-
单电子氧化是指弱氧化反应体系中,从一个中性有机污染物分子中拿走一个电子的反应过程 [1]。单电子氧化虽然是污染物最简单的化学变化,却会对污染物分子的结构和反应性产生重要影响,也是自然界中广泛存在的一种污染物转化途径水环境自净化重要的环节[2]。
有机污染物首先经过单电子氧化以产生活性中间体,然后,通过自由基聚合和亲核偶联形成的低聚物可进一步沉淀。庞素艳等[3]发现KMnO4氧化降解四氯双酚A(TCBPA)的反应形成低聚物。Sun等[4]研究发现,纳米MnO2可以高效地与17β-雌二醇和三氯生发生单电子氧化反应形成二聚体、三聚体和四聚体等低聚物,并在加入腐殖酸(HA)后,推测腐殖酸与17β-雌二醇产生交叉偶联反应。
近几年来,定量构效关系(quantitative structure-activity relationships, QSAR)被广泛应用于有机污染物的生物毒性、致癌性等预测,通过建立物质活性与其分子特定结构的化学描述符之间的数学模型,不仅能够有效地预测未经过实验检测的物质的理化性质,而且能够帮助我们更好得验证和解释反应机理[5]。在实际应用中,通常使用逐步线性回归(MLR)及非线性回归来建立QSAR模型[6]。Kim等[7]通过MLR建立QSAR模型用于预测过氧乙酸环境中15种有机污染物的准一级速率常数与分子结构之间的关系,而Yang等[8]通过MLR建立QSAR模型,研究了41种含氮化合物在稳定超临界水氧化反应下的降解速率常数与17种分子结构特征的关系。现阶段对单电子氧化条件下废水中有机污染物的反应速率与其量化参数关系的QSAR模型研究较少,本论文对此进行探究。
许多研究报道了废水中污染物的单电子氧化反应,但由于对不同污染物进行单电子氧化反应的研究较为分散。本文首先通过文献收集氧化锰体系24种有机污染物的反应动力学速率常数,并基于DFT计算不同有机污染物的电子结构特征参数,进一步采用非线性回归及多元线性回归的方法将不同有机污染物的电子结构特性与单电子氧化的反应速率常数之间构建QSAR模型,最后采用留一法对构建的模型进行内部验证;并通过实验补充6种有机污染物的单电子氧化反应速率常数来验证QSAR模型的预测能力。模型为不同污染物结构发生单电子氧化活性的预测提供理论依据,进一步阐述单电子氧化反应发生的规律。
有机污染物的单电子氧化结构-反应活性定量构效关系
Quantitative structure-activity relationship between single electron oxidation structure and reaction activity of organic ppollutants
-
摘要: 单电子氧化反应是自然界中普遍存在的一种弱氧化反应过程,但不同有机污染物的单电子氧化反应活性具有显著差异,实验筛选需要耗费大量时间和成本。而氧化体系中有机污染物的反应速率常数是衡量其单电子反应活性的一个重要参数。因此,本文首先通过文献系统总结氧化锰体系24种有机污染物的反应动力学速率常数,并基于密度泛函理论(DFT)计算不同有机污染物的电子结构特征参数,进一步采用非线性回归及多元线性回归的方法将不同有机污染物的电子结构特性与单电子氧化的反应速率常数之间构建定量构效关系(QSAR)模型,最后采用留一法对构建的模型进行内部验证;并通过实验补充有机污染物的单电子氧化反应速率常数来验证QSAR模型的预测能力。结果表明,根据文献总结91组氧化锰准一级和二级动力学反应体系构建并筛选得到的最优QSAR模型,均展现了较好的拟合度(
$R_{1}^{2}=0.845 $ ,$R_{2}^{2}=0.928 $ ),且经过实验总结18组数据进行内外部验证确认了其稳定性($Q_{\text{LOO1}}^{2}= 0.801$ ,$ Q_{\text{LOO2}}^{2}=0.990$ )及较好的预测能力($R_{\text{ext1}}^{2}= 0.813 $ ,$R_{\text{ext1}}^{2}=0.852 $ )。该研究结果也发现,不同因素两两间的相互影响对有机物能否采用氧化锰进行单电子氧化反应作用更为突出;其中,有机物投加量C有机物、活性官能团数量N、能隙值EGAP等因素对能否采用氧化锰进行单电子氧化反应影响更大。Abstract: The single-electron oxidation reaction is a kind of weak oxidation reaction process in nature, but the single-electron oxidation reaction activity of different organic pollutants has significant differences, and experimental screening requires a lot of time and cost. The reaction rate constant of organic pollutants in the oxidation system is an important parameter to measure its single-electron reaction activity. Therefore, this article first summarizes the reaction kinetic rate constants of 24 organic pollutants in the manganese oxide system through the literature system, and calculates the electronic structure characteristic parameters of different organic pollutants based on density functional theory (DFT), and further uses nonlinear regression and