-
溴系阻燃剂(BFRs)阻燃效率高、耐热性好、适应性强,能有效阻止高分子材料燃烧,广泛用于电子元件、塑料制品等产品中,是目前世界上使用的阻燃剂中产量最高、消耗量最大、阻燃效率最好的有机阻燃剂之一[1]。目前常用的溴系阻燃剂主要有四溴双酚A(tetrabromobisphenol A,TBBPA)、多溴联苯醚(polybrominated diphenyl ethers,PBDEs)和六溴环十二烷(hexabromocyclododecane,HBCD)等,其中TBBPA约占世界溴系阻燃剂总使用量的60%[2]。中国是TBBPA类溴代阻燃剂的主产国,2020年TBBPA类溴代阻燃剂的年产量超过了18万吨。TBBPA及其衍生物既可用作反应型阻燃剂,亦可用作添加型阻燃剂,溴科学与环境论坛(BSEF)报告称,58%的TBBPA作为反应型阻燃剂,以共价键与其他分子结合成为聚合物,应用于印刷电路板的环氧树脂、聚碳酸酯和酚醛树脂中;约18%的TBBPA作为添加型阻燃剂用于丙烯腈-丁二烯-苯乙烯(ABS)树脂或高抗冲聚苯乙烯(HIPS)的生产[3]。添加型阻燃剂与产品的结合力不强,它们在使用处置过程中容易滤出,进入环境[4],进而吸附在室内灰尘、土壤、沉积物等介质中,具有潜在的环境危害性[5]。据报道,武汉某垃圾填埋场附近TBBPA的平均浓度高达24030 ng·g−1dw(干重)[6],TBBPA生产地之一山东寿光的土壤中TBBPA的浓度在1.64—7758 ng·g−1dw之间[7],安徽巢湖水样中TBBPA浓度为4.8 μg·L−1,远高于世界环境水中TBBPA的浓度[8],同时,巢湖沉积物中也检测到518 ng·g−1dw的TBBPA[9],虽然TBBPA工业衍生物在TBBPA类阻燃剂中占比仅为约18%[3],但它们在多种环境介质中的污染水平却明显高于TBBPA,例如,室内灰尘中检测到四溴双酚A双(2,3-二溴丙基)醚(TBBPA-BDBPE)含量为9.96 μg·g−1dw,而TBBPA的检出量为3.44 μg·g−1dw[10- 11];浏阳河河流沉积物中四溴双酚A双烯丙基醚(TBBPA-BAE)的浓度为13 μg·g−1dw,约为TBBPA浓度(0.132 μg·g−1dw)的100倍[12]。TBBPA及其衍生物的生物累积性和潜在毒性,特别是内分泌干扰效应,引起了人们的广泛关注[5]。此外,进入环境中的TBBPA类BFRs也可能在环境条件下,发生转化,通过结构转变生成新型环境污染物,产生未知的环境风险[13]。
光解是环境中有机污染物的主要转化方式,也是常用的环境有机污染物的消除途径[14]。在直接光解中,有机物吸收辐照光中的能量变为激发态,发生光转化;在间接光解过程中,有机物可能与另一种受激物接触,获得转移能量,或者与光照状态下生成的活性氧物种(如羟基自由基、单线态氧等)反应而发生转化[14]。TBBPA极易发生光降解,在太阳光(或模拟日光)、紫外光等条件下均会发生转化,且TBBPA的光转化过程受多种因素的影响,如体系pH值、TBBPA初始浓度、溶解氧、催化剂、有机质等。TBBPA的光转化产物结构多样,主要通过脱溴、β-断裂、羟基化等过程产生。TBBPA衍生物的环境浓度显著高于TBBPA,但因分析方法和商品化标准品的缺失,其相关的环境降解过程研究很少[15]。因此研究TBBPA及其衍生物在环境中的光转化过程、机理以及产物,对评估其潜在的环境危害和健康风险至关重要。
四溴双酚A的光转化过程及机理
Photodegradation process and mechanism of Tetrabromobisphenol A
-
摘要: 四溴双酚A(Tetrabromobisphenol A,简称TBBPA)作为目前使用最广泛的溴系阻燃剂,通过生产、使用、处置等环节进入到环境中,并通过环境降解过程转化为新型的有机污染物,产生未知环境风险。光转化是环境中有机污染物降解的主要方式之一,转化效率高、速度快。本文综述了TBBPA及其衍生物在光照条件下的模拟环境光转化和光催化过程及机理。TBBPA及其衍生物在光辐射条件下易发生转化,转化效率和速率受到pH、初始浓度、溶解氧等环境条件的影响,光催化剂会显著提升TBBPA的转化速率。TBBPA的光转化机理包括脱溴、β-断裂、羟基化等,产物主要包括三溴双酚A、二溴双酚A、4-异丙烯基-2,6-二溴苯酚、2,6-二溴苯酚、羟基化三溴双酚A等。相较于TBBPA,针对TBBPA衍生物的光降解过程和机理尚不明晰,未来需要进一步对TBBPA及衍生物光转化过程进行研究,为其迁移转化过程的机理和相关未知污染物的监控提供理论支持,为综合评估TBBPA类溴代阻燃剂的环境风险提供科学依据。