-
我国是世界上最大的煤炭生产与消费国,2019年,全国原煤产量为38.5亿吨,消费总量为22.2亿吨,占全国一次能源消费总量的57.7%[1-2]。《中国可持续能源发展战略专题》中指出到2050年煤炭在我国能源结构消费比例中仍占50%以上,短期内,煤炭作为主体能源的地位不会发生改变[3]。然而,我国多数煤矿水文地质条件复杂,矿井水害时有发生,据统计从2000年到2014年,4500人死于矿井突水事故,造成了巨大的经济损失与人员伤亡。煤矿一旦发生突水事故,准确快速地进行突水水源识别是水害治理的关键[4]。
我国煤矿区地下水系统一般由多个含水层组成,且各含水层之间存在着不同程度的水力联系[5]。受采煤活动的影响,地下水系统的输入、输出与系统结构将会发生变化,从而诱发矿井水害[6]。地下水水化学成分及组成是地下水流动过程中与周围环境相互作用的产物[7],通常可利用煤矿区地下水水化学成分及特征示踪地下水循环途径,进一步研究其形成因素可阐明地下水演化本质,准确识别矿井突水水源。因此研究煤矿区地下水水化学特征及其形成作用对矿井突水水源识别及水害防治具有重要的意义。
地下水水化学成分的组成主要受大气降水、地表水、地下水含水层性质、水动力条件及人类活动等多种因素控制,因此其演化过程需要多组变量综合刻画[8]。目前,Piper三线图、同位素、Gibbs图、离子比例系数法等成为研究地下水水化学特征及其形成作用的重要方法[9-10]。许多学者借助这些方法对矿区地下水的水化学特征及形成作用开展了研究。王剑等[11]利用Piper三线图及同位素研究了滇东北毛坪矿区地下水化学特征及控制因素,揭示了研究区各含水系统特征的差异;潘玥等[12]借助Gibbs图分析了徐州东部废弃矿井地下水化学的控制因素;张妹等[13]综合Piper三线图、同位素及离子比例分析出顾北矿区地下水化学性质主要受蒸发及岩石风化作用影响;刘凯旋等[14]利用同样的手段分析了孙疃矿地下水水化学特征以及其形成作用,为孙疃矿矿井水水源判别及煤炭开采安全提供了依据。
伊敏矿区隶属呼伦贝尔大型煤电基地,位于国家生态保护区呼伦贝尔草原,目前关于该矿区的地下水特征、分布规律、形成作用等方面的研究少有报道。因此,本文在掌握矿区水文地质条件的基础上,采集该区不同类型水样,综合运用Piper三线图、同位素、Schoeller图、Gibbs图、离子组合比例图来分析伊敏矿区地下水及矿井水水化学特征、形成作用及主要离子来源,以期为伊敏矿区矿井水防治提供依据与理论基础。
伊敏矿区地下水水化学特征及其形成作用分析
Hydrogeochemical characteristics and formation process of groundwater in Yimin mining area
-
摘要: 煤矿区地下水水化学特征及其形成作用对矿井突水水源识别及水害防治具有重要的意义。本文采集伊敏矿区水样21组,综合利用Piper三线图、同位素、Schoeller图、Gibbs图及离子比例关系分析了地下水化学特征及其控制因素。结果表明,矿区不同类型水样主要阳离子为Na+,阴离子主要为HCO3−,平均pH值为7.92,TDS平均值为420.59 mg·L−1;大气降水、地表水、第四系水以及Ⅰ含水层水化学类型均为HCO3-Ca型,它们之间联系密切,Ⅱ含水层水化学类型为HCO3-Ca型和HCO3-Na型,Ⅲ含水层水与矿井水水化学类型为HCO3-Na型,且Ⅲ含水层水与矿井水δD和δ18O平均值最接近,矿井水主要来源于Ⅲ含水层补给;伊敏矿区地下水及矿井水主要离子形成作用受岩石风化控制,主要离子来源于钾长石、钠长石、钙长石等硅酸盐矿物的溶解,并受到Ca2+、Mg2+、K+、Na+阳离子交换作用的影响.Abstract: Hydrogeochemical characteristics and formation process of groundwater are of great significance to the mine water inrush identification and prevention of water disaster. This paper studied hydrogeochemical characteristics and formation process of groundwater in Yimin mining area using Piper trilinear diagram, isotopic characteristics, Schoeller graph, Gibbs diagram and ion ratio. The results show that Na+ is the main cation while HCO3− is main anion in the study area water. The average pH of water is 7.92, and the average TDS is 420.59 mg·L−1. The atmospheric precipitation, surface water, quaternary water and confined aquifer I groundwater is predominantly of the HCO3-Ca type, and they are closely related. The major hydrochemical types of confined aquifer Ⅱ groundwater are HCO3-Ca type and HCO3-Na type. The confined aquifer Ⅲ groundwater and mine water are of HCO3-Na type, besides, δD and δ18O average value of confined aquifer Ⅲ groundwater is closed to mine water. Thus, mine water is mainly recharged from confined aquifer Ⅲ groundwater. The formation process of groundwater and mine water is mainly controlled by rock weathering, and main ions are derived from dissolution of silicate minerals including potassium feldspar, sodium feldspar, calcium feldspar and affected by Ca2+, Mg2+, K+, Na+ ion exchange.