multiple linear regression method builds a quantitative structure-activity relationship (QSAR) model between the electronic structure characteristics of different organic pollutants and the reaction rate constant of single-electron oxidation, finally the leave-one-out method was used to internally verify the model; and the single-electron oxidation reaction rate constants of organic pollutants were supplemented by experiments to verify the predictive ability of the QSAR model. The optimal QSAR model constructed and screened based on 91 sets of manganese oxide quasi-first and second-stage kinetic reaction systems all show a good degree of fit ($R_{1}^{2}= 0.845$ ,$R_{2}^{2}=0.928 $ ), and 18 sets of experimental data Internal and external verification confirmed its stability ($Q_{\text{LOO1}}^{2}=0.801 $ ,$Q_{\text{LOO2}}^{2}=0.990 $ ) and good predictive ability ($R_{\text{ext1}}^{2}= $ $ 0.813$ ,$R_{\text{ext1}}^{2}=0.852 $ ). The research results also found that the mutual influence between two different factors on organic matter whether using single electron oxidation reaction of manganese oxide is more outstanding; Among them, organic additive amount of Corganic, active functional group number N, energy gap value EGAP on whether using single electron of manganese oxide oxidation reaction influence is greater. -
表 1 有机污染物反应动力学数据
Table 1. The data of organic micropollutant reaction kinetics
反应级数
Order of reaction有机污染物
Organic pollutants反应速率常数
k/min−1或k0/(L·g−1·min−1)pH C有机物/
(μmol·L−1)CHA /(μmol·L−1) 参考文献
References准一级反应 2,4-二氯酚(24DCP) 0.0095 —0.109 4—9 6 0 [13] 2,4-二溴酚(24DBP) 0.036—0.39 4.5—8.5 7.94 0 [14] 4-溴酚(4BP) 0.122—1.51 4.5 7.94 0 [14] 2,4,6-三溴酚(246TBP) 0.77 4.5 7.94 0 [14] 三氯生(TCS) 0.0035 —2.957 5 5 0—600 [15,17] 四氯双酚A(TCBPA) 0.535—0.977 8 1 0—10 [15] 雌二醇(E2) 0.000271 —0.056 5 4 0 [16] 2氯酚(2CP) 0.804—1.884 7 160 0 [18] 3氯酚(3CP) 0.06—0.156 7 160 0 [18] 4氯酚(4CP) 0.294—0.76 7 160 0 [18] 246三氯酚(246TCP) 1.128—2.226 7 80 0 [18] 对乙酰氨基酚(APAP) 0.066—0.9774 10 40—120 0 [19] 双酚A
(BPA)0.00215—0.015 6.8 50—200 0 [20] 邻苯二酚 0.0123—0.322 5 400 0 [21] 间甲酚 0.00061—0.0022 6.8 50—200 0 本研究 对苯二酚 0.186—0.359 6.8 50—200 0 本研究 间苯二酚 0.00244—0.0163 6.8 50—200 0 本研究 间苯三酚 0.0104—0.0218 6.8 50—200 0 本研究 苯酚
(BP)0.00741—0.00991 6.8 50—200 0 本研究 2,6二氯酚(26DCP) 0.0131—0.0313 6.8 50—200 0 本研究 对甲酚 0.00207—0.603 6.8 50—200 0 本研究 二级反应 四氯双酚A 368—1055 8 0.3 0 [3] 蛋氨酸(MET) 4.6 7 1020 0 [15] 组氨酸(HIS) 1.8 7 10120 0 [15] 2氯酚(2CP) 16.2 7 160 0 [18] 3氯酚(3CP) 0.86 7 160 0 [18] 4氯酚(4CP) 4.2 7 160 0 [18] 246三氯酚(246TCP) 19 7 80 0 [18] 邻苯二酚 0.774 5 400 0 [21] 2,4-二氯酚 0.5 7 20 0 [22] 磺胺噻唑 6.81—44.17 4—10 120 0 [23] 磺胺异恶唑 0.28—105.14 4—10 120 0 [23] 对甲酚 0.0831 6.8 100 0 本研究 对苯二酚 0.222 6.8 100 0 本研究 间苯二酚 3.278 6.8 100 0 本研究 2,6二氯酚 3.326 6.8 100 0 本研究 注:k为准一级反应速率常数(min−1),k0为二级反应速率常数(L·g−1·min−1)。