Abstract: As the most widely used brominated flame retardant (BFR) at present, tetrabromobisphenol A (TBBPA) enters the environment during the process of production, usage and disposal. TBBPA and its derivatives could transform into new organic substances through environmental degradation process, resulting in unknown environmental risks. Photodegradation is one of the main pathways to eliminate organic substances in the environment with high efficiency and fast speed. In this paper, the simulative environment photodegradation and photocatalysis process and mechanism of TBBPA and its derivatives under light conditions were reviewed. TBBPA and its derivatives are easily transformed under the condition of light radiation. The photodegradation efficiency and rate are affected by pH, initial concentration, dissolved oxygen and other environmental conditions. The photocatalysts can significantly improve the conversion rate of TBBPA. The photodegradation mechanism includes debromination, β-scission, hydroxylation, etc, and the products mainly include tribromobisphenol A, dibromobisphenol A, 4-isopropyl-2,6-dibromophenol, 2,6-dibromophenol, hydroxylated tribromobisphenol A and so on. Compared with TBBPA, the photodegradation process and mechanism of TBBPA derivatives are still unclear, and further studies on the photodegradation process of TBBPA and its derivatives are needed in the future. It will provide theoretical support for the mechanism of their migration and transformation process and the monitoring of related unknown pollutants, and provide a scientific basis for the comprehensive assessment of environmental risks of brominated flame retardants.
-
表 1 TBBPA的光催化降解条件
Table 1. Photocatalytic degradation conditions of TBBPA
光催化剂
Photocatalyst反应条件
Reaction condition降解效率
Degradation efficiency反应机理
Reaction mechanism参考文献
ReferencesCu-TiO2@HQ Xe灯( < 420 nm),
10 mg·L−1 TBBPA10 min,
99.4%光照Cu-TiO2@HQ 生成的光生eCB−和hVB+快速消耗,生成活性物质攻击TBBPA使其发生脱溴、β-断裂和羟基化等过程 [29] 2%-Ag/TiO2 紫外-可见光(>360 nm),
4 mg·L−1 TBBPA,pH=8.010 min,
