-
镉(Cadmium)是自然环境中普遍存在且毒性极强的重金属元素,几乎所有土壤、地表水和植物体内均含有镉元素,镉化学活性强且易于转化,故其一直是国内外土壤重金属污染研究的重点和热点[1]. 镉是贵州省主要环境污染元素之一[2]. 土壤中镉成因复杂、空间差异明显,贵州地表土壤和沉积物中镉的地球化学背景值为0.31×10−6,贵州地表介质具有镉高背景分布特征[3]. 贵州遵义地区是贵州省农业生产的重要基地,遵义地区工业结构主要以资源型和内源型为主,在生产过程中物耗、能耗都较高,污染较严重[4].
大气沉降是地表生态环境中金属元素的主要来源之一[5],是农耕区土壤重金属元素的重要输入途径之一[6-7],也是严重影响农田生态系统循环的重要因子. 工业废气、车辆尾气、化石燃料燃烧等产生大量含镉的有害气体和粉尘,经过降水和自身重力的沉降而进入土壤[8],从而对土壤镉的分布造成影响. 大气沉降一直是环境科学领域众多学者重点关注的研究对象之一[9-13].
大气沉降样品的采集分为主动采样和被动采样. 主动采样技术能够准确获得大气体积,但需要电力设施和现场维护,并不利于在偏远的极地或高山环境中使用;被动采样技术具有不需要电源和操作简单的优势,可以在上述恶劣环境中进行采集[14],因此采用苔藓为监测物质的苔袋法来研究重金属大气干湿沉降、污染物来源、迁移及时空分布等得到了广泛应用[15-17]. 该方法具有以下优点:(1)暴露时间易控制;(2)可以反映出污染物沉积的相对速率;(3)背景浓度明确,不受根系吸收干扰;(4)简便经济、选点灵活,适用于全年监测等[18-23]. 大气沉降镉一般停留在表层土壤[24],其原因和机理有待揭示.
本文利用苔袋法采集遵义地区大气沉降、采集遵义地区表层土壤及剖面土壤,分析其表层土壤镉含量及剖面土壤镉分布特征、化学形态和镉吸附热力学,对揭示遵义地区表层农业土壤镉污染状况以及镉大气沉降通量对表层土壤的影响具有一定的意义.
贵州遵义地区镉大气沉降通量与表层土壤分布特征
Atmospheric deposition flux of cadmium and distribution characteristics of surface soil in Zunyi, Guizhou
-
摘要: 利用苔袋法(Moss Bag)研究遵义地区镉大气沉降通量;采集表层土壤样889 个和土壤剖面样20 个检测镉元素含量,并对土壤镉元素进行化学形态分析和吸附热力学实验。结果表明,该区域尺度表层土壤镉含量在0.099—2.656 mg·kg−1,土壤镉元素的块金值与基台值之比在16.54%具有强烈的空间相关性,主变程为0.0488,呈非均匀分布;土壤剖面表现为0—15 cm镉含量最高且镉含量随深度增加而降低;镉元素大气沉降总通量最小值为0.32 µg·m−2·d−1,最大值为14.9 µg·m−2·d−1,高于全国平均值;表层土壤镉化学形态以可交换态和铁锰氧化物结合态为主,可交换态占到土壤镉形态的18%—40%;镉|∆Go|<20 kJ·mol−1表层土壤镉吸附过程属于物理吸附。因此大气沉降与表层土壤接触后发生物理吸附,这一吸附为固液吸附且扩散速度慢,因此大气沉降中的镉一般停留在土壤表层不易向下扩散。实验结果证明该地区镉大气沉降影响耕作层土壤镉含量,为农业生产带来风险,应引起足够的重视。Abstract: Using Moss Bag Method to study stmospheric deposition flux in Zunyi Area. Collect 889 surface soils and 20 soil profiles to detect cadmium content. And conduct chemical species analysis and adsorption thermodynamic experiments on soil cadmium. The results show: The cadmium content in the surface soil is 0.099—2.656 mg·kg−1. The nugget value to the abutment value of soil cadmium ratio is 16.54% and showing soil cadmium has a strong spatial correlation. The main variation range of cadmium in the surface soil is 0.0488, showing a non-uniform distribution. The soil profile shows that the surface layer is higher than the core soil layer and tends to be stable at 40—60 cm. The minimum total flux of atmospheric deposition of cadmium is 0.32 µg·m−2·d−1, the maximum is 14.9 µg·m−2·d−1, which is higher than the national average. The chemical forms of surface soil cadmium are mainly commutative state and iron manganese oxide combined state accounts for 18%—40% of soil cadmium forms. Cadmium|∆Go|<20 kJ·mol−1 thus proves that the adsorption process of surface soil cadmium belongs to physical adsorption. Therefore, physical adsorption occurs after atmospheric deposition and surface soil contact. This adsorption is solid-liquid adsorption and has a slow diffusion rate, cadmium in atmospheric deposition generally stays on the surface of the soil and is not easy to diffuse downward. The experimental results prove that the atmospheric deposition of cadmium in this area affects the cadmium content of the cultivated soil and brings risks to agricultural production, which should be taken seriously.