Note:k is the first order reaction rate constant (min -1), k0 is the second order reaction rate constant(L·g−1·min−1).表 2 不同有机污染物量化参数
Table 2. Quantitative parameters of different organic micropollutants
有机物 EB3LYP
/eVμ/debye EHOMO
/eVELUMO
/eVEGAP
/eV亲电指数
/eV
Electrophilicity
index亲核指数
/eV Nucleophilicity
index化学势
/eV
Chemical potentialN 17β-雌二醇
(E2)−850.89 2.64 −5.68 −0.37 −5.30 0.42 3.44 −2.76 2 三氯生
(TCS)−1992.77 3.625 −6.323 −1.093 −5.230 0.76 2. 80 −3.61 2 四氯双酚A (TCBPA) −0.62 1.878 −6.373 −1.001 −5.372 0.67 2.82 −3.41 2 2,4-二氯酚(24DCP) −1226.69 1.162 −6.497 −0.948 −5.549 0.73 2.27 −3.81 1 4-溴酚
(4BP)−2878.6291 3.201 −6.255 −0.708 −5.547 0.594 2.610 −3.474 1 2,4-二溴酚(2,4DBP) −5449.752 0.899 −6.495 −1.037 −5.458 3.613 2.423 −6.047 1 2,4,6-三溴酚(246TBP) −8020.871 1.939 −6.924 −1.329 −5.594 0.932 2.190 −4.131 1 磺胺噻唑 −1459.455 9.501 −6.171 −1.407 −4.765 0.773 3.084 −3.570 2 磺胺异恶唑 −1215.094 12.109 −6.154 −1.334 −4.820 0.781 2.846 −3.625 2 对乙酰氨基酚(APAP) −515.547 4.058 −5.896 −0.591 −5.305 0.018 7.915 −0.454 2 间甲酚 −9437.082 1.628 −6.236 −0.380 −5.856 0.428 3.237 −2.952 1 对甲酚 −9437.055 2.158 −6.080 −0.437 −5.643 0.415 3.357 −2.882 1 双酚A
(BPA)−731.748 2.700 −5.918 −0.468 −5.450 0.562 2.986 −3.193 2 2氯酚(2CP) −767.095 1.5493 −6.517 −0.6979 −5.819 0.614 2.403 −3.584 1 3氯酚(3CP) −767.098 4.498 −6.489 −0.687 −5.802 0.5654 2.7881 −3.3828 1 4氯酚(4CP) −767.099 3.257 −6.307 −0.699 −5.607 0.603 2.507 −3.532 1 26二氯酚
(26DCP)−1226.685 3.216 −6.664 −0.905 −5.759 0.5663 2.6137 −3.4064 1 246三氯酚(246TCP) −1686.271 2.054 −6.997 −1.153 −5.844 0.864 2.001 −4.112 1 表 3 氧化锰氧化条件下准一级反应速率常数相关系数
Table 3. The relationship of quasi-first order reaction rate constant under oxidation conditions of manganese oxide
P r X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X1 0.438 0.282 0.548 −0.211 −0.818 0.272 0.603 0.230 0.325 0.446 −0.095 X2 0 0.544 0.513 0.246 −0.567 0.604 0.700 0.653 0.300 0.337 0.198 X3 0.009 0 0.775 0.653 −0.368 0.751 0.711 0.807 0.294 0.095 0.023 X4 0 0 0 0.028 −0.473 0.537 0.631 0.480 0.265 0.556 −0.285 X5 0.04 0.02 0 0.411 −0.015 0.543 0.368 0.701 0.148 −0.516 0.377 X6 0 0 0.001 0 0.451 −0.425 −0.787 −0.401 −0.325 −0.308 −0.013 X7 0.011 0 0 0 0 0 0.891 0.683 0.713 0.039 −0.08 X8 0 0 0 0 0.001 0 0 0.671 0.639 0.204 −0.059 X9 0.028 0 0 0 0 0 0 0 0.152 0.047 0.323 X10 0.003 0.006 0.007 0.013 0.111 0.003 0 0 0.104 0.059 −0.242 X11 0 0.002 0.217 0 0 0.005 0.373 0.045 0.348 0.314 −0.219 X12 0.217 0.05 0.426 0.008 0.001 0.457 0.254 0.315 0.003 0.022 0.035 注:X1:EB3LYP;X2:μ;X3:EHOMO;X4:ELUMO;X5:EGAP;X6:Electrophilicity index;X7:Nucleophilicity index;X8:Chemical potential;X9:N;