100%光生eCB−与O2反应生成的·O2−与hVB+是TBBPA降解的主要原因 [30] g-C3N4和聚苯胺共修饰的TiO2 氙灯模拟可见光,
10 mg·L−1 TBBPA,pH=3.0120 min,
>94%光生eCB−与hVB+的产生、迁移和消除的过程中生成的氧化性物质如hVB+、·OH和·O2−是TBBPA降解
主要原因[26] 电气石(20%)-二氧化钛 汞灯(λmax=365 nm),
10 mg·L−1 TBBPA,
循环水控制反应温度60 min,
100%光生eCB−被电气石阳极吸附,hVB+与OH−和H2O反应生成·OH [31] MG-TiO2-3%(3%的磁性石墨烯TiO2复合材料) 230 W汞灯,
10 mg·L−1 TBBPA,r.t.60 min,
99.5%光生eCB−与O2反应生成的·O2−、hVB+与OH−和H2O反应生成的·OH外加hVB+使TBBPA发生脱溴、取代和脱羟基过程 [32] AgNPs 350 W氙灯模拟太阳光,1 mg·L−1
HA 溶液,2 mg·L−1 TBBPA,
pH=7.51 h,
74.9%AgNPs光激发后可产生eCB−与hVB+,eCB−与溶解氧反应生成1O2、O2•−,hVB+与OH−反应生成·OH [34] CoO@石墨烯 氙灯模拟可见光,
4 mg·L−1 TBBPA,
pH=8.0± 0.1120 min,
73.4%可见光照射下,eCB−和hVB+在CoO上分离,eCB−和溶解氧生成·O2−,hVB+与OH−和H2O反应生成·OH [35] BiOBr Xe灯模拟太阳光照射,1 mg·L−1 TBBPA,r.t. 15 min,
100%光照BiOBr变为激发态后,eCB−将O2还原生成·OH,·OH使TBBPA发生脱溴、β-断裂和羟基化 [19] Pt–BiOBr Xe灯模拟太阳光照射/可见光
10 mg·L−1 TBBPA,r.t.Xe灯5min,100%;
可见光15min,98.4%Pt使得光照后BiOBr形成的eCB−和hVB+快速分离,eCB−与O2接触生成O2•−,O2•−与hVB+使TBBPA降解 [38] BiOBr/BiOI/Fe3O4 氙灯模拟可见光,
40 mg·L−1 TBBPA,r.t.60 min,
90%BiOBr和BiOI之间的价带能级差使光生eCB−快速转移,与O2反应生成·O2− [39] Ag/Bi5Nb3O15 氙灯模拟可见光
(320 nm <λ< 680 nm),
40 mg·L−1 TBBPA
(303±2)K30 min,
95.7%光照Ag/Bi5Nb3O15后,产生eCB−和hVB+ 、eCB−与O2生成O2•−,进一步反应生成OH•,共同作用使TBBPA降解 [40] 碱和过硫酸盐溶液 紫外光(<350 nm), 过硫酸盐溶液,
0.1mmol·L−1 TBBPA,
(28±2) oC,pH=12.00± 0.05240 min,
>80%过硫酸盐被碱和紫外活化生成SO4•−,同时SO4•−与OH−反应生成·OH,SO4•−和·OH共同作用 [20] 单原子Mn负载氮化碳(SA-Mn/g-C3N4) 可见光(>400 nm),过硫酸盐溶液,
50 mg·L−1 TBBPA,pH=1030 min,
100%SO4•−、·OH、1O2和光生电子空穴是主要的活性氧化物,可与TBBPA反应
使其降解[44] Fe2.02Ti 0.98O4 紫外光,芬顿反应,
20 mg·L−1 TBBPA,
25 oC,pH=6.5240 min,
> 97%Fe3+、Fe2+与H2O2反应生成·OH ,·OH攻击TBBPA的C-Br键和β键 [46] Fe2.04Cr0.96O4 紫外光,芬顿反应,
20 mg·L−1 TBBPA,
25 oC,pH=6.5120 min,
约90%Fe3+、Fe2+与H2O2反应生成·OH ,·OH攻击TBBPA的C-Br键和β键 [47] AgCl/AgBr复合光
催化剂自发光二极管,
5 mg·L−1 TBBPA,
pH=1030 min,
98.49%可见光激发复合银基材料,产生光生电子和光生空穴,与空气中的水、OH−、O2反应生成·OH、·O2− [48] -
[1] 田凤麟, 杨金水. 我国溴系阻燃剂的现状及发展方向 [J]. 盐业与化工, 2007, 36(4): 46-48. TIAN F L, YANG J S. The present situation and developing direction of the bromide flame retardants in China [J]. Journal of Salt and Chemical Industry, 2007, 36(4): 46-48(in Chinese).
