-
双酚类化合物(BPs)一般是具有两个酚基结构的一种典型的内分泌干扰物(EDCs),由于其具备良好的延展性,耐高温且性质稳定而被广泛的应用于工业生产中,常被用作塑料添加剂。此外,其在涂料、膜材料、电子产品制造、产品包装等领域也发挥着不可或缺的作用[1]。由于其在环境中的长期存在,这类污染物在一定的环境因素影响下,会从本体中析出,富集在土壤、灰尘、污泥和水体中,对人类健康和生态环境具有潜在危害,比如常用于食品包装的塑料添加剂双酚A(BPA)就会从塑料中释放出来[2]。余建龙建立了酒水饮料和谷物类食品中BPs的检测方法,发现BPA和双酚S(BPS)检出率较高,且BPs能显著诱导雌激素受体α下游基因的表达[3]。此外,研究者还发现BPs具有生物蓄积性、生殖毒性、遗传毒性,免疫毒性甚至心脏毒性等[4-6]。常见的BPs降解方法有物理吸附/过滤(颗粒活性炭和膜分离)、生物降解和高级氧化技术(AOPs,如臭氧氧化、芬顿氧化、氯化法、光催化降解和过硫酸盐氧化)[7-14],但传统的AOPs受到高昂的经济和能源成本限制,且在降解过程中易产生高毒副产物,例如氯化法产生高毒的氯化副产物,过硫酸盐氧化法产生硫酸根离子[10,14]。
四酰胺基六甲基苯基环铁(Fe(Ⅲ)-TAML))是一种功能类似于过氧化物酶和细胞色素P450酶的催化剂[15],是AOPs的一种简单而有效的绿色替代品,结构如下。
Fe(Ⅲ)-TAML分子结构:
较为常见的两种Fe(Ⅲ)-TAML为:M=Na, X=H, R=CH3;M=Li, X= Cl, R=F[16]。其在0.1—10.0 μmol·L−1的低剂量下就可发挥高效的催化作用[17]。这种催化剂已被广泛用于降解包括染料[18]、酚类[19]、雌激素[20]、有机磷农药[21]、药物[22]等在内的各种废水中的持久性芳香族有机污染物(ACs)。Fe(Ⅲ)-TAML需要先被过氧化物(如H2O2)氧化形成高价铁配合物(即Fe(Ⅳ)-TAML[16]和Fe(V)-TAML[15])。研究表明,这是一个非自由基控制过程[23]。据报道,经过Fe(Ⅲ)-TAML/H2O2处理后,废水的毒性显著降低,对ACs的氧化比AOP生成的自由基降解技术具有更高的活性,且残留的Fe(Ⅲ)-TAML对鱼类和微生物没有显著的毒性效应[24]。Liang等利用Fe(Ⅲ)-TAML/H2O2体系在几分钟内实现了对三氯生的高效去除,但对pH值有强烈的依赖性[25]。过一硫酸盐(PMS)相比于H2O2和过硫酸盐(PS)而言,在效果、稳定性和适用性方面的表现更加优越,这是由于硫酸根自由基(
${\rm{SO}}_4^{2-} \cdot $ )比羟基自由基(HO·)具有更长的半衰期,以及适用的pH值范围更为广泛,且${\rm{SO}}_4^{2-} \cdot $ 具有高氧化电势(2.5—3.1 V)[26]。Li等发现PMS可以在pH(6—11.5)的宽范围内被Fe(Ⅲ)-TAML有效激活,可以实现对氯苯酚的高效去除[27]。考虑体系反应速率受pH的影响较大,这是由于在产生反应中间体的过程中TAML是电子供体,过氧化氢是电子受体,[Fe(Ⅲ)-TAML (OH)]2−与[Fe(Ⅲ)-TAML (OH2)]−相比,前者电子云密度更大,是更好的电子供体,因此k2>>k1;同理分子态的H2O2电子云密度更低,是更好的电子受体,即k4<k2,如式(1)—(6)所示[19]。体系中各成分的质子化状态取决于溶液的pH值,同时决定了氧化态Fe(Ⅲ)-TAML的生成及污染物的降解。研究发现Fe(Ⅲ)-TAML的pKa约为10.5,H2O2的pKa约为11,考虑到PMS的pKa2为9.4,因此综合考虑pH=10时的降解效果最好[25,27-29]。
在这项工作中,探究了pH 10条件下Fe(Ⅲ)-TAML/PMS和Fe(Ⅲ)-TAML/H2O2体系对8种BPs的降解动力学,得到拟一级反应速率常数(Kobs)。建立Kobs与双酚类化合物的理论参数的定量活性结构相关性(QSAR)模型,得到的结果用于预测并进行相关性分析和适用性领域评估。建立一种可以快速预测双酚类物质Kobs的方法,并且获取速率限制机制的潜力,有望为其它BPs对系统的选择提供参考,以求为高价铁配合物通过非自由基途径有效降解有机污染物的机理提供有力支撑。
Fe(Ⅲ)-TAML/过氧化物体系催化降解双酚类化合物及其定量结构活性相关性
Catalytic degradation of bisphenols by Fe(Ⅲ)-TAML/peroxide systems: Development of quantitative structural-activity relationship models
-
摘要: 双酚类化合物(BPs),如双酚A(BPA),由于具有内分泌干扰性,而被广泛关注。本研究测定了8种常见的双酚类化合物,在四酰胺基六甲基苯基环铁(Fe(Ⅲ)-TAML)/过氧化物(即过氧化氢(H2O2)和过一硫酸盐(PMS))体系作用下的降解动力学,并通过拟一级动力学方程拟合得到pH10条件下拟一级反应速率常数(Kobs)。利用多元线性回归方法(MLR)探究了Kobs与BPs理论参数之间的相关性,建立了双酚类化合物的定量结构活性相关性(QSAR)模型,并验证了模型对选取的3种测试集具有良好的预测性能。根据模型发现在Fe(Ⅲ)-TAML/PMS体系中,Kobs与最高占据分子轨道能(EHOMO)呈高度正相关性。而在Fe(Ⅲ)-TAML/H2O2体系中,Kobs与偶极矩(μ)呈负相关。这项工作可以为高价铁配合物通过非自由基途径有效降解有机污染物的机理提供新的思路,有助于拓宽均相催化剂在环境修复中的应用。
