-
农药在农业领域的利用已有相当长的一段历史,各种杀虫剂、杀菌剂、除草剂为减少农作物损失做出了重大的贡献[1]。我国是农业大国,农药的使用量普遍高于世界平均水平,但农药使用效率低,仅有30%左右的农药能够发挥作用,未被有效利用的农药则会进入环境中[2-4]。随着农药长期大量的使用,使长期遭受农药污染的土壤面临酸化、土壤养分流失、土壤孔隙度变小等问题,从而导致土壤质量下降[5]。土壤中生长的农作物富集、吸收农药残留进而对人体产生危害[6-7]。已有研究表明,植物根、茎、叶中的农药含量会随着土壤中农药残留浓度的增加而增加,并最终通过生态系统的物质循环而对人体造成伤害[8-9]。研究农药对土壤环境的影响机制,从而提出合理有效的土壤农药污染治理办法,成为解决当前我国土壤农药污染问题的迫切需求。
目前已有不少学者开展了土壤中农药残留对土壤环境影响方面的研究。张春秀发现土壤中的农药残留会直接影响土壤的Eh、CEC以及土壤孔隙度[10],雷雨豪等发现土壤中苯醚甲环唑、丙环唑残留会影响蚯蚓活性[11]。闫颖、李霞、杨瑞等发现农药会对土壤中的酶活性以及微生物群落结构产生影响,土壤中的酶和微生物是土壤生态系统中的重要组成部分,土壤中的农药残留会通过影响酶和微生物的活性等来间接影响土壤质量[12-14]。
本文以我国华北某农业生产基地为研究对象,通过对研究区内土壤中9种农药残留特征的分析,研究农药与土壤环境指标的相关性,并进一步研究与土壤环境指标相关性强的农药在不同残留浓度下土壤环境指标的变化。从而为今后合理喷洒农药以及农药污染土壤的治理提供科学依据。
农田9种农药残留特征及对土壤环境指标影响
Characteristics of soil pesticide residues and their influence on soil environmental indicators
-
摘要:
针对当前农药广泛使用导致土壤环境严重遭受破坏的问题,本文以华北某区域土壤农药残留为研究对象,综合运用统计学、环境生态学及GIS相结合的方法,探讨土壤中农药残留对土壤环境指标的影响机制。结果表明,果园内吡唑醚菌酯、苯醚甲环唑、哒满灵、嘧菌酯等农药残留含量最大值普遍高于菜地;其中苯醚甲环唑与嘧菌酯与土壤环境指标中的pH、有效磷、有效锰、有效锌、Hg以及Cu有较强的相关性,表明这两种农药对土壤环境的影响较大;苯醚甲环唑在研究区内检出率较高(果园80.95%、菜地55.00%),其浓度梯度分析结果说明土壤中苯醚甲环唑残留量对有效磷有非常显著的影响,从ND—0.001 mg·kg−1到0.018—0.206 mg·kg−1残留浓度下,土壤中有效磷含量增加了3倍多。研究结果对于今后农业上农药种类及浓度选择上有一定的指导作用。
Abstract:To the serious damage of soil environment caused by the widespread use of pesticides, this paper takes the soil pesticide residues in a certain area of North China as the research area, and comprehensively uses the methods of statistics, environmental ecology and GIS to explore the influence mechanism of pesticide residues in soil environmental indicators. The results showed that the maximum pesticide residues of pyraclostrobin, difenoconazole, pyridaben and azoxystrobin in orchards were generally higher than those in vegetable fields; difenoconazole and azoxystrobin had a strong correlation with some soil environmental indicators, the pH, available phosphorus, available manganese, available zinc, Hg and Cu. which indicated that the two pesticides had great impact on soil environment The detection rate was high (80.95% in orchard and 55.00% in vegetable field). The results of concentration gradient analysis showed that difenoconazole residue in soil had a significant effect on available phosphorus, the available phosphorus content in the soil increased more than three times formed ND—0.001 mg·kg−1 to 0.018—0.206 mg·kg−1 residual concentration. The research results play a certain guiding role in the selection of pesticide types and concentrations in agriculture in the future.
-
Key words:
- pesticide /
- soil environmental factors /
- pertinence /
- difenoconazole /
- concentration gradient
-
表 1 研究区农药残留情况
Table 1. Pesticide residues in study area.