X10:pH;X11:C有机物;X12:CHA.表 4 氧化锰氧化条件下二级反应速率常数相关系数
Table 4. The relationship of second order reaction rate constant under oxidation conditions of manganese oxide
P r X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X1 0.325 0.048 0.351 −0.27 −0.753 0.1 0.667 −0.232 −0.222 0.579 −0.295 X2 0.076 0.569 −0.421 0.706 −0.174 0.434 0.186 0.345 −0.124 0.201 −0.255 X3 0.418 0.004 0.095 0.530 −0.204 0.850 0.396 0.535 −0.105 0.129 −0.025 X4 0.059 0.029 0.341 −0.794 −0.238 0.211 0.371 −0.342 −0.169 0.283 −0.06 X5 0.118 0 0.007 0 0.079 0.34 −0.074 0.619 0.079 −0.162 0.036 X6 0 0.226 0.188 0.149 0.367 −0.335 −0.955 −0.249 0.006 −0.207 −0.07 X7 0.333 0.025 0 0.179 0.066 0.069 0.571 0.627 −0.112 0.153 0.056 X8 0 0.21 0.038 0.049 0.374 0 0.003 0.366 −0.034 0.212 0.099 X9 0.155 0.063 0.006 0.064 0.001 0.138 0.001 0.051 0.102 −0.222 0.288 X10 0.166 0.295 0.325 0.233 0.366 0.49 0.315 0.442 0.33 −0.383 0.202 X11 0.003 0.192 0.288 0.107 0.242 0.184 0.254 0.179 0.167 0.043 −0.325 X12 0.097 0.132 0.457 0.397 0.438 0.382 0.405 0.334 0.103 0.189 0.075 注:X1:EB3LYP;X2:μ;X3:EHOMO;X4:ELUMO;X5:EGAP;X6:Electrophilicity index;X7:Nucleophilicity index;X8:Chemical potential;X9:N;
X10:pH;X11: C有机物;X12:CHA. -
[1] 崔崇威, 黄君礼. 二氧化氯与苯酚的单电子转移反应机理 [J]. 环境化学, 2003, 22(6): 560-563. doi: 10.3321/j.issn:0254-6108.2003.06.007 CUI C W, HUANG J L. Mechanism of the single electron transfer between ClO2 and phenol [J]. Environmental Chemistry, 2003, 22(6): 560-563(in Chinese). doi: 10.3321/j.issn:0254-6108.2003.06.007
[2] ZHONG C, ZHAO H, CAO H B, et al. Polymerization of micropollutants in natural aquatic environments: A review [J]. The Science of the Total Environment, 2019, 693: 133751. doi: 10.1016/j.scitotenv.2019.133751 [3] 庞素艳, 段杰斌, 江进, 等. KMnO4氧化降解阻燃剂四氯双酚A的动力学、氧化产物及反应路径 [J]. 哈尔滨工业大学学报, 2018, 50(8): 20-26. doi: 10.11918/j.issn.0367-6234.201706036 PANG S Y, DUAN J B, JIANG J, et al. Degradation of flame retardant tetrachlorobisphenol A by potassium permanganate: Kinetics, oxidation products and reaction pathways [J]. Journal of Harbin Institute of Technology, 2018, 50(8): 20-26(in Chinese). doi: 10.11918/j.issn.0367-6234.201706036
