-
随着工农业的迅速发展和城市化进程的不断加快,多种污染物通过大气沉降、污水灌溉、矿采活动、固废堆积、农药化肥施用等来源和途径进入土壤,不仅造成土壤严重污染,还会引起地表水及地下水的次生污染[1]。土壤污染物可分为无机和有机污染物,无机污染物主要以重金属为主,如镉、铅、铜、铬、锌、砷、镍、汞等,有机污染物主要包括多氯联苯(PCBs)、多环芳烃(PAHs)、石油烃、农药等[2]。污染物进入土壤环境,不仅会破坏土壤结构和功能,降低土壤质量,还会威胁到生态系统稳定、农产品安全和人类健康[3]。
土壤中的污染物常以复合污染的形式存在,复合污染是指两种或两种以上的污染物在同一个时间和空间内产生的环境污染现象。土壤复合污染包括重金属复合污染、有机复合污染和重金属-有机复合污染3类[4]。复合污染场地在我国污染场地中占比约为25%,在美国40%的污染场所存在有机和重金属复合污染。复合污染常存在于污灌区、矿区、电子废旧场、石油开采场附近土壤中。在我国,由于大量使用农药以及农田污水灌溉问题,使农用土壤中往往同时存在有机物和重金属污染[5-7]。与单一污染土壤相比,复合污染土壤的形成机理与环境效应更为复杂,产生的危害更大,因而也加大了对其控制治理的难度。近年来,复合污染土壤的修复研究已成为环境与土壤界的关注热点[8-9]。
目前,复合污染土壤的修复技术包括物理、化学、生物修复以及上述方法的联合修复。其中,植物修复由于成本低、易实施、环境友好等特点而成为颇具潜力的生物修复技术[10],该技术存在修复周期长、效率低的局限性[11]。为解决植物修复的低效问题,近年来化学-植物联合修复技术备受关注,如螯合诱导强化植物修复技术(CIPR)和表面活性剂增效植物修复技术(SEPR),均是通过化学强化措施向污染土壤中施加特定的化学添加剂,以改善土壤中污染物的生物可利用性或促进植物生长,从而提高植物修复效率[12]。本文综述了近年来化学强化植物修复技术的研究现状,以期为今后化学-植物联合修复技术的发展提供科学依据和理论指导。
化学强化植物修复复合污染土壤研究进展
Research progress on chemically enhanced phytoremediation of co-contaminated soil
-
摘要: 近年来,土壤复合污染问题日趋严峻,且修复难度往往较大。在复合污染土壤众多修复技术中,植物修复因成本低、易实施、环境友好等特点而颇具潜力。然而植物修复存在周期长、效率低的局限性。因此,围绕植物开展的联合强化修复技术研究,成为复合污染土壤治理修复的新途径,其中化学强化植物修复技术研究备受关注。本文综述了化学强化植物修复3种复合污染土壤的效果,对比分析了不同化学强化措施的作用特点和异同,并对该技术的研究方向提出了展望。Abstract: In recent years, the problem caused by combined pollution in soils has become more and more serious. Generally, the remediation of co-contaminated soil is difficult due to the interaction among various contaminants. Comparied with other soil remediation technologies, phytoremediation shows greater potential for treating the contaminated soil because of its low cost, easy implementation and environmental friendliness features. However, the application effect of phytoremediation was usually unsatisfactory as expected due to its limitations of low efficiency and long period. Thus, the development of improved jointly repairing methods connected with phytoremediation has emerged as a new way to control soil contaminations. Chemical-assisted phytoremediation technologies has received great attention and made some research progress in the past decade. This article is summarized the effects and characteristics of three kinds of chemically enhanced phytoremediation technologies and analyzed the similarities and differences of them. Furthermore, it focuses on putting forward the prospect of further study on the chemical-assisted phytoremediation technologies.
-
Key words:
- soil pollution /
- combined pollution /
- phytoremediation /
- chemical enhancement
-
表 1 复合污染土壤的植物修复研究
Table 1. Phytoremediation of compound contaminated soil
序号
Serial number污染物浓度
Contaminant
concentration土壤来源
Soil source植物种类
Plant species修复效果
Remediation
efficiency参考文献
References1 Pb2+: 12519 mg∙kg−1
Zn2+: 143 mg·kg−1
Ba2+: 1701 mg·kg−1
As+: 466 mg·kg−1法国罗夫莱斯矿区 黑麦草 Pb、Zn、Ba和As>60% [24] 2 Cd2+: 0.22 mg·kg−1
Pb2+: 31.8 mg·kg−1
Zn2+: 117.1 mg·kg−1某矿区周边农田 龙葵
印度荠菜Cd、Zn和Pb:50%—90% [25] 3 PCBs: 3.514 mg·kg−1 湖北九峰国家森林公园 西葫芦
刺槐西葫芦: 40.9%
刺槐: 58.1%[26] 4 石油烃: 30000 mg·kg−1 沈阳试验站周边农田 高羊茅 石油烃: 48.21% [27] 5 Pb2+: 66.8 mg·kg−1
Zn2+: 460 mg·kg−1
PAHs: 55.16 mg·kg−1徐州市污灌农田 黑麦草 Cd2+: 36.1%
Zn2+: 12.7%
PAHs: 96.4%[28] 6 PCBs: 6.72 mg·kg−1
Cd2+: 100 mg·kg−1天津滨海泰丰公园表层土壤 孔雀草 PCBs: 42.72%
Cd2+>39%[29] 7 Cd2+: 6.72 mg∙kg−1
芘: 15.79 mg·kg−1南京市江宁区野外实验小区 金丝垂柳 芘: 88.6%
Cd2+>50%[30] 8 Cd2+: 10.23 mg·kg−1
B[a]P: 15.12 mg·kg−1常州市某实验站内水稻田 黑麦草 Cd2+: 58.55%
B[a]P: 89.95%[31] 9 Cd2+: 8.46 mg·kg−1
Cu2+: 468 mg·kg−1
PCBs: 323 μg·kg−1电子垃圾厂 东南景天 Cd2+>56%
Cu2+>50%
PCBs:25.2%[32] -
[1] 骆永明. 中国污染场地修复的研究进展、问题与展望 [J]. 环境监测管理与技术, 2011, 23(3): 1-6. doi: 10.3969/j.issn.1006-2009.2011.03.002 LUO Y M. Research progress, problems and prospects of contaminated site restoration in China [J]. Environmental Monitoring Management and Technology, 2011, 23(3): 1-6(in Chinese). doi: 10.3969/j.issn.1006-2009.2011.03.002
[2] 李娇, 吴劲, 蒋进元, 等. 近十年土壤污染物源解析研究综述 [J]. 土壤通报, 2018, 49(1): 232-242. LI J, WU J, JIANG J Y, et al. Summary of research on source analysis of soil pollutants in the past ten years [J]. Soil Bulletin, 2018, 49(1): 232-242(in Chinese).
