以及长兴岛等地表水、饮用水厂、污水处理厂、居民自来水等进行取样之后,发现了地表水、污水处理厂、中国饮用水厂和居民自来水中都能检测出多种ICMs,其中饮用水厂和自来水中检出的浓度相差不大,说明饮用水厂也无法用工艺去除水中所含ICMs,导致居民通过饮用水直接摄入的ICMs。

    • 基于ICMs在水环境中的广泛分布及其生态毒理危害,对其去除技术的研究十分必要。传统城市污水处理厂一般运用生物处理技术处理废水,但是应用该种技术很难将ICMs有效去除。因此国内外学者采用多种去除技术提高处理效率,消除水环境ICMs[38-41]。其中高级氧化技术(Advanced oxidation processes, AOPs)又称为深度氧化技术,以产生具有强氧化能力的自由基为特点,在高温高压、电、声、光辐照、催化剂等反应条件下,使大分子难降解有机污染物被降解为低毒或无毒的小分子物质。根据产生自由基的方式和反应条件的不同,可将其分为声化学氧化、光催化技术(Photocatalysis)、过硫酸盐(Persulfate,PS)活化技术、电化学高级氧化技术(Electro-chemical advanced oxidation processes, EAOPs)、芬顿(Fenton)氧化[42-45]等。AOPs可以直接氧化有机污染物成为小分子物质,到达提高污染物的生物降解性的目的。同时,它还可以进一步矿化小分子有机物,在去除微量有害化学物质(如PPCPs)方面具备很大的优势,具有良好的应用前景[42]

    • 声化学氧化对多种有机污染物和无机污染物具有良好的去除效果[46-50]。超声波降解有机物的反应机理相当复杂,一般认为超声波辐射有机物时,水溶液中产生的空化气泡在瞬间(ns-μs)崩溃,使处于正常温度和压力的液体环境在微观局部产生异常的高温高压(>5000 K,>50 MPa),从而使难以常规降解的有机物被全部或部分降解。Ning等[51]利用超声辐射技术去除水中ICMs,超声频率恒定为20 kHz。且通过能量贡献计算,超声热裂解占30%,而自由基攻击占70%。同时也发现了H2O2的加入可以将整个体系的降解效率提高2倍,说明HO·是主要的活性自由基。基于超声辐射降解条件和机理,对声化学降解水中ICMs研究较少。其耗能大,易造成二次污染(噪声污染),很难在实际废水处理中被应用。其主要机理如图1所示,进入微泡中的水分子发生断裂,产生高活性的氢自由基(·H)和羟基自由基(HO·),会和水中其它的分子或自由基相互反应,又有因高温高压而发生的热裂解断键等各种因素共同作用,最终将有机物降解甚至去除[52]

    • 光催化技术是一种利用光源能量光催化剂的价带电子跃迁至导带,从而使得电子空穴分离。自由电子具有还原性,空穴具有氧化性,从而产生具有高化学活性的自由基,最终降解水中有毒有害物质的绿色技术。其主要机理是材料价带(VB)电子被激发跃迁至导带(CB),水中氧气(O2)的得电子被活化成为超氧根自由基(${\rm{O}}_2^{ \cdot - } $);价带上水分子(H2O)和氢氧根离子(HO)被空穴(h+)氧化得到羟基自由基(HO·),而有机污染物最终被${\rm{O}}_2^{ \cdot - } $、HO·和h+去除。由于其降解能力出众,光催化技术也被应用于水环境中ICMs的去除。Doll等[53]研究了紫外光催化TiO2(P25和Hombikat UV100)降解水中碘美普尔和碘普罗胺。动力学分析得出,由于Hombikat UV100对碘美普尔和碘普罗胺具有比P25更高的吸附容量,所以Hombikat UV100对这两种ICMs催化降解效果更好。该课题组[54]又进一步研究了P25和Hombikat UV100在天然有机物(NOM)存在下,对碘美普尔(6 mg·L−1)光催化降解的影响。发现即使存在天然有机物对降解过程影响,碘美普尔也能够被光催化技术降解掉93%。Sugihara等[55]通过紫外光催化TiO2降解20 μmol·L−1泛影酸钠,60 min约降解80%。Paganini等[56]通过铈掺杂的氧化锌光催化剂,在模拟太阳光下降解水中ICMs。碘帕醇(10 mg·L−1)和泛影酸盐(10 mg·L−1)完全降解的时间为2 h。Duran-Alvarez等[57]研究了纳米结构的Ag2O/TiO2光催化降解水中碘普罗胺。Ag的存在减少了电子空穴复合率,使得50 μg·L−1碘普罗胺5 h矿化率大于65%。本课题组[58]研究了在模拟太阳光下,通过光催化剂BN/Bi2MoO6降解水中20 mg·L−1的碘海醇,150 min的去除率达到90%,矿化率达到了57.5%。其具体机理如图2所示,Bi2MoO6带隙(Eg)为2.31 eV,与一般氢能级(vs. NHE)相比,其VB和CB分别为−1.20 V和1.25 V;BN的Eg为3.98 eV,其VB和CB分别为1.44 V和−2.54 V。BN的CB电子会迁移到Bi2MoO6的表面以阻碍了电子空穴复合。同时,BN可以降低Bi2MoO6在VB中的杂化电子密度,有利于电子从VB到CB的激发。因此,复合材料可以有效地促进电子空穴的分离。 因此,BN与Bi2MoO6复合可以有效地促进电子空穴的分离,从而达到提高光催化效率的目的。