-
关键词:
- 双酚类化合物 /
- 四酰胺基六甲基苯基环铁 /
- 催化氧化 /
- 定量结构活性相关性模型
Abstract: Due to the great endocrine disrupting properties, bisphenols, such as bisphenol A, have raised wide attention from environmental scientific researchers. In the present study, eight bisphenolic compounds were degraded by Iron(Ⅲ)-Tetraamidomacrocyclic Ligand (Fe(Ⅲ)-TAML)/Peroxide Systems, i.e., Fe(Ⅲ)-TAML/H2O2 and Fe(Ⅲ)-TAML/permonosulfate (PMS), and the pseudo-first-order reaction rate constants (Kobs) at pH 10 was fitted. The relationship between Kobs and the theoretical parameters of BPs were investigated by multiple linear regression analysis with the development of quantitative structural-activity relationship (QSAR) models. Based on the results of verification, the developed QSAR models showed efficient predictive performance for other three bisphenols. According to the developed QSAR models, in Fe(Ⅲ)-TAML/PMS system, Kobs is positively correlated with the highest occupied molecular orbital energy (EHOMO). While, for Fe(Ⅲ)-TAML/H2O2 system, Kobs is in negative relationship with dipole moment (μ). Therefore, a new insight into the mechanism of the effective degradation of organic pollutants by Fe(Ⅳ) or Fe(Ⅴ) ligands was proposed in the present study, which will help to broaden the application of Fe(Ⅲ)-TAML/PMS and Fe(Ⅲ)-TAML/H2O2 systems in practical environmental applications. -
表 1 双酚类化合物高效液相色谱检测方法
Table 1. Detailed information on the HPLC methods for determination of bisphenols.
化合物名称
Molecular name流动相
Liquid phase检测波长/nm
Detection wavelength化合物结构
Molecular structure训练集(Training set) BPA 甲醇:Milli-Q水(70:30,V:V) 275 BPC 甲醇:Milli-Q水(70:30,V:V) 275 BPF 甲醇:Milli-Q水(70:30,V:V) 275 BPAF 甲醇:Milli-Q水(70:30,V:V) 275 BPE 甲醇:Milli-Q水(70:30,V:V) 275 BPZ 甲醇:Milli-Q水(70:30,V:V) 275 BPS 甲醇:0.1%乙酸(50:50,V:V) 256 TMBPA 甲醇:Milli-Q水(70:30,V:V) 210 测试集(Test set) BPAP 甲醇:Milli-Q水(70:30,V:V) 275 TBBPA 甲醇:Milli-Q水(85:15,V:V) 210 BP酸 甲醇:Milli-Q水(70:30,V:V) 275 表 2 pH10条件下Fe(Ⅲ)-TAML/PMS和Fe(Ⅲ)-TAML/H2O2催化降解BPs的拟一级速率常数
Table 2. Pseudo-first-order rate constants of BPs degradation by Fe(Ⅲ)-TAML/PMS and Fe(Ⅲ)-TAML/H2O2 systems at pH10.