[3] 周玉璇, 龙涛, 祝欣, 等. 重金属与多环芳烃复合污染土壤的分布特征及修复技术研究进展 [J]. 生态与农村环境学报, 2019, 35(8): 964-975. ZHOU Y X, LONG T, ZHU X, et al. Distribution characteristics of soils contaminated by heavy metals and polycyclic aromatic hydrocarbons and research progress in remediation techniques [J]. Journal of Ecology and Rural Environment, 2019, 35(8): 964-975(in Chinese).
[4] 吴志能, 谢苗苗, 王莹莹. 我国复合污染土壤修复研究进展 [J]. 农业环境科学学报, 2016, 35(12): 2250-2259. doi: 10.11654/jaes.2016-0863 WU Z N, XIE M M, WANG Y Y. Research progress in remediation of compound contaminated soil in my country [J]. Journal of Agro-Environment Science, 2016, 35(12): 2250-2259(in Chinese). doi: 10.11654/jaes.2016-0863
[5] 骆永明. 土壤污染特征、过程与有效性[M]. 北京: 科学出版社, 2016. LUO Y M. Characteristics, process and effectiveness of soil pollution[M]. Beijing: Science Press, 2016(in Chinese).
[6] 冯经昆, 钟山, 孙立文, 等. 重庆某垃圾焚烧厂周边土壤重金属污染分布特征及来源解析 [J]. 环境化学, 2014, 33(6): 969-975. doi: 10.7524/j.issn.0254-6108.2014.06.005 FENG J K, ZHONG S, SUN L W, et al. Distribution characteristics and source analysis of heavy metal pollution in the soil around a waste incineration plant in Chongqing [J]. Environmental Chemistry, 2014, 33(6): 969-975(in Chinese). doi: 10.7524/j.issn.0254-6108.2014.06.005
[7] 邹正禹, 唐海龙, 刘阳生. 北京市郊农业土壤中多环芳烃的污染分布和来源 [J]. 环境化学, 2013, 32(5): 874-880. doi: 10.7524/j.issn.0254-6108.2013.05.022 ZOU Z Y, TANG H L, LIU Y S. Pollution distribution and sources of polycyclic aromatic hydrocarbons in agricultural soils in the suburbs of Beijing [J]. Environmental Chemistry, 2013, 32(5): 874-880(in Chinese). doi: 10.7524/j.issn.0254-6108.2013.05.022
[8] LEI L, ZHANG S Z, CHRISTIE P. New insights into the influence of heavy metals on phenanthrene sorption in soils [J]. Environmental Science and Technology, 2010, 44: 7846-7851. doi: 10.1021/es1024433 [9] ZHAO B W, CHE H L, WANG H F, et al. Column flushing of phenanthrene andcopper (Ⅱ) co-contaminants from sandy soil using Tween 80 and citric acid [J]. Soil and Sediment Contamination:An International Journal, 2016, 25(1): 50-63. doi: 10.1080/15320383.2016.1088507 [10] 王效举. 植物修复技术在污染土壤修复中的应用 [J]. 西华大学学报(自然科版), 2019, 38(1): 65-70. WANG X J. The application of phytoremediation technology in the remediation of contaminated soil [J]. Journal of Xihua University (Natural Science Edition), 2019, 38(1): 65-70(in Chinese).
[11] 周启星, 宋玉芳. 污染土壤修复原理与方法[M]. 北京: 科学出版社, 2018. ZHOU Q X, SONG Y F. Principles and methods of contaminated soil remediation[M]. Beijing: Science Press, 2018(in Chinese).
