-
底泥是湖泊及其流域中重金属等污染物的重要归宿和蓄积库,在很大程度上避免了外源输入后水体重金属含量的剧烈变化,但是底泥作为重金属“汇”的角色并非稳定不变[1-2]。在风浪等动力扰动下,底泥-水界面的物理平衡被打破,氧化还原条件发生改变,加速有机质在界面处的迁移和转化,从而使一些有害重金属活化并发生“二次污染”[3]。研究表明,7 m·s−1风浪与2 m·s−1风浪相比,太湖水体中溶解态Mn、Cr、Zn和Cu含量大幅度增加2—15倍,11 m·s−1风浪与7 m·s−1风浪相比,Cr和Ni含量分别增加68.8%和31.2%[4]。然而,目前关于风浪扰动下底泥重金属的释放研究主要集中在重金属浓度和含量变化上[5-6],而对重金属的动态迁移过程,尤其是悬浮后的沉降过程则少有涉及。南四湖地处山东省西南部,自北向南由南阳、独山、昭阳和微山4个湖泊相互串联成一体,平均水深1.46 m,是我国华北平原上面积最大的淡水湖泊湿地。近20年来,随着地方经济的高速发展和能源消费结构的影响,南四湖底泥中Hg、Pb 和As的含量呈快速增长趋势,尤其是Hg的污染最为严重[7]。南四湖南阳湖区表层底泥中Hg的含量高达0.15 mg·kg−1,高出环境背景值约11倍,属重污染程度[8-9]。作为南水北调东线工程最重要的输水通道和京杭大运河最重要的航运路段,南四湖底泥-水界面受到风浪和船只的扰动非常频繁,底泥经常发生再悬浮和沉降运动,在此开展风浪等动力扰动下典型重金属Hg的动态迁移过程研究具有重要意义。
目前关于底泥再悬浮的研究方法主要有现场观测和室内模拟,现场观测受到各种不可控因素的影响,难以推广[10],室内模拟主要有振荡法、波浪水槽法[11]、环行槽法[12]和Y型再悬浮装置法[13]等。Y型再悬浮装置模拟水深可达1.6 m,能克服底泥原状破坏和模拟水深较浅的问题,是目前较为适用的浅水水体底泥再悬浮模拟方法[2,10]。
本文以Hg污染最为严重的南四湖南阳湖区为研究对象,应用Y型再悬浮发生装置及现场获取的风况资料,模拟研究底泥再悬浮和沉降过程下,典型重金属Hg在底泥-水界面的动态迁移过程,并估算其迁移量,为南水北调东线工程的输水水质保障与治理提供科学依据。
风浪扰动下南四湖南阳湖区底泥Hg的动态迁移规律模拟
Simulation of dynamic migration rules of Hg under different winds and waves in sediments of Nanyang Lake area, Nansi Lake, China
-
摘要: 风浪等动力扰动下底泥重金属的释放研究主要集中在含量变化上,而对其动态迁移过程,尤其是悬浮后的沉降过程则少有涉及。本文以重金属Hg污染较为严重的山东南四湖南阳湖区为研究对象,借助Y型旋浆式底泥再悬浮发生装置,通过常见风情条件下底泥原柱样再悬浮和沉降过程模拟,对不同风浪条件下典型重金属Hg在底泥-水界面的动态迁移过程进行了研究。结果表明,风浪扰动下,南阳湖水柱中Hg浓度呈增加趋势,夏季和冬季河口区Hg浓度分别由1.5 μg·L−1和0.5 μg·L−1左右增加到2.5 μg·L−1和1.0 μg·L−1左右,湖心区分别由0.1 μg·L−1和0.3 μg·L−1左右增加到0.12 μg·L−1和1.0 μg·L−1左右,风浪扰动增加了底泥Hg的释放风险,间隙水高浓度Hg向上覆水释放为其主要原因;风浪扰动停止后,水柱中Hg浓度总体呈波动性下降,但20 h很难降低到初始浓度;水柱中Hg浓度增量同风浪强度没有明显依赖关系,夏季和冬季河口区Hg的释放增量在小风(1.75 m·s−1)、中风(3.63 m·s−1)和大风(6.02 m·s−1)扰动下分别为3.36、0.95、0.50 mg·m−2和0.97、0.81、0.61 mg·m−2,大风过程Hg增量反而较小,大风扰动导致更多悬浮颗粒物对Hg的吸附共沉淀起到关键作用;水柱中Hg浓度增量在季节上未显示一定规律,南阳湖冬季水面大量菹草覆盖,菹草的生长对扰动下底泥Hg的释放没有起到明显控制效果。Abstract: Researches on sediment heavy metals releasing were mainly focus on content changing under the disturbance of winds and waves, etc, and the dynamic migration processes, especially the settlement processes after suspension, were rarely studied. In this article, taking Nanyang area of Nansi Lake, highly polluted by Hg, as research object, with the help of Y-shape sediment resuspension simulation apparatus, simulating the resuspension and sedimentation of intact sediment cores in common wind conditions, the dynamic transfer process of Hg at sediment-water interface was studied under different winds and waves. Results showed that the Hg concentration in water column of Nanyang Lake had the increasing trend under winds and waves disturbance, and the Hg concentration increased from about 1.5, 0.5 μg·L−1 to about 2.5, 1.0 μg·L−1 and from about 0.1, 0.3 μg·L−1 to about 0.12, 1.0 μg·L−1 at estuary and center of Nanyang Lake in summer and winter, respectively. The releasing risk of Hg increased under disturbance of winds and waves, and the upward releasing to overlying water from higher Hg concentration in interstitial