      光催化对离子型或者非离子型的ICMs展现出较好的降解效果,且对于赋存于环境中与其他物质结合的ICMs也具有一定的降解效果。但是光催化降解ICMs的反应速率较慢、矿化率较低。

    • 过硫酸盐活化技术可以与其它活化方式联用,具有较高的可塑性。活化过硫酸盐的方式主要有材料活化[59-62]、紫外光活化[63-65]、热活化[66-68]、超声活化[69-72]、化学结构活化[73]、微波活化[74]、电活化[75]。活化产生的硫酸根自由基(${\rm{SO}}_4^{ \cdot - } $)的半衰期[76-77](>3×10−5 s)较长,是${\rm{O}}_2^{ \cdot - }$和HO·的30倍以上,且具有较高的氧化还原电位(2.5—3.1 V)[78],其主要机理如图3所示,过硫酸根离子被活化成为硫酸根自由基(${\rm{SO}}_4^{ \cdot - } $),${\rm{SO}}_4^{ \cdot - } $降解有机污染物,达到去除的目的。因而在环境污染物去除领域具有较好的应用前景。

      Zhou等[79]通过模拟太阳光活化过硫酸盐降解水中泛影酸,发现${\rm{SO}}_4^{ \cdot - } $是降解过程中的主要活性物种。除此以外,与紫外光/过氧化氢(UV/H2O2)系统降解过程相比,动力学计算结果表明紫外光/过硫酸盐(UV/PS)系统降解泛影酸的效果更好,与UV/H2O2系统降解速率相比,性能提高了30%。Chan等[80]通过UV活化过二硫酸钾降解水中浓度为0.126 mmol·L−1碘普罗胺,30 min内可以将其降解完全,且矿化率可以达到80%以上。过硫酸盐活化系统降解效率很高,因此研究人员对其降解机理开始做了许多研究。本课题组[81]通过电磁感应无极灯(Electromagnetic Induction Electrodeless Lamp, EIEL)光降解泛影酸钠,并加入O2、H2O2以及S2O$_8^{2 - } $降解水中泛影酸钠。由于${\rm{SO}}_4^{ \cdot - } $和HO·能够共同作用,UV/PS系统降解效果最佳。当加入自然水体中的泛影酸钠浓度为20 μg·L−1,条件为过硫酸钠浓度10 mmol·L−1;初始pH=7;T=25 ℃时,泛影酸钠4 min内被完全降解。通过动力学计算得到${\rm{SO}}_4^{ \cdot - } $对泛影酸钠降解反应贡献最多,占62.5%。具体反应机理如图3所示,(C)降解路径主要活性物种是${\rm{SO}}_4^{ \cdot - } $,其作用机理主要为脱羧;(A)和(B)降解路径主要活性物种是HO·,其作用机理主要为除I−1和脱羧。

