-
在我国西北干旱半干旱地区,地下水是农业灌溉、工业和生活用水的重要水资源[1]。新疆维吾尔自治区(以下简称“新疆”)和田地区地下水水质较差,具体表现在总硬度、氟化物、硫酸盐、氯化物和氨氮严重超标[2-4]。研究地下水化学特征演化规律对帮助了解地下水水质、地下水资源的保护和支持地下水的可持续性利用等具有重要意义[5]。地下水水化学提供了地下水组成的化学指示,揭示了地下水的潜在补给源、循环路径和水文地球化学演化规律[6]。
学者们通过数理统计与地统计法、同位素示踪法、离子比例系数和水文地球化学模拟等方法对地下水水化学特征及演化规律进行研究。Wen等[7]运用离子比例系数、数理统计与地统计等方法对启东市海岸带地下水水化学演化规律进行研究,得出海水入侵和水岩作用是地下水水化学演化规律的主要控制因素;Xiong等[8]通过同位素法和水文地球化学模拟相结合对大沽河含水层水化学演化进行分析,得出海水入侵和人类活动是地下水水化学演化的主要控制因素;李华等[9]利用氢氧同位素、水文地球化学模拟方法对贵阳市三桥地区岩溶地下水水化学演化进行研究,得出岩石溶滤和阳离子交替吸附作用为控制地下水水化学演化的主要因素;Li等[10]利用水文地球化学法和多同位素法相结合对珠江三角洲地下水水化学演化规律进行研究,得出岩石风化是地下水水化学演化的主导机制。Wen等[7]研究结论仅基于零碎的水化学数据,而且深度不够,因为在快速城市化的受污染的地下水环境中,会导致复杂的反应过程发生(例如阳离子交换作用和反硝化作用),从而显著地改变地下水的化学性质;Xiong等[8]和李华等[9]利用同位素和水文地球化学模拟方法,探索溶解成分来源,更加定量化和系统化地分析整个地下水水化学演化过程,提升了研究深度。
近年来,许多学者对和田地区地下水开展了多方面的研究工作:如地下水水资源分布研究[11-12]、地下水水化学特征及成因研究[13-14]和地下水水质评价研究[2-4]等,但对于区域性地下水化学特征及演化规律的定量研究较少。本文以新疆和田地区东部平原区为研究区,运用水文地球化学、因子分析和水文地球化学反向模拟等方法,探讨地下水化学特征及演化规律,以期为该地区地下水合理开发利用与有效保护提供科学依据。
新疆和田东部平原区地下水化学特征及演化规律
Hydrochemical characteristics and evolution of groundwater in the eastern plain of Hotian Prefecture, Xinjiang
-
摘要: 以2018年新疆和田东部平原区116组地下水水质检测数据为基础,综合运用因子分析、Piper三线图、Gibbs模型、离子比值法和水文地球化学模拟等方法对其水化学特征及演化规律进行分析。结果表明:研究区地下水中Na+和Mg2+为主要阳离子,Cl−和
${\rm{SO}}_4^{2-} $ 为主要阴离子,地下水类型为SO4·Cl-Ca·Mg型高硬度高咸水;因子分析表明该区地下水水化学组分受岩石溶滤作用和蒸发浓缩作用控制;水中离子主要来源于蒸发盐岩的溶解,其次为碳酸盐岩和硅酸盐岩的溶解。单一结构潜水主要受蒸发浓缩作用、岩石溶滤作用和人类活动等因素影响,承压水受阳离子交换作用影响。水文地球化学模拟结果表明:沿地下水流向,水中离子总量累积,岩盐、白云石和石膏发生溶解,方解石发生沉淀。Abstract: Based on the groundwater quality test data of 116 groups in the eastern plains area of Hotian Prefecture, Xinjiang in 2018, the chemical characteristics and evolution law of groundwater were comprehensively analyzed by means of factor analysis, Piper trigraph, Gibbs model, ion ratio and hydrogeochemical simulation. The results showed that: Na+ and Mg2+ were the main cations the groundwater. Cl− and${\rm{SO}}_4^{2-} $ were the main anions in the groundwater, and the groundwater hydrochemistry type was SO4·Cl—Ca·Mg type high hardness and salt water. Factor analysis showed that the chemical composition of groundwater was controlled by dissolution of rocks and evaporation concentration. The groundwater ions were mainly derived from the dissolution of evaporates rocks, followed by the dissolution of evaporates and carbonates. Single structure unconfined groundwater was mainly affected by evaporation and concentration, dissolution of rocks and human activities while the confined groundwater was affected by cation exchange. Along the groundwater flow direction, the hydrogeochemical simulation results indicate that the total amount of ions in the groundwater accumulated. Halite, dolomite, and gypsum were dissolved, and calcite was precipitated. -
表 1 研究区地下水水化学描述性统计