体系
SystemKobs /min-1 BPA BPC BPF BPAF BPE BPZ BPS TMBPA Fe(Ⅲ)-TAML/PMS 1.738 2.712 2.053 0.442 1.999 2.488 0.034 2.267 Fe(Ⅲ)-TAML/H2O2 1.370 2.897 3.765 0.006 2.987 3.090 0.002 2.200 表 3 训练集BPs的理论参数
Table 3. Theoretical parameters of BPs.
BPs BPA BPC BPF BPAF BPE BPZ BPS TMBPA TE/eV −731.9 −810.5 −653.2 −1327.5 −691.3 −848.6 −1162.5 −889.2 EHOMO/eV −0.2145 −0.2105 −0.2163 −0.2359 −0.2093 −0.2185 −0.2429 −0.2055 ELUMO/eV −0.0147 −0.0097 −0.0150 −0.0299 −0.0315 −0.0184 −0.0478 −0.0044 Egap/eV −0.1998 −0.2008 −0.2013 −0.206 −0.1778 −0.2001 −0.1951 −0.2011 μ(Debye) 2.2712 1.6274 1.2236 3.759 1.116 1.834 6.4994 1.7179 q+ 0.2453 0.2443 0.2453 0.2498 0.2454 0.2460 1.0488 0.2448 q− −0.3649 −0.3633 −0.3640 −0.3562 −0.3645 −0.3652 −0.5065 −0.3695 α 154.96 178.12 133.58 153.46 144.38 184.14 153.01 131.58 V 177.63 208.54 147.47 193.82 171.00 201.70 170.62 182.91 pKa 9.78[32] 10.45[33] 9.84[32] 9.2[32] 9.81[32] 9.76[32] 8.2[34] 10.6[35] 表 4 pH10条件下Fe(Ⅲ)-TAML/PMS和Fe(Ⅲ)-TAML/H2O2催化降解BPs测试集的拟一级速率常数
Table 4. Pseudo-first-order rate constants of BPs test set degradation by Fe(Ⅲ)-TAML/PMS and Fe(Ⅲ)-TAML/H2O2 systems at pH10
体系
SystemBPAP TBBPA BP酸 Predictive Kobs Actual Kobs Predictive Kobs Actual Kobs Predictive Kobs Actual Kobs Fe(Ⅲ)-TAML/PMS 1.970 2.151 0.462 1.340 1.509 1.896 Fe(Ⅲ)-TAML/H2O2 2.897 1.473 1.530 1.182 1.811 1.455 -
[1] 陈小芳, 李东, 固旭. 双酚类化合物的合成及应用进展研究 [J]. 广州化工, 2016, 44(5): 26-28. doi: 10.3969/j.issn.1001-9677.2016.05.010 CHEN X, LI D, GU X. Study on synthesis and application of bisphenols [J]. Guangzhou Chemical Industry, 2016, 44(5): 26-28(in Chinese). doi: 10.3969/j.issn.1001-9677.2016.05.010
[2] LIU X, SHI H, XIE B, et al. Microplastics as both a sink and a source of bisphenol A in the marine environment [J]. Environmental Science & Technology, 2019, 53(17): 10188-10196. [3] 余建龙. 七种双酚类化合物雌激素活性评价及其在食品中检测方法的建立和应用[D]. 南昌: 南昌大学, 2014. YU J. Study on the estrogenic activity and analytical method in foodstuffs for seven bisphenol analogues[D]. Nanchang: Nanchang University, 2014 (in Chinese).
[4] 张江华, 李华文, 石丹, 等. 双酚A对人胚肝细胞DNA损伤和修复功能的影响 [J]. 环境与职业医学, 2005, 22(3): 197-199. ZHANG J, LI H, SHI D, et al. Study on the DNA damage and repair effect of bisphenol A in human embryo liver L-02 cell line [J]. Environment and Occupational Medicine, 2005, 22(3): 197-199(in Chinese).