      Zhu等[82]通过Fe(II)活化过硫酸盐降解水中碘海醇,研究了在不同碘海醇初始浓度和不同二价铁离子(Fe2+)和PS浓度下的自由基机理。发现了体系中${\rm{SO}}_4^{ \cdot - } $可以与水环境中的物质转化为HO·和Cl·。同时Shang等[83]通过Fe(II)/PS系统降解泛影酸。发现了PS浓度为10 mmol·L−1n(Fe2+)/n(PS)比为1:10,初始pH为3.0和高温能够提高泛影酸的降解效率。Hu等[84]通过热活化过硫酸盐降解水中浓度为0.01 mmol·L−1碘海醇。结果表明,2—3 h去除率可以达到85%。而且还研究了在自然水体中NOM存在下,该降解过程产生了一系列消毒副产物,如氮代DBPs,碘代DBPs和碳代DBPs。Wang等[85]通过热活化过二硫酸盐降解水中碘普罗胺。研究了温度、pH、PS浓度等对反应的影响。Farhat等[86]通过电化学活化过硫酸盐降解水中泛影酸。除此以外,通过比较得出了,加入硫酸盐阳极液的降解系统降解污染物的速率是加入硝酸盐阳极液系统的10—15倍。因此过硫酸盐活化技术运用于ICMs的降解过程是可行的,且降解速率较快且对ICMs矿化率较高。但是,大多数过硫酸盐活化方式需要消耗大量物质能量;且如果需要长时间高效降解水中污染物,需不断投加过硫酸盐,成本巨大。

    • 芬顿氧化法是如今比较成熟的污水处理技术。其基本原理是过氧化氢(H2O2)在Fe2+的活化下产生HO·从而氧化水中污染物,其反应方程式(1), (2), (3)如下。Fenton氧化法可以根据改进方式的不同分为光Fenton法 (Photo-Fenton)[87-89]、电Fenton法(Electro-Fenton)[90-93]以及光电Fenton法(Photo-Electro-Fenton)[94-101]。其核心是Fenton试剂体系,通过改性Fenton试剂,类Fenton法也引起了广泛关注。

      Zhao等[102]通过Photo-Fenton系统降解水中碘帕醇。该研究通过比较各种活性自由基(HO·, O$_2^{ \cdot - } $, CO$_2^{ \cdot - } $)在Fe (Ⅲ)-oxalate/H2O2/UV(350 nm)和Fe (Ⅲ)-oxalate/H2O2/visible (450 nm)系统下的动力学常数,分析反应机理得出还原性脱卤是去除卤代有机污染物的一种可行方式,在降解反应中可以大大减少消毒副产物形成。Giannakis等[103]研究了UVC/Fenton系统降解水中碘海醇(10 mg·L−1)且评估了其消毒副产物毒性。分析结果得出UVC/Fenton系统降解碘海醇可以显著降低毒性,使得大肠杆菌和MS2噬菌体迅速灭活。Li等[104]利用Photo-Fenton系统降解水中碘普罗胺,根据实验结果得出H2O2/Fe (Ⅱ)系统中,10 mg·L−1 Fe (Ⅱ),H2O2和Fe (Ⅱ)摩尔比为3:1,以及pH=3时,30 min碘普罗(1 μg·L−1)能够被完全降解。Bocos等[105]通过Electro-Fenton系统降解水中泛影酸。通过调整电流大小(50 mA)、减小催化剂浓度(0.05 mmol·L−1)以及加大污染物浓度的方式去减缓泛影酸氧化去除过程,以便于研究其中间产物和降解路径。结果表明脱碘是氧化过程中一个重要的去除达成方式,为解决Photo-Fenton系统降解污染物速率太快而导致难以检测和分析的问题提供了新的的思路和方法。Bocos等[106]进一步通过Photo-Fenton和Electro-Fenton耦合降解水中泛影酸。在Photo-Electro-Fenton系统下,Fe3+(0.25 mmol·L−1)和H2O2(20 mmol·L−1)等条件相同,0.1 mmol·L−1泛影酸2 h可以降解完全,速率比Photo-Fenton系统提高了2倍。实验结果说明Photo-Electro-Fenton耦合系统能够提高Fenton试剂对ICMs的降解效果和速率。也有研究团队通过类Fenton反应达到降解ICMs的目的。Banaschik等[107]通过水中脉冲电晕等离子体/H2O2系统降解水中泛影酸盐。0.5 mg·L−1泛影酸盐1 h解了50%。Polo等[108]通过Solar radiation/K2S2O8类Fenton系统降解泛影酸盐。结果发现25 mg·L−1 泛影酸盐可以在光照强度为610 W·m−2光源照射的类Fenton系统下280 min降解完全。

      从以上研究得知,Fenton相关技术对多种ICMs有一定的降解效果,但是都需要外加能量辅助降解,其中Photo-Fenton系统降解ICMs研究最多,且降解效果最好。Photo-Electro-Fenton系统也被应用于降解ICMs,展现出良好的降解效果和速率,因而也是未来研究Fenton相关系统降解ICMs的一个方向。但是Fenton系统存在的缺点是对环境因素要求较高,且对物质能量投入较多,在复杂的环境基质中降解能力较为受限。