农药
Pesticide最大值 /(mg·kg−1)
Maximum最小值 /(mg·kg−1)
Minimum均值 /(mg·kg−1)
Mean检出率 /%
Check out the rate果园 吡唑醚菌酯 0.228 ND 0.007 96.82 苯醚甲环唑 0.206 ND 0.013 80.95 丙草胺 0.018 ND 0.002 63.49 哒螨灵 0.147 ND 0.004 53.97 异丙草胺 0.023 ND 0.001 52.38 五氟磺草胺 0.032 ND 0.010 57.14 嘧菌酯 0.333 ND 0.007 31.75 己唑醇 0.037 ND 0.002 36.51 噻虫胺 0.018 ND 0.001 28.57 菜地 吡唑醚菌酯 0.050 0.010 0.007 100.00 苯醚甲环唑 0.188 ND 0.025 55.00 丙草胺 0.013 ND 0.003 55.00 哒螨灵 0.050 ND 0.004 50.00 异丙草胺 0.011 ND 0.002 40.00 五氟磺草胺 0.032 ND 0.015 50.00 嘧菌酯 0.114 ND 0.008 30.00 己唑醇 0.025 ND 0.004 30.00 噻虫胺 0.008 ND 0.001 25.00 注:ND为农药残留量未达特定方法检出限.
Notes: ND means that the pesticide residue does not reach the specific method detection limit表 2 苯醚甲环唑浓度分级统计
Table 2. Difenoconazole content classification statistics
苯醚甲环唑含量范围/(mg·kg−1)
Difenoconazole content range比例/%
Proportion样品数/个
Number of samples分级
ClassificationND—0.001 39.80 33 残留量较低 0.001—0.003 13.20 11 残留量中等 0.003—0.018 22.90 19 残留量高 0.018—0.206 24.10 20 残留量过高 表 3 不同农药残留浓度(mg·kg−1)
Table 3. Information on different pesticide concentration
点位
Point number苯醚甲环唑
Difenoconazole吡唑醚菌酯
Pyraclostrobin丙草胺
Pretilachlor哒螨灵
Pyridaben异丙草胺
Propolachlor五氟磺草胺
Penoxsulam嘧菌酯
Azoxystrobin己唑醇
Hexaconazole噻虫胺
ClothianidinpH 1 ND 0.001 ND ND ND ND ND ND ND 8.01 2 0.002 0.005 0.001 0.001 ND 0.001 ND 0.001 ND 8.01 3 0.014 ND 0.002 ND 0.001 ND ND ND ND 6.80 4 0.041 0.001 0.001 0.005 ND 0.002 0.008 ND ND 6.15 -
[1] 蔡键, 邵爽, 左两军. 农药知识培训: 意愿、方式与实施主体选择 [J]. 中国农业大学学报, 2016, 21(2): 168-178. doi: 10.11841/j.issn.1007-4333.2016.02.20 CAI J, SHAO S, ZUO L J. Pesticide knowledge training: Willingness, ways and choice of implementation main body [J]. Journal of China Agricultural University, 2016, 21(2): 168-178(in Chinese). doi: 10.11841/j.issn.1007-4333.2016.02.20
[2] 任重, 薛兴利. 粮农无公害农药使用意愿及其影响因素分析: 基于609户种粮户的实证研究 [J]. 干旱区资源与环境, 2016, 30(7): 31-36. REN Z, XUE X L. Analysis on the will of the non pollution pesticide use and its influencing factors—An empirical study based on 609 farmers [J]. Journal of Arid Land Resources and Environment, 2016, 30(7): 31-36(in Chinese).
[3] 杨峻, 林荣华, 袁善奎, 等. 我国生物源农药产业现状调研及分析 [J]. 中国生物防治学报, 2014, 30(4): 441-445. YANG J, LIN R H, YUAN S K, et al. Survey and analysis of current situation of biologically derived pesticides industry in China [J]. Chinese Journal of Biological Control, 2014, 30(4): 441-445(in Chinese).
[4] 刘兆征. 当前农村环境问题分析 [J]. 农业经济问题, 2009, 30(3): 70-74. LIU Z Z. Study on current rural environmental problems [J]. Issues in Agricultural Economy, 2009, 30(3): 70-74(in Chinese).
[5] 赵玲, 滕应, 骆永明. 中国农田土壤农药污染现状和防控对策 [J]. 土壤, 2017, 49(3): 417-427. ZHAO L, TENG Y, LUO Y M. Present pollution status and control strategy of pesticides in agricultural soils in China: A review [J]. Soils, 2017, 49(3): 417-427(in Chinese).