[12] SINGER A C, BELL T, HEYWOOD C A, et al. Phytoremediation of mixed-contaminated soil using the hyperaccumulator plant Alyssum lesbiacum: Evidence of histidine as a measure of phytoextractable nickel [J]. Environmental Pollution, 2007, 147(1): 74-82. doi: 10.1016/j.envpol.2006.08.029 [13] ANA P G C M, ANTONIO O S S R, PAULA M L C. Remediation of heavy metal contaminated soils: Phytoremediation as a potentially promising clean-up technology [J]. Critical Reviews in Environmental Science and Technology, 2009, 39(8): 622-654. doi: 10.1080/10643380701798272 [14] LOMBI E, ZHAO F J, DDUNHAM S J, et al. Phytoremediation of heavy metal-contaminated soils [J]. Journal of Environment Quality, 2001, 30(6): 1919-1926. doi: 10.2134/jeq2001.1919 [15] 罗辉, 朱易春, 冯秀娟. 重金属污染土壤的生物修复技术研究进展 [J]. 安徽农业科学, 2015, 43(5): 224-227. doi: 10.3969/j.issn.0517-6611.2015.05.085 LUO H, ZHU Y C, FENG X J. Research progress in bioremediation technology of heavy metal contaminated soil [J]. Journal of Anhui Agricultural Sciences, 2015, 43(5): 224-227(in Chinese). doi: 10.3969/j.issn.0517-6611.2015.05.085
[16] 林道辉, 朱利中, 高彦征. 土壤有机污染植物修复的机理与影响因素 [J]. 应用生态学报, 2003, 14(10): 1799-1803. doi: 10.3321/j.issn:1001-9332.2003.10.047 LIN D H, ZHU L Z, GAO Y Z. The mechanism and influencing factors of phytoremediation of soil organic pollution [J]. Chinese Journal of Applied Ecology, 2003, 14(10): 1799-1803(in Chinese). doi: 10.3321/j.issn:1001-9332.2003.10.047
[17] 周际海, 袁颖红, 朱志保, 等. 土壤有机污染物生物修复技术研究进展 [J]. 生态环境学报, 2015, 24(2): 343-351. ZHOU J H, YUAN Y H, ZHU Z B, et al. Research progress in bioremediation technology of soil organic pollutants [J]. Ecology and Environmental Sciences, 2015, 24(2): 343-351(in Chinese).
[18] 韦朝阳, 陈同斌. 重金属超富集植物及植物修复技术研究进展 [J]. 生态学报, 2001, 21(7): 1196-1203. doi: 10.3321/j.issn:1000-0933.2001.07.024 WEI C Y, CHEN T B. Research progress on heavy metal hyperaccumulator plants and phytoremediation technology [J]. Acta Ecologica Sinica, 2001, 21(7): 1196-1203(in Chinese). doi: 10.3321/j.issn:1000-0933.2001.07.024
[19] CHIRAKKARA R A, REDDY K R. Plant species identification for phytoremediation of mixed contaminated soils[J]. Journal of Hazardous, Toxic, and Radioactive Waste, 2015, 19(4):282. [20] LI G R, CHEN F K, JIA S Y, et al. Effect of biochar on Cd and pyrene removal and bacteria communities variations in soils with culturing ryegrass ( Lolium perenne L. ) [J]. Environmental Pollution, 2020,265: 265. [21] DONG Q, FEI L, WANG C, et al. Cadmium excretion via leaf hydathodes in tall fescue and its phytoremediation potential [J]. Environmental Pollution, 2019, 252: 1406-1411. doi: 10.1016/j.envpol.2019.06.079 [22] 赵颖, 刘利军, 党晋华, 等. 污灌区复合污染土壤的植物修复研究 [J]. 生态环境学报, 2013, 22(7): 1208-1213. doi: 10.3969/j.issn.1674-5906.2013.07.020 ZHAO Y, LIU L J, DANG J H, et al. Phytoremediation of compound contaminated soil in sewage irrigation area [J]. Chinese Journal of Ecoenvironment, 2013, 22(7): 1208-1213(in Chinese). doi: 10.3969/j.issn.1674-5906.2013.07.020
[23] 李先梅, 肖易, 吴芸紫, 等. 华北油田石油污染土壤的修复植物筛选 [J]. 环境科学与技术, 2015, 38(6): 14-19. LI X M, XIAO Y, WU Y Z, et al. Screening of remediation plants for petroleum contaminated soil in Huabei Oilfield [J]. Environmental Science and Technology, 2015, 38(6): 14-19(in Chinese).
[24] NORINI M P, THOUIN H, MIARD F, et al. Mobility of Pb, Zn, Ba, As and Cd toward soil pore water and plants (willow and ryegrass) from a mine soil amended with biochar [J]. Elsevier Ltd, 2019, 232(2): 117-130. [25] 林诗悦, 冯义彪. 镉锌铅复合污染土壤的超富集植物修复能力研究 [J]. 环境工程, 2017, 35(3): 168-173. LIN S Y, FENG Y B. Study on the phytoremediation capacity of super-enriched soils contaminated by cadmium, zinc and lead [J]. Environmental Engineering, 2017, 35(3): 168-173(in Chinese).
[26] 蔡三山, 李晶, 王义勋, 等. 植物修复多氯联苯污染土壤的效果[J]. 湖北农业科学, 2013, 52(8): 1783-1785. CAI S S, LI J, WANG Y X, et al. The effect of phytoremediation of PCB contaminated soil[J]. Hubei Agricultural Sciences, 2013, 52(8): 1783-1785(in Chinese).