[2] LAW R J, ALLCHIN C R, de BOER J, et al. Levels and trends of brominated flame retardants in the European environment [J]. Chemosphere, 2006, 64(2): 187-208. [3] COVACI A, VOORSPOELS S, ABDALLAH M A E, et al. Analytical and environmental aspects of the flame retardant tetrabromobisphenol-A and its derivatives [J]. Journal of Chromatography A, 2009, 1216(3): 346-363. [4] LIU K, LI J, YAN S J, et al. A review of status of tetrabromobisphenol A (TBBPA) in China [J]. Chemosphere, 2016, 148: 8-20. [5] LIU A F, ZHAO Z S, QU G B, et al. Transformation/degradation of tetrabromobisphenol A and its derivatives: A review of the metabolism and metabolites [J]. Environmental Pollution, 2018, 243: 1141-1153. [6] YU C H, HU B. Novel combined stir bar sorptive extraction coupled with ultrasonic assisted extraction for the determination of brominated flame retardants in environmental samples using high performance liquid chromatography [J]. Journal of Chromatography A, 2007, 1160(1-2): 71-80. [7] ZHU Z C, CHEN S J, ZHENG J, et al. Occurrence of brominated flame retardants (BFRs), organochlorine pesticides (OCPs), and polychlorinated biphenyls (PCBs) in agricultural soils in a BFR-manufacturing region of North China [J]. Science of the Total Environment, 2014, 481: 47-54. [8] YANG S W, WANG S R, LIU H L, et al. Tetrabromobisphenol A: Tissue distribution in fish, and seasonal variation in water and sediment of Lake Chaohu, China [J]. Environmental Science and Pollution Research, 2012, 19(9): 4090-4096. [9] FENG A H, CHEN S J, CHEN M Y, et al. Hexabromocyclododecane (HBCD) and tetrabromobisphenol A (TBBPA) in riverine and estuarine sediments of the Pearl River Delta in Southern China, with emphasis on spatial variability in diastereoisomer- and enantiomer-specific distribution of HBCD [J]. Marine Pollution Bulletin, 2012, 64(5): 919-925. [10] WU Y Y, LI Y Y, KANG D, et al. Tetrabromobisphenol A and heavy metal exposure via dust ingestion in an e-waste recycling region in Southeast China [J]. Science of the Total Environment, 2016, 541: 356-364. [11] ALI N, HARRAD S, GOOSEY E, et al. "Novel" brominated flame retardants in Belgian and UK indoor dust: Implications for human exposure [J]. Chemosphere, 2011, 83(10): 1360-1365. [12] QU G B, LIU A F, WANG T, et al. Identification of tetrabromobisphenol A allyl ether and tetrabromobisphenol A 2, 3-dibromopropyl ether in the ambient environment near a manufacturing site and in mollusks at a coastal region [J]. Environmental Science & Technology, 2013, 47(9): 4760-4767. [13] LIU A F, SHI J B, QU G B, et al. Identification of emerging brominated chemicals as the transformation products of tetrabromobisphenol A (TBBPA) derivatives in soil [J]. Environmental Science & Technology, 2017, 51(10): 5434-5444. [14] ZHOU S S, PAN X X, TANG Q Z, et al. Photochemical degradation of polyhalogenated carbazoles in hexane by sunlight [J]. Science of the Total Environment, 2019, 671: 622-631. [15] BAO Y P, NIU J F. Photochemical transformation of tetrabromobisphenol A under simulated sunlight irradiation: Kinetics, mechanism and influencing factors [J]. Chemosphere, 2015, 134: 550-556. [16] ERIKSSON J, RAHM S, GREEN N, et al. Photochemical transformations of tetrabromobisphenol A and related phenols in water [J]. Chemosphere, 2004, 54(1): 117-126. [17] HAN S K, BILSKI P, KARRIKER B, et al. Oxidation of flame retardant tetrabromobisphenol A by singlet oxygen [J]. Environmental Science & Technology, 2008, 42(1): 166-172. [18] 王晓雯. 模拟太阳光作用下水中四溴双酚A的光转化研究[D]. 烟台: 中国科学院烟台海岸带研究所, 2015. WANG X W. Study on the phototransformation of TBBPA in aqueous solution under solar light irradiation[D]. Yantai: Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 2015(in Chinese).