-
Key words:
- top soil /
- cadmium /
- sedimentation flux /
- distribution characteristics /
- Guizhou Zunyi
-
表 1 Tessier法步骤
Table 1. Tessier method steps
步骤Step 实验提取试剂
Experimental extraction reagent实验条件
Experimental conditions土/液Soil/Liquid 1 1 mol·L−1MgCl2(pH=7.0) 25 ℃下振荡1 h 1∶8 2 1 mol·L−1NaAc(HAc调pH=5.0) 25 ℃下振荡5 h 1∶8 3 0.04 mol·L−1 NH2OH·HCl的25% HAc溶液 96 ℃水浴浸提6 h 1∶20
40.01 mol·L−1 HNO3、30% H2O2
3.2 mol·L−1 NH4Ac、20% HNO3溶液85 ℃水浴浸提2 h
85 ℃水浴浸提2 h
25 ℃下振荡30 min1∶8
1∶11
1∶20表 2 遵义地区表层土壤镉含量的描述统计
Table 2. Descriptive statistics of cadmium content in surface soil in Zunyi area
元素
Element样品数
Number of
samples平均值
Average
value标准差
Standard
deviation中位数
Median范围
Range变异系数
Coefficient
of variation峰度Kurtosis 偏度Skewness Cd 889 0.357 0.24 0.344 0.099—2.565 0.67 13.66 3.15 异常值检验后结果统计
Result statistics after outlier test元素
Element样品数
Number of samples平均值
Average value标准差
Standard deviation中位数Median 范围
Range变异系数
Coefficient
of variation峰度Kurtosis 偏度Skewness Cd 889 0.356 0.217 0.344 0.099—2.07 0.61 8.66 2.62 表 3 变异函数模型及变异参数
Table 3. Variation function model and variation parameters
元素
Element变异函数模型
Variogram model块金值
Nugget value基台值
Abutment value主变程
Main variable range块金值/基台值/%
Nugget value/abutment valueCd Spherical 0.0274 0.1658 0.0488 16.54 表 4 遵义地区大气总沉降通量统计结果 (µg·m−2·d−1)
Table 4. Statistical results of total atmospheric deposition flux in Zunyi area (µg·m−2·d−1)
采样点Sampling site 1—3月
January —
March4—6月
April —
June7—9月
July —
September10—12月
October —
December最大值
Max最小值
Minimum标准差
Standard deviation变异系数
Coefficient of variationS1 10.5 5.7 1.2 12.8 12.8 1.2 5.16 0.68 S2 11.9 5.7 1.2 14.9 14.9 1.2 6.15 0.73 S3 8.7 4.3 0.91 12.8 12.8 0.91 5.18 0.78 S4 5.3 3.3 0.63 7.5 7.5 0.63 2.92 0.70 S5 3.3 0.9 0.32 5.8 5.8 0.32 2.50 0.97 S6 8.9 1.9 0.42 6.7 8.9 0.42 3.98 0.89 S7 10.3 1.1 0.64 8.2 10.3 0.64 4.92 0.97 S8 13.1 1.5 0.26 5.3 13.1 0.26 5.79 1.15 表 5 遵义地区与其他地区镉大气沉降通量(µg·m−2·d−1)