Table 1. Descriptive statistics of hydrochemistry in groundwater in the study area(N=116)
含水层类型
Aquifer type统计量 pH K++Na+ Ca2+ Mg2+ Cl− ${\rm{SO}}_4^{2 - } $ ${\rm{HCO}}_3^ - $ ${\rm{NO}}_3^ - $ TH TDS Statistics 单一结构潜水
Single structure unconfined groundwater
(N=96)最小值 Minimum 7.10 26.10 12.00 6.60 14.40 19.00 36.60 0.10 111.60 198.50 最大值 Maximum 9.60 14160.40 702.10 1308.00 14348.60 9889.70 3954.00 46.90 6549.30 41282.70 均值 Mean 8.10 915.90 114.20 135.90 1113.50 920.80 406.20 9.30 844.80 3433.20 标准差 Standard deviation 0.41 2152.37 103.92 209.29 2293.81 1445.66 499.63 10.88 1064.45 6626.08 变异系数 Coefficient of variation 0.05 2.35 0.91 1.54 2.06 1.57 1.23 1.17 1.26 1.93 承压水区潜水
Unconfined groundwater in confined area
(N=5)最小值Minimum 7.40 445.40 33.30 44.50 182.80 389.10 158.70 0.80 266.20 1260.90 最大值 Maximum 8.40 996.60 99.60 195.00 951.30 850.40 963.30 15.90 1052.00 3597.00 均值 Mean 8.00 781.50 78.30 105.20 629.70 581.70 597.80 5.10 628.70 2369.40 标准差 Standard deviation 0.32 359.49 23.49 54.70 295.96 162.88 448.35 5.76 264.05 781.90 变异系数 Coefficient of variation 0.04 0.46 0.30 0.52 0.47 0.28 0.75 1.13 0.42 0.33 承压水
Confined groundwater
(N=15)最小值Minimum 7.12 134.70 15.90 11.80 91.50 183.40 96.50 0.20 113.60 506.30 最大值 Maximum 8.40 2363.80 396.20 690.70 2976.00 3607.60 390.60 3.90 3786.30 10249.70 均值 Mean 8.00 484.20 112.50 137.10 552.90 736.50 351.00 5.30 824.70 2212.20 标准差 Standard deviation 0.40 658.51 106.88 175.49 785.12 898.53 266.76 7.95 973.15 2632.52 变异系数 Coefficient of variation 0.05 1.36 0.95 1.28 1.42 1.22 0.76 1.50 1.18 1.19 注:N为样品数;pH为无量纲,其余指标单位均为mg·L−1。
Note: N is groundwater sample number; pH is dimensionless; units of other parameter are mg·L−1.表 2 地下水水化学指标的旋转因子载荷矩阵
Table 2. Rotation factor loading matrix of groundwater
指标
Parameters单一结构潜水
Single structure unconfined groundwater承压水
Confined groundwaterF1 F2 F3 F1 F2 F3 K++Na+ 0.86 0.23 0.36 0.73 0.44 −0.31 Ca2+ 1.86 −0.34 −0.34 0.06 0.89 0.12 Mg2+ 2.86 −0.01 0.03 0.37 0.75 −0.18 Cl− 3.86 0.92 0.03 0.81 0.43 0.15 $ {\rm{SO}}_4^{2 - }$ 4.86 0.95 0.01 0.62 0.77 0.01 $ {\rm{HCO}}_3^ - $ 5.86 0.32 0.70 0.84 −0.12 −0.19 $ {\rm{NO}}_3^{ - }$ 6.86 0.70 0.57 −0.15 −0.28 0−0.43 TDS 7.86 0.26 0.41 0.98 0.43 0.03 TH 8.86 −0.09 −0 .05 0.46 0.87 −0.1 pH 9.86 −0.83 −0.97 −0.08 −0.04 −0.93 贡献率/%
Contribution rate44.00 27.02 13.31 41.66 33.77 13.31 累计贡献率/%
Cumulative contribution rate44.00 71.02 84.33 41.66 75.43 88.74 表 3 地下水中各水化学组分Pearson相关系数
Table 3. Correlation coefficients among chemical constituents in groundwater