[19] XU J, MENG W, ZHANG Y, et al. Photocatalytic degradation of tetrabromobisphenol A by mesoporous BiOBr: Efficacy, products and pathway [J]. Applied Catalysis B:Environmental, 2011, 107(3-4): 355-362. [20] GUO Y G, ZHOU J, LOU X Y, et al. Enhanced degradation of Tetrabromobisphenol A in water by a UV/base/persulfate system: Kinetics and intermediates [J]. Chemical Engineering Journal, 2014, 254: 538-544. [21] WANG X W, HU X F, ZHANG H, et al. Photolysis kinetics, mechanisms, and pathways of tetrabromobisphenol A in water under simulated solar light irradiation [J]. Environmental Science & Technology, 2015, 49(11): 6683-6690. [22] HAN S K, de YAMASAKI T, YAMADA K I. Photodecomposition of tetrabromobisphenol A in aqueous humic acid suspension by irradiation with light of various wavelengths [J]. Chemosphere, 2016, 147: 124-130. [23] GUO Y G, LOU X Y, XIAO D X, et al. Sequential reduction-oxidation for photocatalytic degradation of tetrabromobisphenol A: Kinetics and intermediates [J]. Journal of Hazardous Materials, 2012, 241-242: 301-306. [24] XIONG J K, LI G Y, PENG P A, et al. Mechanism investigation and stable isotope change during photochemical degradation of tetrabromobisphenol A (TBBPA) in water under LED white light irradiation [J]. Chemosphere, 2020, 258: 127378. [25] 晋艺聪, 刘丽华, 罗贤丽, 等. 四溴双酚-A的降解性和毒性研究进展 [J]. 中央民族大学学报(自然科学版), 2010, 19(2): 5-10. JIN Y C, LIU L H, LUO X L, et al. Progress in study of degradability and ecotoxicology of TetrabromobisphenolA [J]. Journal of Minzu University of China (Natural Sciences Edition), 2010, 19(2): 5-10(in Chinese).
[26] ZHOU Q X, ZHAO D C, SUN Y, et al. g-C3N4- and polyaniline-co-modified TiO2 nanotube arrays for significantly enhanced photocatalytic degradation of tetrabromobisphenol A under visible light [J]. Chemosphere, 2020, 252: 126468. [27] BUAMA S, JUNSUKHON A, NGAOTRAKANWIWAT P, et al. Validation of energy storage of TiO2 NiO/TiO2 film by electrochemical process and photocatalytic activity [J]. Chemical Engineering Journal, 2017, 309: 866-872. [28] 张晓燕. 有机小分子或无机酸修饰Cu-TiO2以提升其光催化性能的研究[D]. 长春: 东北师范大学, 2020. ZHANG X Y. Studies on Cu-TiO2 modified by organic small molecule or inorganic acid to improve its photocatalytic performance[D]. Changchun: Northeast Normal University, 2020(in Chinese).
[29] ZHANG X Y, CHEN Y N, SHANG Q K, et al. Copper doping and organic sensitization enhance photocatalytic activity of titanium dioxide: Efficient degradation of phenol and tetrabromobisphenol A [J]. Science of the Total Environment, 2020, 716: 137144. [30] ZHANG Y H, ZHOU S X, SU X, et al. Synthesis and characterization of Ag-loaded p-type TiO2 for adsorption and photocatalytic degradation of tetrabromobisphenol A [J]. Water Environment Research, 2020, 92(5): 713-721. [31] LI N, ZHANG J Q, WANG C P, et al. Enhanced photocatalytic degradation of tetrabromobisphenol A by tourmaline-TiO2 composite catalyst [J]. Journal of Materials Science, 2017, 52(12): 6937-6949. [32] CAO M H, WANG P F, AO Y H, et al. Photocatalytic degradation of tetrabromobisphenol A by a magnetically separable graphene-TiO2 composite photocatalyst: Mechanism and intermediates analysis [J]. Chemical Engineering Journal, 2015, 264: 113-124. [33] 李文杰. 银纳米颗粒与脂质体及腐殖酸的相互作用及其原位合成与光催化应用[D]. 合肥: 中国科学技术大学, 2020. LI W J. Interaction of silver nanoparticles with liposome or humic acid and their in situ synthesis and photocatalytic applications[D]. Hefei: University of Science and Technology of China, 2020(in Chinese).
[34] 李文杰, 虞盛松, 陈洁洁. 银纳米颗粒的绿色合成及其对四溴双酚A光催化降解的性能研究[J/OL]. 中国科学技术大学学报: 1-18. http://kns.cnki.net/kcms/detail/34.1054.N.20210204.0848.002.html. LI W J, YU S S, CHEN J J. Green synthesis of silver nanoparticles and their photocatalytic degradation performance of tetrabromobisphenol A[J/OL]. Journal of University of Science and Technology of China: 1-18. http://kns.cnki.net/kcms/detail/34.1054.N.20210204.0848.002.html. (in Chinese).