Table 5. Cadmium atmospheric deposition flux in Zunyi area and other areas (µg·m−2·d−1)
表 6 遵义地区镉大气沉降通量(µg·m−2·d−1)
Table 6. The atmospheric dry deposition flux of cadmium in Zunyi area (µg·m−2·d−1)
采样点Sampling site 1—3月
January to March4—6月
April to
June7—9月
July to September10—12月
October to December最大值
Max最小值Minimum 标准差
Standard deviation变异系数
Coefficient of variation干
沉
降S1 6.3 2.10 0.42 8.5 8.5 0.42 3.72 0.86 S2 7.6 2.50 0.51 9.2 9.2 0.51 4.12 0.83 S3 5.2 1.90 0.31 8.1 8.1 0.31 3.47 0.90 S4 3.1 1.20 0.25 5.2 5.2 0.25 2.19 0.90 S5 2.1 0.21 0.12 2.3 2.3 0.12 1.18 1.00 S6 5.7 0.72 0.15 4.2 5.7 0.15 2.69 1.00 S7 6.2 0.43 0.28 4.6 6.2 0.28 2.99 1.04 S8 9.1 0.52 0.11 3.5 9.1 0.11 4.15 1.25 湿
沉
降S1 4.2 3.60 0.78 4.3 4.3 0.78 1.65 0.51 S2 4.3 3.20 0.69 5.7 5.7 0.69 2.12 0.61 S3 3.5 2.40 0.60 4.7 4.7 0.60 1.74 0.62 S4 2.2 2.10 0.38 2.3 2.3 0.38 0.91 0.52 S5 1.2 0.69 0.20 3.5 3.5 0.20 1.46 1.04 S6 3.2 1.20 0.27 2.5 3.2 0.27 1.31 0.74 S7 4.1 0.67 0.36 3.6 4.1 0.36 1.94 0.89 S8 4.0 1.00 0.15 1.8 4.0 0.15 1.65 0.96 表 7 镉在土壤上的吸附热力学参数
Table 7. Adsorptionthermodynamic parameters of Cd in soils ofnineareas
土壤编号
Soil numberKF ∆G0/(kJ·mol−1) ∆H0/
(kJ·mol−1)∆S0/
(kJ·(mol·K)−1)288 K 298 K 308 K 288 K 298 K 308 K 1号 63.665 96.472 1326.173 −9.946 −11.321 −18.412 199.991 0.709 2号 34.857 46.602 29.689 −8.503 −9.518 −8.683 −34.404 −0.0835 3号 37.932 53.543 74.542 −8.706 −9.862 −11.041 25.249 0.118 4号 1.866 51.439 46.541 −1.494 −9.763 −9.778 −9.295 0.00157 5号 11.013 17.828 17.997 −5.744 −7.137 −7.401 0.721 0.0264 -
[1] 龙家寰, 刘鸿雁, 刘方, 等. 贵州省典型污染区土壤中镉的空间分布及影响机制 [J]. 土壤通报, 2014, 45(5): 1252-1259. LONG J H, LIU H Y, LIU F, et al. Spatial distribution and impact mechanism of cadmium in soil in typical polluted areas in Guizhou Province [J]. Soil Bulletin, 2014, 45(5): 1252-1259(in Chinese).
[2] 杨永忠. 贵州环境异常元素地球化学研究 [J]. 贵州地质, 1999(1): 66-72. YANG Z H. Research on the geochemistry of environmental abnormal elements in Guizhou [J]. Guizhou Geology, 1999(1): 66-72(in Chinese).