[4] SUN K. , LIANG S T, KANG F X, et al. Transformation of 17β-estradiol in humic acid solution by epsilon-MnO2 nanorods as probed by high-resolution mass spectrometry combined with 13C labeling [J]. Environmental Pollution, 2016, 214(jula): 211-218. [5] BARUA N, SARMAH P, HUSSAIN I, et al. DFT-based QSAR models to predict the antimycobacterial activity of chalcones [J]. Chemical Biology & Drug Design, 2012, 79(4): 553-559. [6] SAXENA A K, PRATHIPATI P. Comparison of MLR, PLS and GA-MLR in QSAR analysis [J]. SAR and QSAR in Environmental Research, 2003, 14(5/6): 433-445. [7] KIM J, DU P H, LIU W, et al. Cobalt/peracetic acid: Advanced oxidation of aromatic organic compounds by acetylperoxyl radicals [J]. Environmental Science & Technology, 2020, 54(8): 5268-5278. [8] YANG B W, CHENG Z W, TANG Q L, et al. Nitrogen transformation of 41 organic compounds during SCWO: A study on TN degradation rate, N-containing species distribution and molecular characteristics[J].Water Research, 2018, 140: 167-180. [9] 李琬莹, 程治文, 陆丛蕊, 等. 紫外-双氧水复合氧化体系中有机污染物降解速率的定量构效关系研究 [J]. 计算机与应用化学, 2019, 36(2): 107-114. LI W Y, CHENG Z W, LU C R, et al. QSAR study on reaction kinetic constant of organic pollutants in UV/H2O2 process [J]. Computers and Applied Chemistry, 2019, 36(2): 107-114(in Chinese).
[10] 蒋艾. O3与H2O2氧化难降解有机物的对比及其定量构效关系研究[D]. 上海: 上海交通大学, 2018. JIANG A. Advanced oxidation of refractory organic pollutants with H2O2 and O3 and their quantitative structure-activity relationships[D]. Shanghai: Shanghai Jiaotong University, 2018(in Chinese).
[11] LU T, CHEN F. Multiwfn: A multifunctional wavefunction analyzer. [J]. Journal of Computational Chemistry, 2012, 33(5): 580-92. doi: 10.1002/jcc.22885 [12] 庞素艳, 王强, 鲁雪婷, 等. 中间价态锰强化KMnO4氧化降解三氯生 [J]. 哈尔滨工业大学学报, 2015, 47(2): 87-91. doi: 10.11918/j.issn.0367-6234.2015.02.016 PANG S Y, WANG Q, LU X T, et al. Oxidative removal of triclosan by potassium permanganate enhanced with manganese intermediates [J]. Journal of Harbin Institute of Technology, 2015, 47(2): 87-91(in Chinese). doi: 10.11918/j.issn.0367-6234.2015.02.016
[13] 庞素艳, 江进, 马军, 等. MnO2催化KMnO4氧化降解酚类化合物 [J]. 环境科学, 2010, 31(10): 2331-2335. PANG S Y, JIANG J, MA J, et al. Oxidation of phenolic compounds with permanganate catalyzed by manganese dioxide [J]. Chinese Journal of Environmental Science, 2010, 31(10): 2331-2335(in Chinese).
[14] LIN K D, YAN C, GAN J. Production of hydroxylated polybrominated diphenyl ethers (OH-PBDEs) from bromophenols by manganese dioxide [J]. Environmental Science & Technology, 2014, 48(1): 263-271. [15] 高源. KMnO4氧化降解酚类有机污染物的反应产物及低价态锰的作用[D]. 哈尔滨: 哈尔滨工业大学, 2018. GAO Y. Oxidative degradation of phenolic contaminants by permanganat: Products and effects of manganese intermediates in situ formed[D]. Harbin: Harbin Institute of Technology, 2018(in Chinese).