[6] 丁浩东, 万红友, 秦攀, 等. 环境中有机磷农药污染状况、来源及风险评价 [J]. 环境化学, 2019, 38(3): 463-479. doi: 10.7524/j.issn.0254-6108.2018051405 DING H D, WAN H Y, QIN P, et al. Occurrence, sources and risk assessment of organophosphorus pesticides in the environment, China [J]. Environmental Chemistry, 2019, 38(3): 463-479(in Chinese). doi: 10.7524/j.issn.0254-6108.2018051405
[7] 宋珍霞, 高明, 王里奥, 等. 三峡库区农业土壤重金属含量特征及污染评价: 以Cu Pb和Zn为例 [J]. 农业环境科学学报, 2008, 27(6): 2189-2194. doi: 10.3321/j.issn:1672-2043.2008.06.011 SONG Z X, GAO M, WANG L, et al. Heavy metal concentrations in agriculture soils of the three-gorge reservoir area and their pollution E-valuation—taking Cu, pb, and Zn as examples [J]. Journal of Agro-Environment Science, 2008, 27(6): 2189-2194(in Chinese). doi: 10.3321/j.issn:1672-2043.2008.06.011
[8] 袁欣. 有机氯农药在苏州土壤—植物间的环境迁移模拟研究[D]. 北京: 中国地质科学院, 2006: 38. YUAN X. Simulation study on the environmental migration of organochlorine pesticides between soil and plant in Suzhou[D]. Beijing: Chinese Academy of Geological Sciences, 2006: 38(in Chinese).
[9] 张志勇, 余向阳, 王冬兰, 等. 小青菜对土壤中毒死蜱吸收移动特征研究 [J]. 土壤学报, 2011, 48(5): 1029-1034. doi: 10.11766/trxb201004010115 ZHANG Z Y, YU X Y, WANG D L, et al. Uptake and translocation of chlorpyrifos residues in soil by Brassica chinensi [J]. Acta Pedologica Sinica, 2011, 48(5): 1029-1034(in Chinese). doi: 10.11766/trxb201004010115
[10] 张春秀. 农药污染对农作物土壤的影响及可持续治理对策 [J]. 现代农业, 2017(7): 39-40. doi: 10.3969/j.issn.1008-0708.2017.07.030 ZHANG C X. Effect of pesticide pollution on crop soil and sustainable management countermeasures [J]. Modern Agriculture, 2017(7): 39-40(in Chinese). doi: 10.3969/j.issn.1008-0708.2017.07.030
[11] 雷雨豪, 张翠芳, 王壮, 等. 环境激素农药三唑类杀菌剂在土壤中的残留与风险评价 [J]. 农药, 2019, 58(9): 660-663. LEI Y H, ZHANG C F, WANG Z, et al. Residues and risk assessment of environmental hormone pesticide triazole fungicides in soil [J]. Agrochemicals, 2019, 58(9): 660-663(in Chinese).
[12] 闫颖, 袁星, 樊宏娜. 五种农药对土壤转化酶活性的影响 [J]. 中国环境科学, 2004, 24(5): 588-591. doi: 10.3321/j.issn:1000-6923.2004.05.019 YAN Y, YUAN X, FAN H N. Influence of five pesticides on invertase activity in soil [J]. China Environmental Science, 2004, 24(5): 588-591(in Chinese). doi: 10.3321/j.issn:1000-6923.2004.05.019
[13] 李霞, 张小平, 喻晓, 等. 代森锰锌类农药对生姜种植地土壤酶活性及微生物群落结构的影响 [J]. 生态环境学报, 2016, 25(9): 1569-1574. LI X, ZHANG X P, YU X, et al. Effect of mancozeb on soil enzyme activities and microbial community in ginger fields [J]. Ecology and Environmental Sciences, 2016, 25(9): 1569-1574(in Chinese).
[14] 杨瑞, 刘帅, 王紫泉, 等. 秦岭山脉典型林分土壤酶活性与土壤养分关系的探讨 [J]. 土壤学报, 2016, 53(4): 1037-1046. YANG R, LIU S, WANG Z Q, et al. Relationships between the soil enzyme activity and soil nutrients in forest soils typical of the Qinling mountain [J]. Acta Pedologica Sinica, 2016, 53(4): 1037-1046(in Chinese).