[27] 孟欣, 李刚, 高鹏, 等. 高羊茅对电动-微生物修复石油污染土壤的影响 [J]. 农业环境科学学报, 2020, 39(7): 1532-1539. doi: 10.11654/jaes.2019-1438 MENG X, LI G, GAO P, et al. The effect of tall fescue on electro-microbial remediation of petroleum-contaminated soil [J]. Journal of Agro-Environment Science, 2020, 39(7): 1532-1539(in Chinese). doi: 10.11654/jaes.2019-1438
[28] CHEN F, TAN M, MA J, et al. Efficient remediation of PAH-metal co-contaminated soil using microbial-plant combination: A greenhouse study [J]. Journal of Hazardous Materials, 2016, 302: 250-261. doi: 10.1016/j.jhazmat.2015.09.068 [29] 苗欣宇, 李潇. 孔雀草修复重金属-多氯联苯复合污染土壤的实验研究 [J]. 科学技术与工程, 2019, 19(18): 361-368. doi: 10.3969/j.issn.1671-1815.2019.18.055 MIAO X Y, LI X. Experimental study on remediation of heavy metal-polychlorinated biphenyl contaminated soil by maidenhair grass [J]. Science Technology and Engineering, 2019, 19(18): 361-368(in Chinese). doi: 10.3969/j.issn.1671-1815.2019.18.055
[30] 谢探春, 王国兵, 尹颖, 等. 柳树对镉-芘复合污染土壤的修复潜力与耐受性研究 [J]. 南京大学学报(自然科学), 2019, 55(2): 282-290. XIE T C, WANG G B, YIN Y, et al. Remediation potential and tolerance of willow to cadmium-pyrene compound contaminated soil [J]. Journal of Nanjing University (Natural Science), 2019, 55(2): 282-290(in Chinese).
[31] 万玉山, 陈艳秋, 吕浩, 等. 植物对Cd-B[α]P复合污染土壤的修复 [J]. 环境工程学报, 2017, 11(6): 3866-3872. doi: 10.12030/j.cjee.201603189 WAN Y S, CHEN Y Q, LU H, et al. Remediation of Cd-B[α]P compound contaminated soil by plants [J]. Chinese Journal of Environmental Engineering, 2017, 11(6): 3866-3872(in Chinese). doi: 10.12030/j.cjee.201603189
[32] WU L H, LI Z, HAN C L, et al. Phytoremediation of soil contaminated with cadmium, copper and polychlorinated biphenyls [J]. International Journal of Phytoremediation, 2012, 14(6): 570-584. doi: 10.1080/15226514.2011.619227 [33] CRISTALDI A, CONTI G O, JHO E H, et al. Phytoremediation of contaminated soils by heavy metals and PAHs. A brief review [J]. Environmental Technology & Innovation, 2017, 8: 309-326. [34] SARWAR N, IMRAN M, SHAHEEN M R, et al. Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives [J]. Chemosphere, 2017, 171: 710-721. doi: 10.1016/j.chemosphere.2016.12.116 [35] HASAN M M, UDDIN M N, SHARMEEN I A, et al. Assisting phytoremediation of heavy metals using chemical amendments [J]. Plants, 2019, 8(9): 295-309. doi: 10.3390/plants8090295 [36] FIRDAUS E B, SHAFIQ M, JAMIL S. Role of plant growth regulators and a saprobic fungus in enhancement of metal phytoextraction potential and stress, alleviation in pearl millet [J]. Journal of Hazardous Materials, 2012, 237(8): 186-193. [37] TASSI E, POUGET J, PETRUZZELLI G, et al. The effects of exogenous plant growth regulators in the phytoextraction of heavy metals [J]. Chemosphere, 2008, 71(1): 66-73. doi: 10.1016/j.chemosphere.2007.10.027 [38] LIAN M H, SUN L N, HU X M, et al. Influence of dissolved organic matter on Cd Speciation inrhizosphere soil solution and phytoextraction by Sedum alfredii and Sedum sarmentosum [J]. Polish Journal of Environmental Studies, 2015, 24(5): 2035-2044. [39] HASSAN I, MOHAMEDELHASSAN E, YANFUL E K, et al. Enhancement of bioremediation and phytoremediation using electrokinetics[J]. Advances in Bioremediation Phytoremediation 2018, 169:73202. [40] WU N Y, ZHANG S Z, HUANG H L, et al. Enhanced dissipation of phenanthrene in spiked soil by arbuscular mycorrhizal alfalfa combined with a non-ionic surfactant amendment [J]. Science of the Total Environment, 2008, 394(2): 230-236. [41] NI H W, ZHOU W J, ZHU L Z. Enhancing plant-microbe associated bioremediation of phenanthrene and pyrene contaminated soil by SDBS-Tween 80 mixed surfactants [J]. Acta Scientiae Circumstantiae, 2014, 26(5): 1071-1079. [42] WEI S H, XU L, DAI H P, et al. Ornamental hyperaccumulator Mirabilis jalapa L. phytoremediating combine contaminated soil enhanced by some chelators and surfactants [J]. Environmental Science and Pollution Research, 2018, 25(29): 29699-29704. doi: 10.1007/s11356-018-2973-3 [43] CHEN T R, LIU X Y, ZHANG X Y, et al. Effect of alkyl polyglucoside and nitrilotriacetic acid combined application on lead/pyrene bioavailability and dehydrogenase activity in co-contaminated soils [J]. Chemosphere, 2016, 154: 515-520. doi: 10.1016/j.chemosphere.2016.03.127 [44] LIU X Y, CAO L Y, ZHANG X Y, et al. Influence of alkyl polyglucoside, citric acid, and nitrilotriacetic acid on phytoremediation in pyrene-Pb co-contaminated soils [J]. International Journal of Phytoremediation, 2018, 20(10): 1055-1061. doi: 10.1080/15226514.2018.1460305 [45] 朱利中. 土壤有机污染物界面行为与调控原理[M]. 北京: 科学出版社, 2015. ZHU L Z. Interface behavior and regulation principle of soil organic pollutants[M]. Beijing: Science Press, 2015(in Chinese).