K++Na+ Ca2+ Mg2+ Cl− ${\rm{SO}}_4^{2 - } $ ${\rm{HCO}}_3^ - $ ${\rm{NO}}_3^{ - } $ TDS TH pH K++Na+ 1 Ca2+ 0.258** 1 Mg2+ 0.810** 0.700** 1 Cl− 0.301** −0.178 0.054 1 $ {\rm{SO}}_4^{2 - }$ 0.296** −0.212* 0.042 0.978** 1 $ {\rm{HCO}}_3^ - $ 0.864** 0.051 0.623** 0.321** 0.304** 1 $ {\rm{NO}}_3^{2 - }$ 0.034 0.114 0.044 −0.082 −0.101 0.088 1 TDS 0.988** 0.382** 0.829** 0.250* 0.239* 0.817** 0.045 1 TH 0.665** 0.814** 0.985** 0.001 −0.018 0.437** 0.063 0.768** 1 pH 0.259** -0.259** 0.047 0.634** 0.705** 0.163 −0.165 0.218* 0.028 1 注:*显著性水平为0.05(显著);**显著性水平为0.01(极显著)。
Note: *Means the significance level is 0.05(significant); **Means the significance level is 0.01 (extremely significant).表 4 潜水、承压水路径反向模拟结果
Table 4. Reverse simulation results of unconfined groundwater and confined groundwater routes
矿物相
Mineral phase化学式
Chemical formulation潜水路径
Unconfined groundwater route潜水—承压水路径
Confined groundwater routeH27→H33 QWL3-8→H40 H33→H29 H29→QWL3-8 岩盐Halite NaCl 2.05×10−4 3.99×10−3 1.45×10−3 2.61×10−2 方解石Calcite CaCO3 4.01×10−4 −9.80×10−3 −1.25×10−3 −3.84×10−3 白云石Dolomite CaMg(CO3)2 1.09×10−4 6.27×10−3 5.24×10−4 2.59×10−3 石膏Gypsum CaSO4·2H2O −3.19 24.87 6.02 −1.05×102 CO2 CO2 −1.73×10−4 3.34×10−3 — — 阳离子交换
Cation exchangeCaX2 — — −2.55×10−4 −3.47×10−3 NaX — — 5.11×10−4 6.93×10−3 注:上述数值为摩尔转移量,正值代表溶解,负值代表沉淀;“—”代表矿物未参与反应。
Note: The above value is the molar transfer. Positive value means solution. Negative value means precipitate. “—” Means mineral nonparticipation in the reaction. -
[1] LIN J, MA R, HU Y L, et al. Groundwater sustainability and groundwater/surface-water interaction in arid Dunhuang Basin, northwest China [J]. Hydrogeology Journal, 2018, 26(11): 1559-1572. [2] 曾妍妍, 吴津蓉, 周金龙, 等. 新疆和田地区地下水质量与污染现状评价 [J]. 人民黄河, 2015, 37(7): 79-81. doi: 10.3969/j.issn.1000-1379.2015.07.020 ZENG Y Y, WU J R, ZHOU J L, et al. Assessment of groundwater quality and pollution in Hotan Region of Xinjiang [J]. Yellow River, 2015, 37(7): 79-81(in Chinese). doi: 10.3969/j.issn.1000-1379.2015.07.020
[3] FAN W, ZHOU J L, ZHOU Y Z, et al. Water quality and health risk assessment of shallow groundwater in the southern margin of the Tarim Basin in Xinjiang, P. R. China [J]. Human and Ecological Risk Assessment:An International Journal, 2020(5): 1-21. [4] 李玲, 周金龙, 齐万秋, 等. 和田河流域绿洲区地下水“三氮”污染状况及影响因素 [J]. 环境化学, 2019, 38(2): 395-403. doi: 10.7524/j.issn.0254-6108.2018040601 LI L, ZHOU J L, QI W Q, et al. Pollution status and influencing factors of “Three-Nitrogen” in groundwater of oasis area in Hotan River Basin [J]. Environmental Chemistry, 2019, 38(2): 395-403(in Chinese). doi: 10.7524/j.issn.0254-6108.2018040601
[5] 刘江涛, 蔡五田, 曹月婷, 等. 沁河冲洪积扇地下水水化学特征及成因分析 [J]. 环境科学, 2018, 39(12): 5428-5439. LIU J T, CAI W T, CAO Y T, et al. Hydrochemical characteristics of groundwater and the origin in Alluvial proluvial Fan of Qinhe River [J]. Environmental Science, 2018, 39(12): 5428-5439(in Chinese).