water was the main reason. After stopping winds and waves disturbance, the Hg concentration in water column generally decreased with fluctuation, and it was difficult to reduce to the initial concentration in 20 hours. There was no significant dependence between Hg concentration increment and disturbance intensity of winds and waves, under slight (1.75 m·s−1), moderate (3.63 m·s−1) and strong winds (6.02 m·s−1) disturbance, the Hg releasing increments were 3.36, 0.95, 0.50 mg·m−2 and 0.97, 0.81, 0.61 mg·m−2 at estuary in summer and winter, respectively. The Hg concentration increments under strong winds were relatively small, and the more suspended particles caused by strong winds disturbance played a key role in adsorption and co-precipitation of Hg. The Hg concentration increments did not show rules regularly with season, and the growth of Potamogeton crispus L, covering all the Nanyang Lake area in winter, did not play an obvious control effect on the sediment Hg releasing under disturbance.
-
Key words:
- winds and waves disturbance /
- Hg /
- dynamic transfer process /
- release increment /
- Nansi Lake
-
表 1 南四湖南阳湖区全年(2012年10月—2013年9月)各频率段风速累计加权均值统计
Table 1. Cumulative weighted mean statistics of wind speeds in each frequency band (October 2012—September 2013) of Nanyang Lake area, Nansi Lake
项目 Item 背景风速
Background wind speed小风速
Slight wind speed中风速
Moderate wind peed大风速
Strong wind speed风速累计频率段 <31.67% 31.67%—63.33% 63.33%—95% >95% 平均风速/(m·s−1) 0.42 1.75 3.63 6.02 平均历时 难于统计 难于统计 ≈150 min ≈120 min -
[1] KAZANCL N, LEROY S A G, ÖNCLEL S, et al. Wind control on the accumulation of heavy metals in sediment of Lake Ulubat, Anatolia, Turkey [J]. Journal of Paleolimnology, 2009, 43(1): 89-110. [2] 尤本胜, 王同成, 范成新, 等. 风浪作用下太湖草型湖区水体N、P动态负荷模拟 [J]. 中国环境科学, 2008, 28(1): 33-38. doi: 10.3321/j.issn:1000-6923.2008.01.008 YOU B S, WANG T C, FAN C X et al. The simulation of ammonia nitrogen and phosphorus loading variations under the influence of wind-wave in aquatic macrophytes areas of Lake Taihu [J]. China Environment Science, 2008, 28(1): 33-38(in Chinese). doi: 10.3321/j.issn:1000-6923.2008.01.008
[3] QIAN J, ZHENG S S, WANG P F, et al. Experimental study on sediment resuspension in Taihu lake under different hydrodynamic disturbance [J]. Journal of Hydrodynamics Ser. B, 2011, 23(6): 826-833. doi: 10.1016/S1001-6058(10)60182-5 [4] ZHU G W, CHI Q Q, QIN B Q. Heavy-metal contents in suspended solids of Meiliang Bay, Lake Taihu and its environmental significances [J]. Journal of Environmental Sciences, 2005, 17(4): 676-680. [5] 毕春娟, 陈振楼, 李猛, 等. 再悬浮作用下长江口近岸沉积物中Cd、Pb和Cr的迁移与释放 [J]. 环境科学, 2011, 32(9): 2512-2521. BI C J, CHEN Z L, LI M, et al. Transport and release of Cd, Pb and Cr from the Yangtze estuarine sediments during sediment resuspension event [J]. Environmental Science, 2011, 32(9): 2512-2521(in Chinese).