[3] 何邵麟, 龙超林, 刘应忠, 等. 贵州地表土壤及沉积物中镉的地球化学与环境问题 [J]. 贵州地质, 2004(4): 245-250. doi: 10.3969/j.issn.1000-5943.2004.04.008 HE S L, LONG C L, LIU Y Z, et al. Geochemistry and environmental issues of cadmium in surface soils and sediments in Guizhou [J]. Guizhou Geology, 2004(4): 245-250(in Chinese). doi: 10.3969/j.issn.1000-5943.2004.04.008
[4] 张明时, 滕明德, 李秋华, 等. 贵州省遵义地区表层土壤中多环芳烃分布特征 [J]. 江西师范大学学报(自然科学版), 2009, 33(6): 716-720. ZHANG M S, TENG M D, LI Q H, et al. Distribution characteristics of polycyclic aromatic hydrocarbons in surface soils in Zunyi area of Guizhou Province [J]. Journal of Jiangxi Normal University (Natural Science Edition), 2009, 33(6): 716-720(in Chinese).
[5] PAN Y P, WANG Y S. Atmospheric wet and dry deposition of trace elements at 10 sites in Northern China[J]. Atmospheric Chemistry and Physics, 2015, 15, 951–972. [6] 邹海明, 李粉茹, 官楠, 等. 大气中TSP和降尘对土壤重金属累积的影响 [J]. 中国农学通报, 2006, 22(5): 393-395. doi: 10.3969/j.issn.1000-6850.2006.05.101 ZOU H M, LI F R, GUAN N, et al. The influence of TSP and dustfall in the atmosphere on the accumulation of heavy metals in soil [J]. Chinese Agricultural Science Bulletin, 2006, 22(5): 393-395(in Chinese). doi: 10.3969/j.issn.1000-6850.2006.05.101
[7] 张国忠, 黄威, 潘月鹏, 等. 河北典型农田大气重金属干沉降通量及来源解析 [J]. 中国生态农业学报, 2019, 27(8): 1245-1254. ZHANG G Z, HUANG W, PAN Y P, et al. Flux and source analysis of atmospheric dry deposition of heavy metals in typical farmland in Hebei [J]. Chinese Journal of Eco-Agriculture, 2019, 27(8): 1245-1254(in Chinese).
[8] 张钊, 张海清. 湖南省镉污染土壤现状及建议 [J]. 现代农业科技, 2019(10): 150-151,153. doi: 10.3969/j.issn.1007-5739.2019.10.098 ZHANG Z, ZHANG H Q. Current Status and suggestions of cadmium-contaminated soil in Hunan Province [J]. Modern Agricultural Science and Technology, 2019(10): 150-151,153(in Chinese). doi: 10.3969/j.issn.1007-5739.2019.10.098
[9] 杨懂艳, 李秀金, 陈圆圆, 等. 北京市湿沉降特征分析 [J]. 环境科学, 2011, 32(7): 1867-1873. YANG D Y, LI X J, CHEN Y Y, et al. Analysis on the characteristics of wet deposition in Beijing [J]. Environmental Science, 2011, 32(7): 1867-1873(in Chinese).
[10] 唐先干, 杨金玲, 张甘霖. 皖南山区降水酸性特征与元素沉降通量 [J]. 环境科学, 2009, 30(2): 356-361. doi: 10.3321/j.issn:0250-3301.2009.02.007 TANG X G, YANG J L, ZHANG G L. The acid characteristics of precipitation and element deposition fluxes in the mountainous areas of southern Anhui [J]. Environmental Science, 2009, 30(2): 356-361(in Chinese). doi: 10.3321/j.issn:0250-3301.2009.02.007
[11] 李月梅, 潘月鹏, 王跃思, 等. 华北工业城市降水中金属元素污染特征及来源 [J]. 环境科学, 2012, 33(11): 3712-3717. LI Y M, PAN Y P, WANG Y S, et al. Pollution characteristics and sources of metal elements in precipitation in industrial cities in North China [J]. Environmental Science, 2012, 33(11): 3712-3717(in Chinese).