[16] 杜朋辉. 水中新兴有机污染物的聚合偶联机理研究[D]. 北京: 中国科学院大学(中国科学院过程工程研究所), 2018. DU P H. Mechanism for coupling and polymerization of emergin organic pollutants in waters[D]. Beijing:University of Chinese Academy of Sciences (Institute of Process Engineering Chinese Academy of Sciences), 2018(in Chinese).
[17] 徐勇鹏, 杨静琨, 王在刚. 高锰酸钾氧化去除水中三氯生动力学研究 [J]. 哈尔滨工业大学学报, 2011, 43(12): 48-52. XU Y P, YANG J K, WANG Z G. Kinetics on triclosan oxidation by potassium permanganate in drinking water [J]. Journal of Harbin Institute of Technology, 2011, 43(12): 48-52(in Chinese).
[18] HOSSAIN S , MCLAUGHLAN R G. Kinetic investigations of oxidation of chlorophenols by permanganate [J]. Journal of Environmental Chemistry and Ecotoxicology, 2013, 5(4): 81-89. [19] ZHONG C, ZHAO H, CAO H B, et al. Acidity induced fast transformation of acetaminophen by different MnO2 : Kinetics and pathways[J]. Chemical Engineering Journal, 2018, 359: 518-529. [20] 高娜, 于志强, 廖汝娥, 等. 二氧化锰氧化降解双酚A的动力学 [J]. 生态环境学报, 2009, 18(2): 431-434. doi: 10.3969/j.issn.1674-5906.2009.02.007 GAO N, YU Z Q, LIAO R E, et al. Oxidation kinetics of bisphenol A by manganese oxide [J]. Ecology and Environmental Sciences, 2009, 18(2): 431-434(in Chinese). doi: 10.3969/j.issn.1674-5906.2009.02.007
[21] 康秋红. 邻苯二酚类有机化合物的氧化降解研究[D]. 金华: 浙江师范大学, 2016. KANG Q H. Study on the Oxidative Degradation of Catechol Compounds[D]. Jinhua: Zhejiang Normal University, 2016(in Chinese).
[22] JIANG J, GAO Y, PANG S Y, et al. Oxidation of bromophenols and formation of brominated polymeric products of concern during water treatment with potassium permanganate [J]. Environmental Science & Technology, 2014, 48(18): 10850-10858. [23] 张旭, 高坡, 马军, 等. 高锰酸钾降解两种磺胺衍生物动力学方程的建立 [J]. 黑龙江大学自然科学学报, 2014, 31(3): 361-366. ZHANG X, GAO P, MA J, et al. Potassium permanganate degradation of two types of sulfonamide derivatives to establish dynamic equation [J]. Journal of Natural Science of Heilongjiang University, 2014, 31(3): 361-366(in Chinese).
[24] 岳佳鑫. 焦化废水处理过程集成优化[D]. 北京: 中国科学院大学(中国科学院过程工程研究所), 2020. YUE J X. Optimal synthesis and operation of coking wastewater treatment process[D]. Beijing: University of Chinese Academy of Sciences (Institute of Process Engineering Chinese Academy of Sciences), 2020(in Chinese).
[25] 袁亚茹. 臭氧氧化难降解有机物的定量构效关系研究[D]. 上海: 上海交通大学, 2017. YUAN Y R. Quantitative structure–activity relationships study for ozonation of refrectory organic componunds[D]. Shanghai: Shanghai Jiaotong University, 2017(in Chinese).
[26] 覃礼堂, 刘树深, 肖乾芬, 等. QSAR模型内部和外部验证方法综述 [J]. 环境化学, 2013, 32(7): 1205-1211. doi: 10.7524/j.issn.0254-6108.2013.07.012 QIN L T, LIU S S, XIAO Q F, et al. Internal and external validtions of QSAR model: Review [J]. Environmental Chemistry, 2013, 32(7): 1205-1211(in Chinese). doi: 10.7524/j.issn.0254-6108.2013.07.012