-
表 1 研究区水样主要离子分析表(mg·L−1)
Table 1. Main ion concentration of water samples from study area(mg·L−1)
序号
Serial number水样类型
Sample type取样点位
Sampling pointK+ Na+ Ca2+ Mg2+ SO42- HCO3− Cl− pH TDS 1 大气降水
Meteoric waterMe-1 3.06 3.12 5.82 0.41 4.02 21.33 1.05 7.54 45.46 2 Me-2 2.52 2.90 6.01 0.31 3.26 26.59 2.01 7.43 36.90 3 河流水
Surface waterS-1 2.20 9.10 31.69 3.66 12.01 122.6 1.93 8.03 183.00 4 S-2 1.06 8.01 22.70 5.12 7.43 111.18 1.77 8.33 188.00 5 第四系潜水
Quaternary waterQ-1 2.29 46.40 73.18 26.54 126.50 292.30 36.17 7.55 606.00 6 Q-2 1.26 17.60 60.36 11.90 37.04 238.90 9.80 7.76 377.00 7 Q-3 1.81 22.53 30.15 10.40 22.65 171.12 10.60 8.31 368.00 8 Ⅰ含承压水
Ⅰ aquifer waterⅠ-1 3.05 14.80 24.14 8.69 7.57 154.00 1.91 8.10 215.00 9 Ⅰ-2 2.81 21.22 30.02 9.30 31.03 170.01 1.00 8.06 132.00 10 Ⅱ含承压水
Ⅱ aquifer waterⅡ-1 2.22 70.00 30.18 7.78 21.23 301.7 5.18 8.22 440.00 11 Ⅱ-2 1.45 26.90 33.95 8.24 3.53 220.00 1.63 7.81 296.00 12 Ⅱ-3 1.56 28.10 30.18 10.07 3.36 220.00 1.69 7.80 295.00 13 Ⅲ含承压水
Ⅲ aquifer waterⅢ-1 2.87 211.00 15.09 3.20 47.39 414.90 104.4 7.97 800.00 14 Ⅲ-2 3.29 218.00 15.84 5.95 0.65 534.30 76.27 7.80 855.00 15 矿井水
Mine waterMi-1 1.18 114.14 5.21 1.06 15.36 291.64 10.60 8.23 352.00 16 Mi-2 1.03 116.52 10.52 0.66 12.08 328.68 3.54 7.94 252.00 17 Mi-3 8.21 128.80 10.34 1.83 18.39 359.47 230.00 8.27 708.00 18 Mi-4 7.11 121.70 10.21 1.02 17.47 356.45 70.90 7.74 800.00 19 Mi-5 1.24 113.98 3.58 1.10 15.67 287.47 53.20 7.78 460.00 20 Mi-6 2.62 271.42 7.93 1.61 0.89 663.14 7.09 7.91 1003.00 21 Mi-7 0.60 22.91 8.40 5.16 7.26 114.70 35.4 7.75 420.00 表 2 研究区各类型水样δD、δ18O平均值
Table 2. δD、δ18O average value of each various-type water samples from study area
序号
Serial number水样类型
Sample typeδD/‰平均值
δD/‰mean valueδ18O/‰平均值
δ18O/‰mean value1 大气降水Meteoric water −87.15 −11.01 2 地表河流Surface water −114.00 −14.10 3 第四系潜Quaternary water −108.00 −13.85 4 Ⅰ含水层Ⅰ aquifer water −113.65 −14.75 5 Ⅱ含水层Ⅱ aquifer water −118.50 −15.50 6 Ⅲ含水层Ⅲ aquifer water −103.00 −13.60 7 矿井水Mine water −102.95 −13.81 -
[1] 2019煤炭行业发展年度报告[C]. 煤炭工业协会. 2019 annual report on the development of coal industry[C]. Coal Association (in Chinese).