    • 电化学高级氧化技术通过电化学反应的方式产生活性自由基,与有机污染物反应达到降解的目的[109]。阳极处H2O被氧化成为HO·。有机污染物被HO·攻击,同时在阳极处发生氧化反应,同时被去除。出于EAOPs处理技术能源来源简单易得,降解速率可调控,可用于降解水中有机污染物。

      Radjenovic等[110]应用掺硼金刚石阳极的三室反应器电化学系统降解水中100 μg·L−1泛影酸盐,其中电化学还原和氧化实验使用22 mmol·L−1 KH2PO4/K2HPO4缓冲液(pH=7.0,电导率3.7 mS· cm−1),系统用水为0.7 μm过滤器过滤后的医院废水(pH=7.4,电导率3.7 mS·cm−1)。分析结果得出,降解中间产物3,S-二乙酰氨基苯甲酸能以与泛影酸盐相似的速率从溶液中矿化,但是Cl−1存在会导致脱碘效率下降。Korshin等[111]综述了通过掺硼金刚石阳极EAOPs降解水中ICMs。结果发现该系统降解100 μmol·L−1的碘普罗胺,矿化率可以达到90%,但是降解时间超过了7.5 h。在其对泛影酸盐进行研究的过程中,阴极的还原反应与泛影酸盐的脱碘反应形成了竞争关系,因而具有不利影响。Yan等[112]通过旋转圆盘电极(Rotating Ring-disc Electrode, RRDE)降解水中碘帕醇和泛影酸盐,研究其在NOM存在下的降解效果和中间产物的迁移转化规律,其中电化学还原条件为阴极电势<-0.45 V(vs. SCE)。研究结果发现,在电位−0.65 V至−0.85 V的范围内,其电化学还原性受到质量转移控制。结果发现NOM不会影响到碘帕醇和泛影酸盐的电化学还原降解,但是同样由于阴阳极的存在,被还原的活性碘代物质会与NOM会形成其它的消毒副产物。Li等[113]通过PdCl2和FeSO4电沉积到碳纸上制备的Pd/Fe改性碳纸(Pd/Fe-C)电极在双室反应器中降解卤代乙酸类DBPs。结果发现在−1.5 V(vs. SCE),pH=3且Pd:Fe摩尔比为2:1的最佳实验条件下,初始浓度为500 μg·L−1的三氯乙酸(TCAA)在20 min内去除率为95%。其中Pd(0)纳米粒子对原子H*的生成,以及在氯乙酸完全脱氯的间接还原过程中起着重要作用。

      EAOPs技术优势在于矿化率高,可去除高浓度ICMs,降解速率较快。其缺点在于耗电量大;易在电极处产生氢气(H2)发生安全事故;ICMs降解后产生的I−1不但不易被去除,而且容易产生有毒的衍生物;自然水体中的卤素离子对ICMs降解反应有抑制作用。因而对EAOPs降解水中ICMs之后的核心在于(1)尽可能抑制H2生成;(2)增加对电能的利用效率;(3)阴阳电极和电解池的设计。

    • 不同种类的AOPs技术各有优缺点,因此应该使不同种类AOPs技术耦合协同降解水中ICMs,使得其优势互补,从而达到提高反应速率、降低反应条件、减少人工能源使用和物质消耗和提高矿化率的目的。协同技术被应用于ICMs去除鲜有报导,但是用于其它有机污染物的去除已有研究基础。