[46] WANG Q, LIU X Y, ZHANG X Y, et al. Influence of tea saponin on enhancing accessibility of pyrene and cadmium phytoremediated with Lolium multiflorum in co-contaminated soils [J]. Environmental Science and Pollution Research, 2016, 23: 5705-5711. doi: 10.1007/s11356-015-5784-9 [47] WANG G H, WANG Y, HU S H, et al. Cysteine-β-cyclodextrin enhanced phytoremediation of soil co-contaminated with phenanthrene and lead [J]. Environmental Science and Pollution Research, 2015, 22: 10107-10115. doi: 10.1007/s11356-015-4210-7 [48] WANG G H, JIANG Y, HU S H, et al. Aspartic acid-β-cyclodextrin-assisted phytoremediation of soil co-contaminated with cadmium and fluorene using alfalfa (Medicago sativa L.) [J]. Environmental Engineering Science, 2018, 35: 279-288. doi: 10.1089/ees.2016.0460 [49] LEE J, SUNG K. Effects of chelates on soil microbial properties, plant growth and heavy metal accumulation in plants [J]. Ecological Engineering, 2014, 73(12): 386-394. [50] LI F L, QIU Y H, XU X Y, et al. EDTA-enhanced phytoremediation of heavy metals from sludge soil by Italian ryegrass (Lolium perenne L.)[J]. Ecotoxicology and Environmental Safety, 2020, 191: 110185. DOI: org/10.1016/j.ecoenv.2020.110185. [51] LI Y, LUO J W, YU J D, et al. Improvement of the phytoremediation efficiency of Neyraudia reynaudiana for lead-zinc mine-contaminated soil under the interactive effect of earthworms and EDTA [J]. Scientific Reports, 2018, 8(1): 6417-6425. doi: 10.1038/s41598-018-24715-2 [52] 谢志宜, 陈能场. 缓释微胶囊EDTA强化玉米提取土壤中铅铜的效应研究 [J]. 生态环境学报, 2012, 21(6): 1125-1130. XIE Z Y, CHEN N C. Study on the effect of sustained-release microencapsulated EDTA on the extraction of lead and copper from soil by corn [J]. Ecology and Environmental Sciences, 2012, 21(6): 1125-1130(in Chinese).
[53] 卫泽斌, 陈晓红, 吴启堂, 等. 可生物降解螯合剂GLDA诱导东南景天修复重金属污染土壤的研究 [J]. 环境科学, 2015, 36(5): 1864-1869. WEI Z B, CHEN X H, WU Q T, et al. Research on the biodegradable chelating agent GLDA inducing the remediation of heavy metal contaminated soil by Sedum alfredii [J]. Environmental Science, 2015, 36(5): 1864-1869(in Chinese).
[54] ZHANG H Z, GUO Q J, YANG J X, et al. Comparison of chelates for enhancing Ricinus communis L. phytoremediation of Cd and Pb contaminated soil [J]. Ecotoxicology and Environmental Safety, 2016, 36(5): 57-62. [55] HU X X, LIU X Y, ZHANG X Y, et al. Increased accumulation of Pb and Cd from contaminated soil with Scirpus triqueter by the combined application of NTA and APG[J]. Chemosphere. 2017, 188: 397-402. [56] 韩廿, 黄益宗, 魏祥东, 等. 螯合剂对油葵修复镉砷复合污染土壤的影响 [J]. 农业环境科学学报, 2019, 38(8): 1891-1900. doi: 10.11654/jaes.2019-0568 HAN N, HUANG Y Z, WEI X D, et al. Effects of chelating agents on oil sunflower remediation of soil contaminated by cadmium and arsenic [J]. Journal of Agro-Environment Science, 2019, 38(8): 1891-1900(in Chinese). doi: 10.11654/jaes.2019-0568
[57] 韩廿. 螯合剂对植物修复镉砷复合污染农田的影响[D]. 北京: 中国农业科学院, 2020. HAN N. Effects of chelating agents on phytoremediation of farmland contaminated by cadmium and arsenic[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020(in Chinese).
[58] 王正, 孙兆军, SAMEH MOHAMED, 等. 胺鲜酯与螯合剂GLDA联合强化柳枝稷吸收积累镉效果 [J]. 环境科学, 2020, 41(12): 5589-5599. WANG Z, SUN Z J, SAMEH M, et al. The combination of diethyl aminoethyl hexanoate and the chelating agent GLDA enhances the cadmium absorption and accumulation effect of switchgrass [J]. Environmental Science, 2020, 41(12): 5589-5599(in Chinese).