[6] CHRISTOS C, BRUGGEMAN A, KUELLS C, et al. Hydrochemical evolution of groundwater in gabbro of the Troodos Fractured Aquifer. A comprehensive approach [J]. Applied Geochemistry, 2020, 114: 104524-104543. doi: 10.1016/j.apgeochem.2020.104524 [7] WEN Y, QIU J H, CHENG S, et al. Hydrochemical evolution mechanisms of shallow groundwater and its quality assessment in the estuarine coastal zone: A case study of Qidong, China[J]. International Journal of Environmental Research and Public Health. 2020, 17(10): 3382-3407. [8] XIONG G Y, AN Q X, FU T F, et al. Evolution analysis and environmental management of intruded aquifers of the Dagu River Basin of China [J]. Science of the Total Environment, 2020, 719(1): 137260-137274. [9] 李华, 文章, 谢先军, 等. 贵阳市三桥地区岩溶地下水水化学特征及其演化规律 [J]. 地球科学, 2017, 42(5): 804-812. LI H, WEN Z, XIE X J, et al. Hydrochemical characteristics and evolution of Karst groundwater in Sanqiao District of Guiyang City [J]. Earth Science, 2017, 42(5): 804-812(in Chinese).
[10] LI X, TANG C Y, CAO Y J, et al. A multiple isotope (H, O, N, C and S) approach to elucidate the hydrochemical evolution of shallow groundwater in a rapidly urbanized area of the Pearl River Delta, China [J]. Science of the Total Environment, 2020, 724: 137930-137943. doi: 10.1016/j.scitotenv.2020.137930 [11] 刘敏. 和田绿洲地下水时空分布规律及其生态环境效应研究[D]. 西安: 西安理工大学, 2007. LIU M. Study on groundwater spatiotemporal distribution Law and its environmental effects in Hotan oasis[D]. Xi`an: Xi`an University of Technology, 2007(in Chinese).
[12] 马金珠. 新疆和田地区地下水资源及其可持续开发利用 [J]. 中国沙漠, 2002, 22(3): 41-47. MA J Z. Groundwater resources and its sustainable development in Hotan Region, Xinjiang [J]. Journal of Desert Research, 2002, 22(3): 41-47(in Chinese).
[13] 张艳丽. 和田县(市)地下水水化学基本特征 [J]. 新疆地质, 2008, 26(2): 184-188. doi: 10.3969/j.issn.1000-8845.2008.02.015 ZHANG Y L. Basic hydro-chemical features of groundwater in Hetian County [J]. Xinjiang Geology, 2008, 26(2): 184-188(in Chinese). doi: 10.3969/j.issn.1000-8845.2008.02.015
[14] 李玲, 周金龙, 齐万秋, 等. 新疆和田河流域绿洲区浅层地下水水化学特征及成因分析 [J]. 水资源与水工程学报, 2018, 29(3): 14-20. doi: 10.11705/j.issn.1672-643X.2018.03.03 LI L, ZHOU J L, QI W Q, et al. Hydrochemical characteristics and formation reasons of shallow groundwater in oasis area of Hotian River Basin, Xinjiang [J]. Journal of Water Resources and Water Engineering, 2018, 29(3): 14-20(in Chinese). doi: 10.11705/j.issn.1672-643X.2018.03.03
[15] 代述勇, 雷加强, 赵景峰, 等. 塔里木盆地南缘策勒绿洲区地下水TDS空间变异及水化学特征分析 [J]. 中国沙漠, 2010, 30(3): 722-729. DAI S Y, LEI J Q, ZHAO J F, et al. TDS-spatial variability and chemical characteristics of groundwater in cele oasis of the Sounthern Tarim Basin [J]. Journal of Desert Research, 2010, 30(3): 722-729(in Chinese).