[2] 谢和平, 吴立新, 郑德志. 2025年中国能源消费及煤炭需求预测 [J]. 煤炭学报, 2019, 44(7): 1949-1960. XIE H P, WU L X, ZHENG DZ. Prediction on the energy consumption and coal demand of China in 2025 [J]. Journal of China Coal Society, 2019, 44(7): 1949-1960(in Chinese).
[3] 中国科学院能源战略研究组, 中国能源可持续发展战略专题研究[M]. 北京: 科学出版社, 2006. Energy Strategy Research Group, Chinese Academy of Sciences, Thematic study on China's energy sustainable development strategy[M]. Beijing: Science Press, 2006(in Chinese).
[4] 王甜甜, 靳德武, 刘基, 等. 动态权-集对分析模型在矿井突水水源识别中的应用 [J]. 煤炭学报, 2019, 44(9): 2840-2850. WANG T T, JIN D W, LIU J, et al. Application of dynamic weight-set pair analysis model in mine water inrush discrimination [J]. Journal of China Coal Society, 2019, 44(9): 2840-2850(in Chinese).
[5] 陈陆望, 许冬清, 殷晓曦, 等. 华北隐伏型煤矿区地下水化学及其控制因素分析—以宿县矿区主要突水含水层为例 [J]. 煤炭学报, 2017, 42(4): 996-1004. CHEN L W, XU D Q, YIN X X, et al. Analysis on hydrochemistry and its control factors in the concealed coal mining area in North China: A case study of dominant inrush aquifers in Suxian mining area [J]. Journal of China Coal Society, 2017, 42(4): 996-1004(in Chinese).
[6] 陈陆望, 殷晓曦, 刘鑫, 等. 华北隐伏型煤矿地下水水化学演化多元统计分析 [J]. 煤田地质与勘探, 2013(6): 43-48. CHEN L W, YIN X X, LIU X, et al. Multivariate statistical analysis on hydrochemical evolution of groundwater in the concealed coal mines in North China [J]. Coal Geology & Exploration, 2013(6): 43-48(in Chinese).
[7] 张小文, 何江涛, 彭聪, 等. 地下水主要组分水化学异常识别方法对比: 以柳江盆地为例 [J]. 环境科学, 2017, 38(8): 3225-3234. ZHANG X W, HE J T, PENG C, et al. Comparison of identification methods of main component hydrochemical anomalies in groundwater: a case study of Liujiang Basin [J]. Environmental Science, 2017, 38(8): 3225-3234(in Chinese).
[8] GULER C, THYNE G D, MCCRAY J E, TURNER A K. Evaluation of graphical and multivariate statistical methods for classification of water chemistry data [J]. Hydrogeology Journal, 2002, 10(4): 455-474. doi: 10.1007/s10040-002-0196-6 [9] RAJMOHAN N, ELANGO L. Identification and evolution of hydrogeochemical processes in the groundwater environment in an area of the Palar and Cheyyar River Basins, Southern India [J]. Environmental Geology, 2004, 46(1): 47-61. [10] STOTLER R L, FRAPE S K, RUSKEENIEMI T, et al. Hydrogeochemistry of ground waters in and below the base of thick permafrost at Lupin, Nunavut, Canada [J]. Journal of Hydrology, 2009, 373(1-2): 80-95. doi: 10.1016/j.jhydrol.2009.04.013 [11] 王剑, 罗朝晖, 陈植华, 等. 滇东北毛坪铅锌矿区水化学特征及成因 [J]. 环境化学, 2018, 37(6): 1421-1431. WANG J, LUO Z H, CHEN Z H, et al. Characteristics and controlling factors of water chemistry in Maoping lead-zinc mine area, Northeastern Yunnan, China [J]. Environmental Chemistry, 2018, 37(6): 1421-1431(in Chinese).