[59] DIAO J R, ZHAO B W, MA F F, et al. Adsorption mechanism of a novel chelating surfactant by soil: Influence of the soil fractions [J]. Fresenius Environment Bulletin, 2020, 29(1): 231-238. [60] XIAO R, ALI A, WANG P, et al. Comparison of the feasibility of different washing solutions for combined soil washing and phytoremediation for the detoxification of cadmium (Cd) and zinc (Zn) in contaminated soil [J]. Chemosphere, 2019, 230: 510-518. doi: 10.1016/j.chemosphere.2019.05.121 [61] 樊扬帆, 刘云国, 龚小敏, 等. 外源螯合剂CA和NTA对苎麻修复铅镉复合污染土壤的影响 [J]. 环境工程学报, 2016, 10(8): 4547-4552. doi: 10.12030/j.cjee.201503113 FAN Y F, LIU Y G, GONG X M, et al. Effects of exogenous chelating agents CA and NTA on the remediation of lead and cadmium contaminated soil by ramie [J]. Chinese Journal of Environmental Engineering, 2016, 10(8): 4547-4552(in Chinese). doi: 10.12030/j.cjee.201503113
[62] SHANEEN S M, EISSA F I, GHANEM K M, et al. Heavy metals removal from aqueous solutions and wastewaters by using various byproducts [J]. Journal of Environmental Management, 2013, 128(20): 514-521. [63] KAMARI A, PULFORD I D, HARGREAVES J S J. Chitosan as a potential amendment to remediate metal contaminated soil acharacterisation study [J]. Colloids and Surfaces B:Biointerfaces, 2011, 82(1): 71-80. doi: 10.1016/j.colsurfb.2010.08.019 [64] WANG F Y, LING G, YIN R. Role of microbial inoculation and chitosan in phytoextraction of Cu, Zn, Pb and Cd by Elsholtzia splendens-a field case [J]. Environmental Pollution, 2007, 147(1): 248-255. doi: 10.1016/j.envpol.2006.08.005 [65] LI C, LONG C, WANG D, et al. Phytoremediation of cadmium (Cd) and uranium (U) contaminated soils by Brassica juncea L. enhanced with exogenous application of plant growth regulators [J]. Chemosphere, 2020, 242: 125112. doi: 10.1016/j.chemosphere.2019.125112 [66] VAMERALI T, BANDIERA M, HARTLEY W, et al. Assisted phytoremediation of mixed metal(loid)-polluted pyrite waste: Effects of foliar and substrate IBA application on fodder radish [J]. Chemosphere, 2011, 84(2): 213-219. doi: 10.1016/j.chemosphere.2011.04.052 [67] 李燕婷, 李秀英, 肖艳, 等. 叶面肥的营养机理及应用研究进展 [J]. 中国农业科学, 2009, 42(1): 162-172. doi: 10.3864/j.issn.0578-1752.2009.01.020 LI Y T, LI X Y, XIAO Y, et al. Research progress on the nutritional mechanism and application of foliar fertilizer [J]. Scientia Agricultura Sinica, 2009, 42(1): 162-172(in Chinese). doi: 10.3864/j.issn.0578-1752.2009.01.020
[68] 袁江, 李晔, 许剑臣, 等. 可生物降解螯合剂GLDA和植物激素共同诱导植物修复重金属污染土壤研究 [J]. 武汉理工大学学报, 2016, 38(2): 82-86. YUAN J, LI Y, XU J C, et al. Biodegradable chelating agent GLDA and plant hormones jointly induce phytoremediation of heavy metal contaminated soil [J]. Journal of Wuhan University of Technology, 2016, 38(2): 82-86(in Chinese).
[69] FSSLER E, EVANGEOU M W, ROBINSON B H, et al. Effects of indole-3-acetic acid(IAA) on sunlower growth and heavy metal uptake in combination with ethylene diamine disuccinic acid (EDDS) [J]. Chemosphere, 2010, 80(8): 901-907. doi: 10.1016/j.chemosphere.2010.04.077 [70] ELIANA T, JOEL P, GIANNIANTONIO P, et al. The effects of exogenous plant growth regulators in the phytoextraction of heavy metals [J]. Chemosphere, 2007, 71(1): 66-73. [71] KAYSER A, WENGER K, KELLER A, et al. Enhancement of phytoextraction of Zn, Cd, and Cu from calcareous soil: The use of NTA and sulfur amendments [J]. Environmental Science & Technology, 2000, 34(9): 1778-1783. [72] XU X, SHI J, CHEN Y, et al. Distribution and mobility of manganese in the hyperaccumulator plant Phytolacca acinosa Roxb. (Phytolaccaceae) [J]. Plant and Soil, 2006, 285(1-2): 323-331. doi: 10.1007/s11104-006-9018-2 [73] HEERAMAN D A, CLASSEN V P, ZASOSKI R J. Interaction of lime, organic matter and ferilizer on growth and uptake of arsenic and mercury by Zotro fescue (Vulpia myuros L. ) [J]. Plant and Soil, 2001, 23: 215-231. [74] 王浩朴. 石灰、硅酸钠和羟基磷灰石对烟草吸收镉、铅的影响[D]. 福州: 福建农林大学, 2017. WANG H P. The influence of lime, sodium silicate and hydroxyapatite on the absorption of cadmium and lead by tobacco[D]. Fuzhou: Fujian Agriculture and Forestry University, 2017(in Chinese).