[16] PIPER A M. A graphic procedure in the geochemical interpretation of water-analyses [J]. Transactions, American Geophysical Union, 1944, 24: 914-923. [17] 寇永朝, 华琨, 李洲, 等. 泾河支流地表水地下水的水化学特征及其控制因素 [J]. 环境科学, 2018, 39(7): 3142-3149. KOU Y C, HUA K, LI ZHOU, et al. Major ionic features and their possible controls in the surface water and groundwater of the Jinghe River [J]. Environmental Science, 2018, 39(7): 3142-3149(in Chinese).
[18] 范薇, 周金龙, 曾妍妍, 等. 塔里木沙漠公路沿线浅层地下水化学特征 [J]. 南水北调与水利科技, 2019, 17(2): 157-165. FAN W, ZHOU J L, ZENG Y Y, et al. Hydrochemical characteristics of shallow groundwater along the Tarim Desert highway [J]. South-to-North Water Transfers and Water Science & Technology, 2019, 17(2): 157-165(in Chinese).
[19] 李玲, 周金龙, 齐万秋, 等. 和田河流域绿洲区地下水中氟的分布特征及形成过程 [J]. 干旱区资源与环境, 2019, 33(1): 112-118. LI L, ZHOU J L, QI W Q, et al. Distribution and formation process of fluorine in groundwater in oasis area of Hotan River basin [J]. Journal of Arid Land Resources and Environment, 2019, 33(1): 112-118(in Chinese).
[20] 魏兴, 周金龙, 乃尉华, 等. 新疆喀什三角洲地下水SO42−化学特征及来源 [J]. 环境科学, 2019, 40(8): 3550-3558. WEI X, ZHOU J L, NAI W H, et al. Chemical characteristics and sources if groundwater sulfate in the Kashgar Delta, Xinjiang [J]. Environmental Science, 2019, 40(8): 3550-3558(in Chinese).
[21] 林韵, 高磊, 李绍恒, 等. 广东江门地热水水文地球化学特征及来源分析[J]. 环境化学, 2020, 39(2): 512-523. Hydrogeochemical characteristics and source identification of geothermal waters in Jiangmen, Guangdong Province[J]. Environmental Chemistry, 2020, 39(2): 512-513(in Chinese).
[22] KAZAKIS N, MATTAS C, PAVLOU A, et al. Multivariate statistical analysis for the assessment of groundwater quality under different hydrogeological regimes [J]. Environmental Earth Sciences, 2017, 76(9): 1-13. [23] MANOJ K, RAMANATHAN A L, RITU T,et al. R, RITU T, et al. A study of trace element contamination using multivariate statistical techniques and health risk assessment in groundwater of Chhaprola Industrial Area, Gautam Buddha Nagar, Uttar Pradesh, India [J]. Chemosphere, 2017, 166: 135-145. doi: 10.1016/j.chemosphere.2016.09.086 [24] CAO Y J, TANG C Y, SONG X F, et al. Identifying the hydrochemical characteristics of rivers and groundwater by multivariate statistical analysis in the Sanjiang Plain, China [J]. Applied Water Science, 2016, 6(2): 169-178. doi: 10.1007/s13201-014-0215-5 [25] 秦正峰. 河北省典型区地下水硬度空间分布特征及其成因分析[D]. 北京: 中国地质大学(北京), 2017. QIN Z F. Spatial distribution characteristics and genetic analysis of groundwater hardness in typical areas of Hebei Province[D]. Beijing: China University of Geosciences (Beijing), 2017(in Chinese).