[12] 李波, 刘娅, 姚艳, 等. 吉林省西部地区大气干湿沉降元素通量及来源 [J]. 吉林大学学报:地球科学版, 2010, 40(1): 176-182. LI B, LIU Y, YAO Y, et al. Elemental fluxes and sources of atmospheric dry and wet deposition in the western part of Jilin Province [J]. Journal of Jilin University:Earth Science Edition, 2010, 40(1): 176-182(in Chinese).
[13] SAKATA M, TANI Y, TAKAG T i. Wet and dry deposition fluxes of trace elements in Tokyo Bay [J]. Atmospheric Environment, 2008, 42(23): 5913-5922. doi: 10.1016/j.atmosenv.2008.03.027 [14] 张淑娟, 杨瑞强. 苔藓和地衣在指示偏远地区大气持久性有机污染物中的应用 [J]. 环境化学, 2014, 33(1): 37-45. ZHANG S J, YANG R Q. Application of moss and lichen in indicating atmospheric persistent organic pollutants in remote areas [J]. Environmental Chemistry, 2014, 33(1): 37-45(in Chinese).
[15] FERNÁDEZ J A, CARBALLEIRA A. A comparison of indigenous mosses and topsoils for use in monitoring atmospheric heavy metal deposition in Galicia (northwest Spain) [J]. Environmental Pollution, 2001, 114(3): 431-441. doi: 10.1016/S0269-7491(00)00229-3 [16] BARANDOVSKI L, CEKOVA M, FRONTASYEVA M V, et al. Atmospheric deposition of trace element pollutants in Macedonia studied by the moss bio monitoring technique [J]. Environmental Monitoring and Assessment, 2007, 138: 107-118. [17] DRAGOVIC S, MIHAILOVIC N. Analysis of mosses and topsoils for detecting sources of heavy metal pollution: multivariate and enrichment factor analysis [J]. Environmental Monitoring and Assessment, 2008, 157: 383-390. [18] 曹同, 王敏, 娄玉霞, 等. 监测环境污染的藓袋法技术及其应用 [J]. 上海师范大学学报(自然科学版), 2011, 40(2): 213-220. CAO T, WANG M, LOU Y X, et al. Moss bag method for monitoring environmental pollution and its application [J]. Journal of Shanghai Normal University (Natural Science Edition), 2011, 40(2): 213-220(in Chinese).
[19] BÜSCHER P, KOEDAM N, SPEYBROECKD V. Cation-exchange properties and adaptation to soil acidity in bryophytes [J]. New Phytologist, 1990, 115(2): 177-186. [20] CARBALLERIA A, FERNÁNDEZ J Á, ABOAL J R, et al. Moss: A powerful tool for dioxin monitoring [J]. Atmospheric Environment, 2006, 40(30): 5776-5786. doi: 10.1016/j.atmosenv.2006.05.016 [21] RÜHLING A. A European survey of atmospheric heavy metal deposition in 2000-2001 [J]. Environmental Pollution, 2000, 120: 23-25. [22] STOBART A K, VEVOR W T, BUKTHARI I A, et al. The effect of Cd on the biosynthesis of chlorophyll in leaves of barley [J]. Physiol Plant, 1985, 63: 293-298. doi: 10.1111/j.1399-3054.1985.tb04268.x [23] 吴虹玥, 包维楷, 王安. 苔藓植物的化学元素含量及其特点 [J]. 生态学杂志, 2005, 24(1): 58-64. doi: 10.3321/j.issn:1000-4890.2005.01.012 WU H Y, BAO W K, WANG A. The content and characteristics of chemical elements in bryophytes [J]. Journal of Ecology, 2005, 24(1): 58-64(in Chinese). doi: 10.3321/j.issn:1000-4890.2005.01.012
[24] 赵晓军, 陆泗进, 许人骥, 等. 土壤重金属镉标准值差异比较研究与建议 [J]. 环境科学, 2014, 34(4): 1491-1497. ZHAO X J, LIU S J, XU R J, et al. Comparative study and suggestions on the difference of the standard value of soil heavy metal cadmium [J]. Environmental Science, 2014, 34(4): 1491-1497(in Chinese).