[75] RAHELEH S, FARAMARZ D A, MOHSEN F, et al. Potential of Vetiver grass for the phytoremediation of a real multi-contaminated soil, assisted by electrokinetic [J]. Chemosphere, 2020, 246: 125802. doi: 10.1016/j.chemosphere.2019.125802 [76] CAMESELLE C, GOUVEIA S, URREJOLA S. Benefits of phytoremediation amended with DC electric field. Application to soils contaminated with heavy metals [J]. Chemosphere, 2019, 229: 481-488. doi: 10.1016/j.chemosphere.2019.04.222 [77] LUO J, CAI L M, QI S H, et al. The interactive effects between chelator and electric fields on the leaching risk of metals and the phytoremediation efficiency of Eucalyptus globulus [J]. Journal of Cleaner Production, 2018, 202: 830-837. doi: 10.1016/j.jclepro.2018.08.130 [78] ZHOU D M, CHEN H F, LONG C, et al. Ryegrass uptake of soil Cu/Zn induced by EDTA/EDDS together with a vertical direct-current electrical field [J]. Chemosphere, 2007, 67(8): 1671-1676. doi: 10.1016/j.chemosphere.2006.11.042 [79] CHENG K Y, LAI K M, WONG J W C. Effects of pig manure compost and nonionic-surfactant Tween 80 on phenanthrene and pyrene removal from soil vegetated with Agropyron elongatum [J]. Chemosphere, 2008, 73(5): 791-797. doi: 10.1016/j.chemosphere.2008.06.005 [80] GAO Y Z, LING W T, ZHU L Z. Surfactant-enhanced phytoremediation of soils contaminated with hydrophobic organic contaminants: Potential and assessment [J]. Pedosphere, 2007, 17(4): 409-418. doi: 10.1016/S1002-0160(07)60050-2 [81] LIU F H, WANG C H, LIU X Y, et al. Effects of alkyl polyglucoside (APG) on phytoremediation of PAH-contaminated soil by an aquatic plant in the Yangtze estuarine wetland [J]. Water, Air, & Soil Pollution, 2013, 224(7): 1-10. [82] 朱利中, 高彦征. 表面活性剂增效植物修复多环芳烃污染土壤的方法[P]. 浙江: CN1562420, 2005-01-12. ZHU L Z, GAO Y Z. A method for phytoremediation of polycyclic aromatic hydrocarbons contaminated soil with surfactant synergistic effect[P]. Zhejiang: CN1562420, 2005-01-12(in Chinese).
[83] ZHU L Z, FENG S L. Synergistic solubilization of polycyclic aromatic hydrocarbons by mixed anionic-nonionic surfactants [J]. Chemosphere, 2003, 53(5): 459-467. doi: 10.1016/S0045-6535(03)00541-1 [84] YANG K, ZHU L Z, ZHAO B W. Minimizing losses of nonionic and anionic surfactants to a montmorillonite saturated with calcium using their mixtures [J]. Journal of Colloid And Interface Science, 2005, 291(1): 59-66. doi: 10.1016/j.jcis.2005.04.088 [85] LU H N, WANG W, LI F, et al. Mixed-surfactant-enhanced phytoremediation of PAHs in soil: Bioavailability of PAHs and responses of microbial community structure [J]. The Science of the Total Environment, 2019, 22(8): 658-666. [86] MAO X, JIANG R, XIAO W, et al. Use of surfactants for the remediation of contaminated soils: A review [J]. Journal of Hazardous Materials, 2015, 285(7): 419-435. [87] 闻高志, 邵帅, 章浩, 等. 鼠李糖脂对蜈蚣草吸收富集Cd、Pb的影响 [J]. 环境生态学, 2019, 1(6): 86-90. WEN G Z, SHAO S, ZHANG H, et al. The effect of rhamnolipid on the absorption and enrichment of Cd and Pb by centipede grass [J]. Environmental Ecology, 2019, 1(6): 86-90(in Chinese).
[88] WU Y C, DING Q M, ZHU Q H, et al. Contributions of ryegrass, lignin and rhamnolipid to polycyclic aromatic hydrocarbon dissipation in an arable soil [J]. Elsevier Ltd, 2018, 118(11): 107-118. [89] ZHEN M N, CHEN H K, LIU Q L, et al. Combination of rhamnolipid and biochar in assisting phytoremediation of petroleum hydrocarbon contaminated soil using Spartina anglica [J]. Journal of Environmental Sciences, 2019, 85(11): 107-118. [90] 张晶, 林先贵, 李烜桢, 等. 菇渣和鼠李糖脂联合强化苜蓿修复多环芳烃污染土壤 [J]. 环境科学, 2010, 31(10): 2431-2438. ZHANG J, LIN X G, LI X Z, et al. Combination of mushroom residue and rhamnolipid to enhance alfalfa remediation of polycyclic aromatic hydrocarbon contaminated soil [J]. Environmental Science, 2010, 31(10): 2431-2438(in Chinese).
[91] 吕良禾. DDT污染土壤表面活性剂强化植物—微生物联合修复技术研究[D]. 沈阳: 沈阳大学, 2017. LV L H. Research on enhanced plant-microbe joint remediation technology with DDT contaminated soil surfactant[D]. Shenyang: Shenyang University, 2017(in Chinese).