[5] GU J, WANG H, ZHOU L, et al. Oxidative stress in bisphenol AF-induced cardiotoxicity in zebra fish and the protective role of N-acetyl N-cysteine [J]. Science of the Total Environment, 2020, 731: 1-9. [6] MCKELVEYMARTIN V J, GREEN M H L, SCHMEZER P, et al. The single-cell gel-electrophoresis assay (comet assay) - A European review [J]. Mutation Research, 1993, 288(1): 47-63. doi: 10.1016/0027-5107(93)90207-V [7] WANG R, BAI J, LI Y, et al. BiVO4/TiO2(N2) nanotubes heterojunction photoanode for highly efficient photoelectrocatalytic applications [J]. Nano-Micro Letters, 2017, 9(2): 14-22. [8] 张静, 严静娜, 郭悦宁, 等. 阻燃剂四溴双酚A的厌氧-好氧生物降解 [J]. 环境化学, 2016, 35(9): 1776-1784. doi: 10.7524/j.issn.0254-6108.2016.09.2016013001 ZHANG J, YAN J, GUO Y, et al. Anaerobic and aerobic biodegradation of flame retardant tetrabromobisphenol A [J]. Environmental Chemistry, 2016, 35(9): 1776-1784(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.09.2016013001
[9] 孙国新, 王杰琼, 周成智, 等. 四溴双酚A在近岸海水中的光降解动力学研究 [J]. 环境化学, 2018, 37(8): 1683-1690. doi: 10.7524/j.issn.0254-6108.2018010602 SUN G, WANG J, ZHOU C, et al. Photodegradation kinetics of tetrabromobisphenol A in coastal water [J]. Environmental Chemistry, 2018, 37(8): 1683-1690(in Chinese). doi: 10.7524/j.issn.0254-6108.2018010602
[10] ZHOU J, AN X, TANG Q, et al. Dual channel construction of WO3 photocatalysts by solution plasma for the persulfate-enhanced photodegradation of bisphenol A [J]. Applied Catalysis B-Environmental, 2020, 277: 1-9. [11] QU R, FENG M, WANG X, et al. Rapid removal of tetrabromobisphenol A by ozonation in water: oxidation products, reaction pathways and toxicity assessment [J]. Plos One, 2015, 10(10): 1-17. [12] 熊美昱, 夏雨琪, 彭程. 典型类雌激素的降解方法及其影响因素研究进展 [J]. 环境化学, 2020, 39(3): 610-623. doi: 10.7524/j.issn.0254-6108.2019101303 XIONG M, XIA Y, PENG C. Degradation methods and influence factors of typical estrogen-like substances [J]. Environmental Chemistry, 2020, 39(3): 610-623(in Chinese). doi: 10.7524/j.issn.0254-6108.2019101303
[13] FENG X Q, LUO M Q, HUANG W Y, et al. The degradation of BPA on enhanced heterogeneous photo-Fenton system using EDDS and different nanosized hematite [J]. Environmental Science and Pollution Research, 2020, 27(18): 23062-23072. doi: 10.1007/s11356-020-08649-9 [14] DUPUIS A, MIGEOT V, CARIOT A, et al. Quantification of bisphenol A, 353-nonylphenol and their chlorinated derivatives in drinking water treatment plants [J]. Environmental Science and Pollution Research, 2012, 19(9): 4193-4205. doi: 10.1007/s11356-012-0972-3 [15] KUNDU S, THOMPSON J V K, SHEN L Q, et al. Activation parameters as mechanistic probes in the TAML Iron(V)-Oxo oxidations of hydrocarbons [J]. Chemistry-a European Journal, 2015, 21(4): 1803-1810. doi: 10.1002/chem.201405024 [16] KUNDU S, ANNAVAJHALA M, KURNIKOV I V, et al. Experimental and theoretical evidence for multiple FeⅣ reactive intermediates in TAML-activator catalysis: Rationalizing a counterintuitive reactivity order [J]. Chemistry-a European Journal, 2012, 18(33): 10244-10249. doi: 10.1002/chem.201201665 [17] SEN GUPTA S, STADLER M, NOSER C A, et al. Rapid total destruction of chlorophenols by activated hydrogen peroxide [J]. Science, 2002, 296(5566): 326-328. doi: 10.1126/science.1069297 [18] WARNER G R, MILLS M R, ENSLIN C, et al. Reactivity and operational stability of N-tailed TAMLs through kinetic studies of the catalyzed oxidation of orange Ⅱ by H2O2: synthesis and X-ray structure of an N-phenyl TAML [J]. Chemistry-a European Journal, 2015, 21(16): 6226-6233. doi: 10.1002/chem.201406061 [19] WANG C, GAO J, GU C. Rapid destruction of tetrabromobisphenol a by Iron(Ⅲ)-Tetraamidomacrocyclic ligand/layered double hydroxide composite/H2O2 system [J]. Environmental Science & Technology, 2017, 51(1): 