[25] 夏增禄, 李森照, 穆从如, 等. 北京地区重金属在土壤中的纵向分布和迁移 [J]. 环境科学学报, 1985,6(1): 105-112. XIA Z L, LI S Z, MU C R, et al. Longitudinal distribution and migration of heavy metals in soil in Beijing area [J]. Acta Scientiae Circumstantiae, 1985,6(1): 105-112(in Chinese).
[26] ARES A, ABOAL J. R, CARBALLEIRA A, et al. Moss bag biomonitoring: A methodological review [J]. Science of the Total Environment, 2012, 432: 143-158. doi: 10.1016/j.scitotenv.2012.05.087 [27] 任加国, 王彬, 师华定, 等. 沱江上源支流土壤重金属污染空间相关性及变异解析 [J]. 农业环境科学学报, 2020, 39(3): 530-541. REN J G, WANG B, SHI H D, et al. Analysis of spatial correlation and variation of soil heavy metal pollution in the upper tributary of Tuojiang River [J]. Journal of Agricultural Environmental Sciences, 2020, 39(3): 530-541(in Chinese).
[28] 丛源, 陈岳龙, 杨忠芳, 等. 北京平原区元素的大气干湿沉降通量 [J]. 地质通报, 2008, 27(2): 257-264. doi: 10.3969/j.issn.1671-2552.2008.02.014 CONG Y, CHEN Y L, YANG Z F, et al. Atmospheric dry and wet deposition fluxes of elements in the Beijing Plain [J]. Geological Bulletin, 2008, 27(2): 257-264(in Chinese). doi: 10.3969/j.issn.1671-2552.2008.02.014
[29] 张国忠, 崔阳, 潘月鹏, 等. 渤海湾大气金属元素沉降和来源解析研究 [J]. 环境科学学报, 2019, 39(8): 2708-2716. ZHANG G Z, CUI Y, PAN Y P, et al. Study on the deposition and source analysis of atmospheric metal elements in the Bohai Bay [J]. Acta Scientiae Circumstantiae, 2019, 39(8): 2708-2716(in Chinese).
[30] SAKATA M, ASKURA K. Factors contributing to seasonal variations in wet deposition fluxes of trace elements at sites along Japan Sea coast [J]. Atmospheric Environment, 2009, 43(25): 3867-3875. doi: 10.1016/j.atmosenv.2009.05.001 [31] 杨忠平, 卢文喜, 龙玉桥, 等. 长春市城区大气湿沉降中重金属及pH值调查 [J]. 吉林大学学报:地球科学版, 2009, 39(5): 887-892. YANG Z P, LU W X, LONG Y Q, et al. Investigation of heavy metals and ph value in atmospheric wet deposition in Changchun City [J]. Journal of Jilin University:Earth Science Edition, 2009, 39(5): 887-892(in Chinese).
[32] 汤洁, 李娜, 李海毅, 等. 大庆市大气干湿沉降重金属元素通量及来源 [J]. 吉林大学学报(地球科学版), 2012, 42(2): 507-513. TANG J, LI N, LI H Y, et al. The flux and source of heavy metal elements in atmospheric dry and wet deposition in Daqing City [J]. Journal of Jilin University (Earth Science Edition), 2012, 42(2): 507-513(in Chinese).