[92] LIAO C J, LIANG X J, LU G N, et al. Effect of surfactant amendment to PAHs-contaminated soil for phytoremediation by maize (Zea mays L.) [J]. Ecotoxicology and Environmental Safety, 2015, 112(10): 1-6. [93] 李富兰, 颜杰. 生物表面活性剂的特性及其在环境污染治理中的应用 [J]. 安徽农业科学, 2011, 39(11): 6651-6652. doi: 10.3969/j.issn.0517-6611.2011.11.134 LI F L, YAN J. The characteristics of biosurfactants and their application in environmental pollution control [J]. Journal of Anhui Agricultural Sciences, 2011, 39(11): 6651-6652(in Chinese). doi: 10.3969/j.issn.0517-6611.2011.11.134
[94] WANG J X, ZU Y Q, CHEN H Y, et al. Effects of surfactants on accumulate of lead and zinc in Arabis alpina L. var. parviflora Franch [J]. Ecology & Environmental Sciences, 2010, 19(8): 1923-1929. [95] LIU X Y, MAO Y, ZHANG X Y, et al. Effects of PASP/NTA and TS on the phytoremediation of pyrene-nickel contaminated soil by Bidens pilosa L. [J]. Chemosphere, 2019, 237: 124502. doi: 10.1016/j.chemosphere.2019.124502 [96] YANG C J, ZHOU Q X, WEI S H, et al. Chemical-assisted phytoremediation of Cd-PAHs contaminated soils using Solarium nigrum L [J]. International Journal of Phytoremediation, 2011, 13(8): 818-833. doi: 10.1080/15226514.2010.532179 [97] 刁静茹. LED3A的增溶/螯合性能及其对Cu(Ⅱ)-菲复合污染黄土的洗脱作用及机理[D]. 兰州: 兰州交通大学, 2017. DIAO J R. The solubilization/chelating properties of LED3A and its elution effect and mechanism on Cu(Ⅱ)-phenanthrene composite polluted loess[D]. Lanzhou: Lanzhou Jiaotong University, 2017(in Chinese).
[98] 刁静茹, 赵保卫, 马锋锋, 等. 螯合型表面活性剂强化黑麦草修复Cd污染水体 [J]. 中国环境科学, 2020, 40(5): 2238-2245. doi: 10.3969/j.issn.1000-6923.2020.05.046 DIAO J R, ZHAO B W, MA F F, et al. Chelating surfactants strengthen ryegrass to repair Cd polluted water bodies [J]. China Environmental Science, 2020, 40(5): 2238-2245(in Chinese). doi: 10.3969/j.issn.1000-6923.2020.05.046
[99] SONG S S, ZHU L Z, ZHOU W J. Simultaneous removal of phenanthrene and cadmium from contaminated soils by saponin, a plant-derived biosurfactant [J]. Enviroonmental Pollution, 2008, 156(3): 1368-1370. doi: 10.1016/j.envpol.2008.06.018 [100] MOHAMMADI A, SOHRABI B, RASHIDI M, et al. The extracted saponin from ginseng as an efficient renewable biosurfactant for desorption enhancement of phenanthrene and nickel [J]. International Journal of Environmental Science and Technology, 2019, 16(1): 181-190. doi: 10.1007/s13762-017-1564-z [101] TAO Q, LI J X, LIU Y K, et al. Ochrobactrum intermedium and saponin assisted phytoremediation of Cd and B[a]P co-contaminated soil by Cd-hyperaccumulator Sedum alfredii [J]. Chemosphere, 2020, 245(4): 125547. [102] XIA H L, CHI X Y, YAN Z J, et al. Enhancing plant uptake of polychlorinated biphenyls and cadmium using tea saponin [J]. Bioresource Technology, 2009, 100(20): 4649-4653. doi: 10.1016/j.biortech.2009.04.069 [103] IAN J A, KIRK T S, RINA H, et al. Cyclodextrin enhanced biodegradation of polycyclic aromatic hydrocarbons and phenols in contaminated soil slurries [J]. Environmental Science & Technology, 2007, 41(15): 5498-5504. [104] BRUSSEAU M L, WANG X, WANG W Z. Simultaneous elution of heavy metals and organic compounds from soil by cyclodextrin [J]. Environmental Science & Technology, 1997, 31(4): 1087-1092. [105] CHEN Y X, TANG X J, CHEEMA S A, et al. β-cyclodextrin enhanced phytoremediation of aged PCBs-contaminated soil from e-waste recycling area [J]. Environ. Monit, 2010, 12(7): 1482-1489. doi: 10.1039/c0em00029a [106] LI X, CHEN Y O, YU L Y, et al. Effects of β-cyclodextrin on phytoremediation of soil co-contaminated with Cd and BDE-209 by arbuscular mycorrhizal amaranth [J]. Chemosphere, 2019, 220: 910-920. doi: 10.1016/j.chemosphere.2018.12.211 [107] 王银. 巯基化-β-环糊精的制备及对铅-菲复合污染土壤修复的强化作用[D]. 南昌: 东华理工大学, 2014. WANG Y. Preparation of sulfhydryl-β-cyclodextrin and its strengthening effect on lead-phenanthrene composite contaminated soil[D]. Nanchang: East China University of Technology, 2014(in Chinese).
[108] WANG G H, JIANG Y, HU S H, et al. spartic Acid-β-cyclodextrin-assisted phytoremediation of soil cocontaminated with cadmium and fluorene using Alfalfa (Medicago sativa L. ) [J]. Journal of Yunnan University:Natural Sciences Edition, 2019, 41: 638-644.