[6] 池悄悄, 朱广伟, 张占平, 等. 风浪扰动对太湖水体悬浮物重金属含量的影响 [J]. 湖泊科学, 2006, 18(5): 495-498. doi: 10.3321/j.issn:1003-5427.2006.05.009 CHI Q Q, ZHU G W, ZHANG Z P, et al. Effects of wind-wave disturbance on heavy metal contents in suspended solids of Lake Taihu [J]. Journal of Lake Science, 2006, 18(5): 495-498(in Chinese). doi: 10.3321/j.issn:1003-5427.2006.05.009
[7] 沈吉, 张祖陆, 杨丽原, 等. 南四湖-环境与资源研究[M]. 北京: 地震出版社, 2008, 141-159. SHEN J, ZHANG Z L, YANG L Y, et al. Nansi Lake-environmental and resource studies[M]. Beijing: Seismological Press, 2008: 141-159 (in Chinese).
[8] 杨丽原, 沈吉, 张祖陆, 等. 南四湖表层底泥重金属污染及其风险性评价 [J]. 湖泊科学, 2003, 15(3): 252-256. doi: 10.3321/j.issn:1003-5427.2003.03.009 YANG L Y, SHEN J, ZHANG Z L, et al. Distribution and ecological risk assessment for heavy metals in superficial sediments of Nansihu Lake [J]. Journal of Lake Science, 2003, 15(3): 252-256(in Chinese). doi: 10.3321/j.issn:1003-5427.2003.03.009
[9] 张智慧, 李宝, 梁仁君. 南四湖南阳湖区河口与湖心沉积物重金属形态对比研究 [J]. 环境科学学报, 2015, 35(5): 1408-1416. ZHANG Z H, LI B, LIANG R J. Comparison of sediment heavy metal fractions at estuary and center of Nanyang Zone from Nansi Lake, China [J]. Acta Scientiae Circumstantiae, 2015, 35(5): 1408-1416(in Chinese).
[10] 尤本胜, 王同成, 范成新, 等. 太湖沉积物再悬浮模拟方法 [J]. 湖泊科学, 2007, 19(5): 611-617. doi: 10.3321/j.issn:1003-5427.2007.05.018 YOU B S, WANG T C, FAN C X, et al. Quantitative simulative method of sediment resuspension in Lake Taihu [J]. Journal of Lake Sciences, 2007, 19(5): 611-617(in Chinese). doi: 10.3321/j.issn:1003-5427.2007.05.018
[11] 朱广伟, 秦伯强, 张路, 等. 太湖底泥悬浮中营养盐释放的波浪水槽实验 [J]. 湖泊科学, 2005, 17(1): 61-68. doi: 10.3321/j.issn:1003-5427.2005.01.010 ZHU G W, QIN B Q, ZHANG L, et al. Wave effects on nutrient release of sediments from Lake Taihu by flume experiments [J]. Journal of Lake Sciences, 2005, 17(1): 61-68(in Chinese). doi: 10.3321/j.issn:1003-5427.2005.01.010
[12] 张运林, 秦伯强, 陈伟民, 等. 太湖水体中悬浮物研究 [J]. 长江流域资源与环境, 2004, 13(3): 266-271. doi: 10.3969/j.issn.1004-8227.2004.03.014 ZHANG Y L, QIN B Q, CHEN W M, et al. A study on total suspended matter in Lake Taihu [J]. Resources and Environment in the Yangtze Bain, 2004, 13(3): 266-271(in Chinese). doi: 10.3969/j.issn.1004-8227.2004.03.014
[13] 范成新. 一种室内模拟水下沉积物再悬浮状态的方法及装置[P]. 中国专利: ZL200420025427.9, 2005-01-12. FAN C X. Y-type sediment resuspension apparatus[P]. Chinese Patent: CN ZL200420025427.9, 2005-01-12(in Chinese).
[14] 尤本胜. 太湖沉积物再悬浮和沉降过程中物质的动态迁移及其定量化[D]. 南京: 中国科学院南京地理与湖泊研究所, 2007: 11-22. YOU B S. Dynamic transfer of nutrients and their quantification in sediment resuspension and sedimentation processes in Lake Taihu[D]. Nanjing: Nanjing Institute of Geography and Limnology Chinese Academy of Sciences, 2007: 11-22 (in Chinese).