[15] 李春艳, 李福琴, 康頔, 等. 土壤环境因子对烯酰吗啉残留降解的影响 [J]. 贵州农业科学, 2016, 44(3): 83-85. doi: 10.3969/j.issn.1001-3601.2016.03.020 LI C Y, LI F Q, KANG D, et al. Effects of soil environmental factors influencing the degradation of dimethomorph [J]. Guizhou Agricultural Sciences, 2016, 44(3): 83-85(in Chinese). doi: 10.3969/j.issn.1001-3601.2016.03.020
[16] 袁会珠, 王国宾. 雾滴大小和覆盖密度与农药防治效果的关系 [J]. 植物保护, 2015, 41(6): 9-16. doi: 10.3969/j.issn.0529-1542.2015.06.002 YUAN H Z, WANG G B. Effects of droplet size and deposition density on field efficacy of pesticides [J]. Plant Protection, 2015, 41(6): 9-16(in Chinese). doi: 10.3969/j.issn.0529-1542.2015.06.002
[17] ZHANG W, HOU Y R, LIU X, et al. Wind tunnel experimental study on droplet drift reduction by a conical electrostatic nozzle for pesticide spraying [J]. International Journal of Agricultural and Biological Engineering, 2017, 10(3): 87-94. [18] 闫晓阳, 徐金丽, 徐光军, 等. 高效液相色谱法检测吡唑醚菌酯在烟叶和土壤中的残留及消解动态 [J]. 农药学学报, 2013, 15(5): 528-533. doi: 10.3969/j.issn.1008-7303.2013.05.08 YAN X Y, XU J L, XU G J, et al. Residue and dissipation of pyraclostrobin by high performance liquid chromatography in tobacco and soil [J]. Chinese Journal of Pesticide Science, 2013, 15(5): 528-533(in Chinese). doi: 10.3969/j.issn.1008-7303.2013.05.08
[19] 窦磊, 杨国义. 珠江三角洲地区土壤有机氯农药分布特征及风险评价 [J]. 环境科学, 2015, 36(8): 2954-2963. DOU L, YANG G Y. Distribution characteristics and risk assessment of organochlorine pesticides in surface soil of Pearl River Delta economic zone [J]. Environmental Science, 2015, 36(8): 2954-2963(in Chinese).
[20] 暴志蕾, 赵兴茹, 耿梦娇, 等. 长三角地区饮用水源地沉积物中有机氯农药污染特征 [J]. 环境化学, 2016, 35(6): 1237-1245. doi: 10.7524/j.issn.0254-6108.2016.06.2015111605 BAO Z L, ZHAO X R, GENG M J, et al. Characteristics of organochlorine pesticides in the sediments from the drinking water source of the Yangtze River Delta region [J]. Environmental Chemistry, 2016, 35(6): 1237-1245(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.06.2015111605
[21] 潘静, 杨永亮, 何俊, 等. 崇明岛不同典型功能区表层土壤中有机氯农药分布及风险评价 [J]. 农业环境科学学报, 2009, 28(11): 2286-2292. doi: 10.3321/j.issn:1672-2043.2009.11.013 PAN J, YANG Y L, HE J, et al. Distribution and ecological risk evaluation of organochlorine pesticides in surface soils from different land use areas in Chongming island [J]. Journal of Agro-Environment Science, 2009, 28(11): 2286-2292(in Chinese). doi: 10.3321/j.issn:1672-2043.2009.11.013
[22] 胡春华, 周文斌, 易纯, 等. 环鄱阳湖区蔬菜地土壤中有机氯农药分布特征及生态风险评价 [J]. 农业环境科学学报, 2011, 30(3): 487-491. HU C H, ZHOU W B, YI C, et al. Distribution and eco-risk evaluation of organ chlorine pesticides in vegetable soil in the area around Poyang lake, China [J]. Journal of Agro-Environment Science, 2011, 30(3): 487-491(in Chinese).