[26] BOAMPONSEM L K, DE FREITAS C R, Williams, D. Source apportionment of air pollutants in the Greater Auckland Region of New Zealand using receptor models and elemental levels in the lichen, Parmotrema reticulatum [J]. Atmospheric Pollution Research, 2017, 8(1): 101-113. doi: 10.1016/j.apr.2016.07.012 [27] PANT R R, ZHAN F, REHMAN F, et al. Spatiotemporal variations of hydrogeochemistry and its controlling factors in the Gandaki River Basin, Central Himalaya Nepal[J]. Science of the Total Environment. 2018, 622: 770-782. [28] CIBBS R J. Mechanisms controlling world water chemistry [J]. Science, 1970, 170(3962): 1088-1090. doi: 10.1126/science.170.3962.1088 [29] 曾妍妍, 周金龙, 乃尉华, 等. 新疆喀什噶尔河流域地下水形成的水文地球化学过程[J]. 干旱区研究, 2020, 37(3): 541-550. Hydrogeochemical processes of groundwater formation in the Kashgar River Basin, Xinjiang[J]. Arid Zone Research, 2020, 37(3): 541-550(in Chinese).
[30] 张杰, 周金龙, 乃尉华, 等. 新疆叶尔羌河流域平原区浅层地下水咸化空间分布及成因 [J]. 农业工程学报, 2019, 35(23): 126-134. doi: 10.11975/j.issn.1002-6819.2019.23.016 ZHANG J, ZHOU J L, NAI Y H, et al. Spatial distribution and cause of salinization of shallow groundwater in plain terrain of the Yarkant River Basin, Xinjiang [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(23): 126-134(in Chinese). doi: 10.11975/j.issn.1002-6819.2019.23.016
[31] 柳凤霞, 史紫薇, 钱会, 等. 银川地区地下水水化学特征演化规律及水质评价 [J]. 环境化学, 2019, 38(9): 2055-2066. doi: 10.7524/j.issn.0254-6108.2019043003 LIU F X, SHI Z W, QIAN H, et al. Evolution of groundwater hydrochemical characteristics and water quality evaluation in Yinchuan area [J]. Environmental Chemistry, 2019, 38(9): 2055-2066(in Chinese). doi: 10.7524/j.issn.0254-6108.2019043003
[32] 赵江涛, 周金龙, 梁川, 等. 新疆焉耆盆地平原区地下水演化的主要水文地球化学过程分析[J]. 环境化学, 2017, 36(6): 1397-1406. ZHAO J T, ZHOU J L, LIANG C, et al. Hydrogeochemical process of evolution of groundwater in plain area of Yanqi, Xinjiang[J]. Environment Chemistry, 2017, 36(6): 1397-1406(in Chinese).
[33] 魏兴, 周金龙, 乃尉华, 等. 新疆喀什三角洲地下水化学特征及演化规律 [J]. 环境科学, 2019, 40(9): 4042-4051. WEI X, ZHOU J L, NAI W H, et al. Hydrochemical characteristics and evolution of groundwater in the Kashgar Delta Area in Xinjiang [J]. Environmental Science, 2019, 40(9): 4042-4051(in Chinese).
[34] 新疆维吾尔自治区国土资源厅. 新疆维吾尔自治区矿产开发简明图集[M]. 乌鲁木齐: 新疆维吾尔自治区国土资源厅, 2004, 81. Resources department in Xinjiang Uighur Autonomous Region. Concise atlas of mineral development in Xinjiang Uighur[M]. Xin-jiang: Resources Department in Xinjiang Uighur Autonomous Region, 2004, 81(in Chinese).
[35] 赵江涛, 周金龙, 梁川, 等. 新疆焉耆盆地平原区地下水反向水文地球化学模拟[J]. 干旱区资源与环境, 2017, 31(10): 65-70. ZHAO J T, ZHOU J L, LIANG C, et al. Reverse hydrogeochemical simulation of groundwater in the plain area of Yanqi Basin, Xinjiang[J]. Journal of Arid Land Resources and Environment, 31(10): 65-70(in Chinese).