[15] 刘新, 王秀, 赵珍, 等. 风浪扰动对底泥内源磷钝化效果的影响 [J]. 中国环境科学, 2017, 37(8): 3064-3071. doi: 10.3969/j.issn.1000-6923.2017.08.031 LIU X, WANG X, ZHAO Z, et al. Effect of wind and wave disturbance on passivation of internal phosphorus in sediment [J]. China Environmental Science, 2017, 37(8): 3064-3071(in Chinese). doi: 10.3969/j.issn.1000-6923.2017.08.031
[16] 贾艳霞, 尹洪斌, 唐婉莹. 河蚬扰动对不同质地沉积物中重金属生物有效性与毒性的影响 [J]. 水资源保护, 2019, 35(2): 67-73. doi: 10.3880/j.issn.1004-6933.2019.02.011 JIA Y X, YIN H B, TANG W Y. Effects of Corbicula fluminea disturbance on bioavailability and toxicity of heavy metals in sediments with different qualities [J]. Water Resources Protection, 2019, 35(2): 67-73(in Chinese). doi: 10.3880/j.issn.1004-6933.2019.02.011
[17] 覃雪波, 孙红文, 彭士涛, 等. 生物扰动对沉积物中污染物环境行为的影响研究进展 [J]. 生态学报, 2014, 34(1): 59-69. QIN X B, SUN H W, PENG S T, et al. Review of the impacts of bioturbation on the environmental behavior of contaminant in sediment [J]. Acta Ecologic Sinica, 2014, 34(1): 59-69(in Chinese).
[18] 李大鹏, 黄勇, 李勇, 等. 沉积物扰动持续时间对悬浮物中磷形态数量分布的影响 [J]. 环境科学, 2012, 33(2): 379-384. LI D P, HUANG Y, LI Y, et al. Impacts of sediment disturbance time on the distribution of phosphorus forms in suspended solids [J]. Environmental Science, 2012, 33(2): 379-384(in Chinese).
[19] JOZSEF H, KLARA P. Investigation on the pollution source of bottom sediments in the lake balaton [J]. Microchemical Journal, 2002, 73: 65-78. doi: 10.1016/S0026-265X(02)00053-X [20] 池悄悄, 朱广伟, 张占平, 等. 风浪扰动对太湖水体重金属形态的影响 [J]. 环境化学, 2007, 26(2): 228-231. doi: 10.3321/j.issn:0254-6108.2007.02.025 CHI Q Q, ZHU G W, ZHANG Z P, et al. Effects of wind-wave disturbance on heavy metals speciations in the water of Lake Taihu [J]. Environmental Chemistry, 2007, 26(2): 228-231(in Chinese). doi: 10.3321/j.issn:0254-6108.2007.02.025
[21] FONES G R, DAVISON W, HOLBY O, et al. High-resolution metal gradients measured by in situ DGT/DET deployment in Black Sea sediments using an autonomous benthic lander [J]. Limnology and Oceanography, 2001, 46: 982-988. doi: 10.4319/lo.2001.46.4.0982 [22] 路永正, 阎百兴. 颤蚓扰动作用对铅镉在沉积物-水相中迁移的影响 [J]. 中国环境科学, 2010, 30(2): 251-255. LU Y Z, YAN B X. Effect of bioturbation by worms on the transport of Pb and Cd between sediments and waters [J]. China Environmental Science, 2010, 30(2): 251-255(in Chinese).
[23] LOPEZ D L, GIERLOWSKI-KORDESCH E, HOLLENKAMP C. Geochemical mobility and bioavailability of heavy metals in a lake affected by acid mine drainage: Lake Hope, Vinton County, Ohio [J]. Water, Air & Soil Pollution, 2010, 213(1-4): 27-45. [24] 汪福顺, 刘丛强, 灌瑾, 等. 贵州阿哈水库沉积物中重金属二次污染的趋势分析 [J]. 长江流域资源与环境, 2009, 18(4): 379-383. doi: 10.3969/j.issn.1004-8227.2009.04.014 WANG F S, LIU C Q, GUAN J, et al. Trend analysis of the recycling of heavy metals in sediments of Aha Lake, Guizhou Province [J]. Resources and Environment in the Yangtza Basin, 2009, 18(4): 379-383(in Chinese). doi: 10.3969/j.issn.1004-8227.2009.04.014
[25] 张弛, 王树功, 郑耀辉, 等. 生物扰动对红树林沉积物中AVS和重金属迁移转化的影响 [J]. 生态学报, 2010, 30(11): 3037-3045. ZHANG C, WANG S G, ZHENG Y H, et al. The effects of roots and crabs’ bioturbation on AVS, migration and transformation of heavy metals in mangrove sediments [J]. Acta Ecologic Sinica, 2010, 30(11): 3037-3045(in Chinese).
[26] BENOIT J M, SHULL D H, ROBINSON P, et al. Infaunal burrow densities and sediment monomethyl mercury distributions in Boston Harbor, Massachusetts [J]. Marime Chemistry, 2006, 102(1): l24-l33.