488-496. [20] SHAPPELL N W, VRABEL M A, MADSEN P J, et al. Destruction of estrogens using Fe-TAML/peroxide catalysis [J]. Environmental Science & Technology, 2008, 42(4): 1296-1300. [21] CHANDA A, KHETAN S K, BANERJEE D, et al. Total degradation of fenitrothion and other organophosphorus pesticides by catalytic oxidation employing Fe-TAML peroxide activators [J]. Journal of the American Chemical Society, 2006, 128(37): 12058-12059. doi: 10.1021/ja064017e [22] SHEN L Q, BEACH E S, XIANG Y, et al. Rapid, biomimetic degradation in water of the persistent drug sertraline by TAML catalysts and hydrogen peroxide [J]. Environmental Science & Technology, 2011, 45(18): 7882-7887. [23] CHEN M, YU Y Q, TAN P, et al. Selective degradation of estrogens by a robust Iron(Ⅲ) complex bearing a cross-bridged cyclam ligand via Iron(V)-Oxo species [J]. Chemical Engineering Journal, 2019, 378: 1-8. [24] ELLIS W C, TRAN C T, ROY R, et al. Designing green oxidation catalysts for purifying environmental waters [J]. Journal of the American Chemical Society, 2010, 132(28): 9774-9781. doi: 10.1021/ja102524v [25] LIANG S, XIAN Z, YANG H, et al. Rapid destruction of triclosan by Iron(Ⅲ)-Tetraamidomacrocyclic ligand/hydrogen peroxide system [J]. Chemosphere, 2020, 261: 1-9. [26] GHANBARI F, MORADI M. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: review [J]. Chemical Engineering Journal, 2017, 310: 41-62. doi: 10.1016/j.cej.2016.10.064 [27] LI H, SHAN C, LI W, et al. Peroxymonosulfate activation by Iron(Ⅲ)-Tetraamidomacrocyclic ligand for degradation of organic pollutants via high-valent Iron-Oxo complex [J]. Water Research, 2018, 147: 233-241. doi: 10.1016/j.watres.2018.10.015 [28] GHOSH A, MITCHELL D A, CHANDA A, et al. Catalase-peroxidase activity of iron(Ⅲ)-TAML activators of hydrogen peroxide [J]. Journal of the American Chemical Society, 2008, 130(45): 15116-15126. doi: 10.1021/ja8043689 [29] SU H R, YU C Y, ZHOU Y F, et al. Quantitative structure activity relationship for the oxidation of aromatic organic contaminants in water by TAML/H2O2 [J]. Water Research, 2018, 140: 354-363. doi: 10.1016/j.watres.2018.04.062 [30] BUXTON G V, GREENSTOCK C L, HELMAN W P, et al. Critical-review of rate constants for reactions of hydrated electrons, hydrogen-atoms and hydroxyl radicals (·OH/·O-) in aqueous-solution [J]. Journal of Physical and Chemical Reference Data, 1988, 17(2): 513-886. doi: 10.1063/1.555805 [31] NETA P, HUIE R E, ROSS A B. Rate constants for reactions of inorganic radicals in aqueous-solution [J]. Journal of Physical and Chemical Reference Data, 1988, 17(3): 1027-1284. doi: 10.1063/1.555808 [32] WANG C, XIAN Z Y, DING Y H, et al. Self-assembly of Fe-III-TAML-based microstructures for rapid degradation of bisphenols [J]. Chemosphere, 2020, 256: 1-13. [33] CHEMICAL BOOK. 4, 4'-(1-甲基亚乙基)双(2-甲基苯酚)[EB/OL]. [2020-08-24]. https://www.chemicalbook.com/ProductChemicalPropertiesCB3282153.htm. [34] PUBCHEM. 4, 4'-Sulfonyldiphenol(Compound) [EB/OL]. [2020-08-24]. (https://pubchem.ncbi.nlm.nih.gov/compound/6626#section=Dissociation-Constants). [35] CHEMICAL BOOK. 2,2-双(4-羟基-3,5-二甲基苯基)丙烷[EB/OL]. [2020-08-24]. https://www.chemicalbook.com/ProductChemicalPropertiesCB7338182.htm. [36] WANG C, WEI Z, WANG L, et al. Assessment of bromide-based ionic liquid toxicity toward aquatic organisms and QSAR analysis [J]. Ecotoxicology and Environmental Safety, 2015, 115: 112-118. doi: 10.1016/j.ecoenv.2015.02.012 [37] GOLBRAIKH A, TROPSHA A. Beware of q2! [J]. Journal of Molecular Graphics & Modelling, 2002, 20(4): 269-276. [38] CHENG Z W, YANG B W, CHEN Q C, et al. 2D-QSAR and 3D-QSAR simulations for the reaction rate constants of organic compounds in ozone-hydrogen peroxide oxidation [J]. Chemosphere, 2018, 212: 828-836. doi: 10.1016/j.chemosphere.2018.08.097