[35] TANG Y L, DONG L F, MAO S, et al. Enhanced photocatalytic removal of tetrabromobisphenol A by magnetic CoO@graphene nanocomposites under visible-light irradiation [J]. ACS Applied Energy Materials, 2018, 1(6): 2698-2708. [36] ZHANG J, YUAN X Z, JIANG L B, et al. Highly efficient photocatalysis toward tetracycline of nitrogen doped carbon quantum dots sensitized bismuth tungstate based on interfacial charge transfer [J]. Journal of Colloid and Interface Science, 2018, 511: 296-306. [37] ZHANG X, AI Z H, JIA F L, et al. Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX (X = Cl, Br, I) nanoplate microspheres [J]. The Journal of Physical Chemistry C, 2008, 112(3): 747-753. [38] GUO W, QIN Q, GENG L, et al. Morphology-controlled preparation and plasmon-enhanced photocatalytic activity of Pt-BiOBr heterostructures [J]. Journal of Hazardous Materials, 2016, 308: 374-385. [39] GAO S W, GUO C S, HOU S, et al. Photocatalytic removal of tetrabromobisphenol A by magnetically separable flower-like BiOBr/BiOI/Fe3O4 hybrid nanocomposites under visible-light irradiation [J]. Journal of Hazardous Materials, 2017, 331: 1-12. [40] GUO Y N, CHEN L, YANG X, et al. Visible light-driven degradation of tetrabromobisphenol A over heterostructured Ag/Bi5Nb3O15 materials [J]. RSC Advances, 2012, 2(11): 4656. [41] GHANBARI F, MORADI M. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: Review [J]. Chemical Engineering Journal, 2017, 310: 41-62. [42] 饶中庭. 废弃物衍生的nZVI/CuO@BC活化过二硫酸盐降解TBBPA研究[D]. 广州: 华南理工大学, 2020. RAO Z T. Research on degradation of TBBPA by waste-derived nZVI/CuO@BC activated peroxodisulfate system[D]. Guangzhou: South China University of Technology, 2020(in Chinese).
[43] FURMAN O S, TEEL A L, AHMAD M, et al. Effect of basicity on persulfate reactivity [J]. Journal of Environmental Engineering, 2011, 137(4): 241-247. [44] 柯倩. 过渡金属单原子负载石墨相氮化碳的制备及其降解污染物的应用研究[D]. 金华: 浙江师范大学, 2020. KE Q. Preparation of graphitic carbon nitride supported by transition mental single atom and application of pollutants degradation[D]. Jinhua: Zhejiang Normal University, 2020(in Chinese).
[45] 胡山, 王蒋镔, 郭耀广. 溴代阻燃剂四溴双酚A在环境中的降解转化研究进展[C]//《环境工程》2019年全国学术年会论文集. 北京, 2019: 785-790. [46] ZHONG Y H, LIANG X L, ZHONG Y, et al. Heterogeneous UV/Fenton degradation of TBBPA catalyzed by titanomagnetite: Catalyst characterization, performance and degradation products [J]. Water Research, 2012, 46(15): 4633-4644. [47] ZHONG Y H, LIANG X L, HE Z S, et al. The UV/Fenton degradation of tetrabromobisphenol A catalyzed by nanocrystalline chromium substituted magnetite [J]. Journal of Nanoscience and Nanotechnology, 2014, 14(9): 7307-7314. [48] 高大方, 张刚. 复合光催化剂AgCl/AgBr降解水中四溴双酚A的研究 [J]. 华南师范大学学报(自然科学版), 2019, 51(2): 50-55. GAO D F, ZHANG G. Photocatalytic degradation of tetrabromobisphenol A with composite AgCl/AgBr [J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(2): 50-55(in Chinese).
[49] RAHM S, GREEN N, NORRGRAN J, et al. Hydrolysis of environmental contaminants as an experimental tool for indication of their persistency [J]. Environmental Science & Technology, 2005, 39(9): 3128-3133.