      光催化-过硫酸盐活化(Photocatalysis/PS)耦合降解系统引起人们的广泛关注[114-118]。Chen等[119]研究了Vis-RGO/TiO2/peroxodisulfate系统降解水中PPCPs。其中过二硫酸盐作为电子受体可以加速光催化反应的活性和速率,且过二硫酸盐活化可以提高降解过程的矿化率。构建的光催化剂,既具有光催化活性又具有过硫酸盐活化的特性。这两项系统协同互补之处在于能量来源都可以是光,更重要的是${\rm{SO}}_4^{ \cdot - } $可以协同参与到光催化自由基反应过程中。除此以外,还有光芬顿-过硫酸盐活化协同技术(UV/Fenton/PS),Feng等[120]通过一种简便的溶胶-凝胶法制备了LaFeO3纳米颗粒,并通过在可见光照射下非均相活化过硫酸盐降解盐酸四环素(TC-HCl)。其自由基捕获实验表明,${\rm{SO}}_4^{ \cdot - } $在降解过程中的其主要作用,HO·也参与其中一部分反应。该工作说明Vis/LaFeO3/PS系统在降解废水中的有机污染物方面具有潜在应用价值;电化学-芬顿技术协同(Electrochemical-Fenton),Trellu等[121]通过将TiO2制成反应性电化学膜(REM)作为阳极,引入到Electro-Fenton(EF)系统中降解醋氨酚,结果发现REM/EF系统比单一REM和EF系统的降解矿化率好很多,110 mg·L−1初始有机碳降解率达到77%。dos Santos等[122]分别使用硼掺杂金刚石,Pt或IrO2作为阳极,并且使用空气扩散阴极,采用电化学产生H2O2进行氧化反应。该电化学系统在电解液为130 mL 0.05 mol·L−1硫酸钠介质中,降解城市废水和合成尿中的降压药卡托普利(0.23 mmol·L−1),60 min可以降解完毕。协同技术体系体现出的降解速率和矿化率比单一技术优良,且适用性更加广泛。

    • 高级氧化技术是利用自由基的强氧化性去除环境中污染物的新型污染物去除技术。单一的高级氧化技术由于其自由基产生原理不同、产生的自由基种类不同,因此对ICMs去除效果不同。声化学氧化技术去除ICMs,主要通过热裂解和HO·作用,但其耗能高,会造成二次噪声污染;光催化技术能量来源于绿色的太阳光,降解效果好,其核心在于光催化剂的设计。但其缺点在于自然水体复杂的物质组成会影响光催化剂的使用寿命,且ICMs降解后产生的I−1会对反应产生一定的抑制效果。且光催化剂大多含重金属,金属离子溶出会造成二次污染,无法被大规模使用;过硫酸盐活化技术产生的硫酸根自由基半衰期长、氧化还原电位优于一般常见自由基,且反应活性高、降解速率快,因而对ICMs降解效果较好。但是其需要添加过硫酸盐,成本较高;芬顿技术较为成熟,但是其对物质能量的消耗极大,其未来方向在于自产H2O2的Fenton试剂的设计;电化学高级氧化技术降解效率高,矿化率高,但是卤素原子会在阳极处抑制反应发生,且电解水产生的氢气既消耗了能量,又增加了安全隐患,且成本巨大,耗能高。AOPs协同降解技术降解水中ICMs可以弥补单一AOPs技术的缺点,其使得单一AOP技术优势互补,是未来应用于ICMs降解技术的方向。其优缺点具体如表5所示。对于各种高级氧化技术成本核算,声化学高级氧化法和光催化高级氧化法工艺成本难以估算。过硫酸盐活化工艺与其活化方式密切相关,成本一般小于10 CNY·t−1[123];Fenton法工艺成本一般在5 CNY·t−1 [124]。而协同高级氧化技术成本与其设计相关。如电化学-过硫酸盐协同降解有机废水的运行费用在过硫酸盐浓度物为1.5 mmol·L−1、Fe2+浓度为2.25 mmol·L−1的最优工艺条件下废水处理成本为2.8 CNY·t−1 [125]。热活化-过硫酸盐协同降解有机废水费用为8.2 CNY·t−1 [126]

    • ICMs在自然界中可以稳定存在、分布广泛,其自然降解过程中产生的消毒副产物具有较大的毒性,且通过传统污水净化技术无法完全去除,因此亟需开发能够消除环境污染的技术。

      每一类AOP技术都存在着一定的优点,且对ICMs有一定的去除效果,但其缺点明显,被广泛应用的可能性很小。协同AOPs技术可以将每种单一AOP技术优势结合,缺点减小。如光催化/过硫酸盐活化协同技术,将过硫酸根离子作为外部电子受体,减小了光催化材料内部电场电子空穴复合率;而在Electrochemical-Fenton协同技术降解机理中,可以通过电化学反应生成H2O2,作为Fenton反应的原料。因此,协同AOPs技术可以作为未来AOPs技术的一个重要的发展方向。

      随着对AOPs机理的进一步研究和相应配套实验装置的研发,大型AOPs降解装置将被应用于污水处理厂的污染物去除过程中,使得ICMs最终能够从城市废水中被去除。除了对ICMs污染采取相应措施以外,希望能够研发出可替代ICMs的绿色可降解无污染的X射线造影剂,或是在政策上对ICMs除应用于医疗等其它途径进行管控,从而在源头上控制ICMs的污染。

    参考文献 (138)

目录

/

返回文章
返回