[23] 杜丽亚, 章钢娅, 靳伟. 土壤含水量和胡敏酸对有机氯农药降解的影响 [J]. 土壤学报, 2006, 43(2): 332-336. doi: 10.3321/j.issn:0564-3929.2006.02.025 DU L Y, ZHANG G Y, JIN W. Effects of soil water content and humic acid on degradation of organochlorine pesticides [J]. Acta Pedologica Sinica, 2006, 43(2): 332-336(in Chinese). doi: 10.3321/j.issn:0564-3929.2006.02.025
[24] 赖波, 董巨河, 王飞, 等. 农药污染对土壤质量的影响及防治措施 [J]. 新疆农业科技, 2013(3): 17-18. doi: 10.3969/j.issn.1007-3574.2013.03.011 LAI B, DONG J H, WANG F, et al. Influence of pesticide pollution on soil quality and prevention measures [J]. Xinjiang Agricultural Science and Technology, 2013(3): 17-18(in Chinese). doi: 10.3969/j.issn.1007-3574.2013.03.011
[25] 许静, 唐杰伟, 孔德洋, 等. 嗪吡嘧磺隆在土壤和沉积物中的降解 [J]. 环境化学, 2015, 34(3): 461-467. doi: 10.7524/j.issn.0254-6108.2015.03.2014071602 XU J, TANG J W, KONG D Y, et al. Degradation of metazosulfuron in soil and sediment [J]. Environmental Chemistry, 2015, 34(3): 461-467(in Chinese). doi: 10.7524/j.issn.0254-6108.2015.03.2014071602
[26] 苗辉, 杨小娟, 程丹丹, 等. 环境因子对土壤中二氯喹啉酸降解的影响 [J]. 南京农业大学学报, 2014, 37(4): 144-148. doi: 10.7685/j.issn.1000-2030.2014.04.021 MIAO H, YANG X J, CHENG D D, et al. Effects of environmental factors on the degradation of quinclorac in soil [J]. Journal of Nanjing Agricultural University, 2014, 37(4): 144-148(in Chinese). doi: 10.7685/j.issn.1000-2030.2014.04.021
[27] 张夕林, 丁晓丽, 钱允辉, 等. 不同药剂处理对土壤中农药残留量的影响分析 [J]. 现代农业科技, 2010(4): 197-199. doi: 10.3969/j.issn.1007-5739.2010.04.126 ZHANG X L, DING X L, QIAN Y H, et al. Influence analysis of pesticide residues in soil by different chemical treatment [J]. Xiandai Nongye Keji, 2010(4): 197-199(in Chinese). doi: 10.3969/j.issn.1007-5739.2010.04.126
[28] 万盼, 黄小辉, 熊兴政, 等. 农药施用浓度对油桐幼苗生长及土壤酶活性、有效养分含量的影响 [J]. 南京林业大学学报(自然科学版), 2018, 42(1): 73-80. WAN P, HUANG X H, XIONG X Z, et al. Effects of pesticides on soil enzyme activities, available nutrients and growth of Vernicia fordii seedlings [J]. Journal of Nanjing Forestry University (Natural Science Edition), 2018, 42(1): 73-80(in Chinese).
[29] 李晓亮, 秦智伟, 候利园, 等. 土壤环境因素对残留农药降解的影响 [J]. 东北农业大学学报, 2009, 40(4): 132-135. doi: 10.3969/j.issn.1005-9369.2009.04.030 LI X L, QIN Z W, HOU L Y, et al. Influence of environmental factors on degradation of residual pesticide in soil [J]. Journal of Northeast Agricultural University, 2009, 40(4): 132-135(in Chinese). doi: 10.3969/j.issn.1005-9369.2009.04.030
[30] 吕秀亭. 苯醚甲环唑市场及在我国的登记情况 [J]. 山东农药信息, 2012(9): 36-39. LÜ|LV|LU|LYU) X T. Difenoconazole registration situation of market and in our country [J]. Shandong Pesticide News,, 2012(9): 36-39(in Chinese).
[31] 初春, 王志华, 秦冬梅, 等. 苯醚甲环唑在芹菜及其土壤中的残留测定和消解动态研究 [J]. 中国科学(化学), 2011, 41(1): 129-135. CHU C, WANG Z H, QIN D M, et al. Study on determination and dynamics of difenoconazole residues in celery and soil [J]. Science in China (Series B), 2011, 41(1): 129-135(in Chinese).
[32] 王凤花. 甲霜灵重复施用的降解动态及其对土壤微生物的生态效应[D]. 泰安: 山东农业大学, 2015. WANG F H. Biodegradation of metalaxyl and its effects on soil microbialcommunity structure with repeated applications[D]. Taian: Shandong Agricultural University, 2015(in Chinese).
[33] 闫车太. 三种除草剂在燕麦田土壤中的残留降解动态及对土壤微生物的影响[D]. 甘肃: 甘肃农业大学, 2018. YAN C T. Degradation dynamics of three h erbicide residues in oat field soil and their effects on soil microorganisms[D]. Gansu: Gansu Agricultural University, 2018(in Chinese).
[34] 张鹏, 谢修鸿, 李翠兰, 等. 我国几种地带性土壤中磷素形态的研究 [J]. 光谱学与光谱分析, 2019, 39(10): 3210. ZHANG P, XIE X H, LI C L, et al. Forms of phosphorus in several zonal soils of China [J]. Spectroscopy and Spectral Analysis, 2019, 39(10): 3210(in Chinese).
[35] WANG C, WU Q H, WU C X, et al. Application of dispersion-solidification liquid-liquid microextraction for the determination of triazole fungicides in environmental water samples by high-performance liquid chromatography [J]. Journal of Hazardous Materials, 2011, 185(1): 71-76. doi: 10.1016/j.jhazmat.2010.08.124