[12] 潘玥, 刘勇, 徐红霞, 等. 徐州东部废弃矿井地下水化学及其时空演化特征分析 [J]. 高校地质学报, 2018, 24(2): 113-118. PAN Y, LIU Y, XU H X et al. Characteristics of groundwater chemistry and its spatio-temporal variation in abandoned mine in eastern Xuzhou [J]. Geological Journal of China Universities, 2018, 24(2): 113-118(in Chinese).
[13] 张妹, 刘启蒙, 刘凯旋. 顾北矿区地下水化学特征及成因分析 [J]. 煤矿安全, 2018, 49(5): 193-196. ZHANG M, LIU Q M, LIU K X. Hydrochemical characteristics and cause analysis of groundwater in Gubei Mining District [J]. Safety in Coal Mines, 2018, 49(5): 193-196(in Chinese).
[14] 刘凯旋, 刘启蒙, 柴辉婵, 等. 孙疃矿区地下水化学特征及其控制因素研究 [J]. 煤炭工程, 2019, 51(4): 74-79. LIU K X, LIU Q M, CHAI H C, et al. Chemical Characteristics and Control Factors of Groundwater in Suntuan Coal Mine [J]. Coal Engineering, 2019, 51(4): 74-79(in Chinese).
[15] THOMAS J, ROSE T. Environmental isotopes in hydrogeology [J]. Environmental Geology, 2002, 43(5): 532-532. [16] 汪集旸, 陈建生, 陆宝宏, 等. 同位素水文学的若干回顾与展望 [J]. 河海大学学报(自然科学版), 2015, 43(5): 406-413. WANG J Y, CHEN J S, LU B H, et al. Review and prospect of isotope hydrology [J]. Journal of Hohai University (Natural Sciences), 2015, 43(5): 406-413(in Chinese).
[17] 贾伟光, 邸志强, 金洪涛, 等. 东北平原西部山前台地区地下水环境同位素分析-以洮儿河流域中上游为例 [J]. 东北大学学报(自然科学版), 2004, 25(10): 1013-1016. doi: 10.3321/j.issn:1005-3026.2004.10.026 JIA W G, DI Z Q, JIN HT, et al. Analysis of environmental isotopes for groundwater in pediment Tableland Region of China’s Western Northeast Plain- exemplified with the middle upper reach of Taoer River Basin [J]. Journal of Northeastern University(Natural Science), 2004, 25(10): 1013-1016(in Chinese). doi: 10.3321/j.issn:1005-3026.2004.10.026
[18] XING L, GUO H, ZHAN Y. Groundwater hydrochemical characteristics and processes along flow paths in the North China Plain [J]. Journal of Asian Earth Sciences, 2013, 70-71(1): 250-264. [19] 高楹, 田原. 山东济南东南部狼猫山水库上游山区地下水化学特征 [J]. 资源科学, 2018, 40(2): 359-368. GAO Y, TIAN Y. Groundwater chemical characteristics in the upper reaches of the Langmaoshan Reservoir, Shandong [J]. Resources Scence, 2018, 40(2): 359-368(in Chinese).
[20] LI P, QIAN H, WU J, et al. Major ion chemistry of shallow groundwater in the Dongsheng Coalfield, Ordos Basin, China [J]. Mine Water and Environment, 2013, 32(3): 195-206. doi: 10.1007/s10230-013-0234-8 [21] 华琨, 李洲, 李志. 黄土区长武塬地下水水化学特征及控制因素分析 [J]. 环境化学, 2020, 39(8): 2065-2073. HUA K, LI Z, LI Z. The hydrochemical characteristics and controlling factors of groundwater in the Changwu loess tableland [J]. Environmental Chemistry, 2020, 39(8): 2065-2073(in Chinese).
[22] SUBBA R N, MARGHADE D, DINAKAR A, et al. Geochemical characteristics and controlling factors of chemical composition of groundwater in a part of Guntur district, Andhra Pradesh, India [J]. Environmental Earth Sciences, 2017, 76(21): 747. doi: 10.1007/s12665-017-7093-8 [23] WEN X, WU Y, SU J, et al. Hydrochemical characteristics and salinity of groundwater in the Ejina Basin, Northwestern China [J]. Environmental Geology, 2005, 48(6): 665-675. doi: 10.1007/s00254-005-0001-7