[33] 汤奇峰, 杨忠芳, 张本仁, 等. 成都经济区As等元素大气干湿沉降通量及来源研究 [J]. 地学前缘, 2007(3): 213-222. doi: 10.3321/j.issn:1005-2321.2007.03.020 TANG Q F, YANG Z F, ZHANG B R, et al. Research on atmospheric dry and wet deposition fluxes and sources of As and other elements in Chengdu Economic Zone [J]. Earth Science Frontier, 2007(3): 213-222(in Chinese). doi: 10.3321/j.issn:1005-2321.2007.03.020
[34] 陶美娟, 周静, 梁家妮, 等. 大型铜冶炼厂周边农田区大气重金属沉降特征研究 [J]. 农业环境科学学报, 2014, 33(7): 1328-1334. doi: 10.11654/jaes.2014.07.011 TAO M J, ZHOU J, LIANG J N, et al. Study on the characteristics of atmospheric heavy metal deposition in the farmland surrounding a large copper smelter [J]. Journal of Agricultural Environmental Sciences, 2014, 33(7): 1328-1334(in Chinese). doi: 10.11654/jaes.2014.07.011
[35] ANNIBALDI A, TRUZZI C, ILLUMINATI S, et al. Determination of water-soluble and insoluble (dilute-HCl-extractable) fractions of Cd, Pb and Cu in Antarctic aerosol by square wave anodic stripping voltammetry: Distribution and summer seasonal evolution at Terra Nova Bay (Victoria Land) [J]. Analytical and Bioanalytical Chemistry, 2007, 387(3): 977-998. [36] 谭红, 何锦林, 罗艳, 等. 土法炼锌地区大气中镉的迁移 [J]. 环境化学, 2014, 33(4): 597-603. doi: 10.7524/j.issn.0254-6108.2014.04.015 TAN H, HE J L, LUO Y, et al. The migration of cadmium in the atmosphere in the area of indigenous zinc smelting [J]. Environmental Chemistry, 2014, 33(4): 597-603(in Chinese). doi: 10.7524/j.issn.0254-6108.2014.04.015
[37] 陈强, 马明杰, 游远航, 等. 广东大宝山矿区附近农田土壤镉元素输入通量研究 [J]. 华南地质与矿产, 2020, 36(2): 147-152. doi: 10.3969/j.issn.1007-3701.2020.02.006 CHEN Q, MA J M, YOU Y H, et al. Study on the input flux of cadmium in the soil near the Dabaoshan mining area in Guangdong [J]. Geology and Mineral Resources of South China, 2020, 36(2): 147-152(in Chinese). doi: 10.3969/j.issn.1007-3701.2020.02.006
[38] 张敏, 王美娥, 陈卫平, 等. 湖南攸县典型煤矿和工厂区水稻田土壤镉污染特征及污染途径分析 [J]. 环境科学, 2015, 36(4): 1425-1430. ZHANG M, WANG M E, CHEN W P, et al. Analysis of cadmium pollution characteristics and pollution pathways of rice fields in typical coal mines and factories in You County, Hunan [J]. Environmental Science, 2015, 36(4): 1425-1430(in Chinese).
[39] 费志军, 何锦林. 贵州喀斯特农业土壤中镉的吸附解吸特性分析 [J]. 贵州农业科学, 2018, 46(12): 62-67. doi: 10.3969/j.issn.1001-3601.2018.12.014 FEI Z J, HE J L. Analysis of the adsorption and desorption characteristics of cadmium in karst agricultural soils in Guizhou [J]. Guizhou Agricultural Sciences, 2018, 46(12): 62-67(in Chinese). doi: 10.3969/j.issn.1001-3601.2018.12.014
[40] ZHANG J Y, WU C D, JIA A Y, et al. Kinetics, equilibrium, and thermodynamics of the sorption of p-nitrophenol on two variable charge soils of Southern China [J]. Applied Surface Science, 2014, 298(8): 95-101. [41] BARGAGLI R. Trace elements in terrestrial plants[M]. Berlin: Springer; 1998. [42] GIORDANO S, ADAMO P, SORBOS, et al. Atmospheric trace metal pollution in the Naples urban area based on results from moss and lichen bags [J]. Environ Pollut, 205, 136: 431-42. [43] 郑乃嘉, 谭吉华, 段菁春, 等. 大气颗粒物水溶性重金属元素研究进展 [J]. 环境化学, 2014, 33(12): 2109-2116. doi: 10.7524/j.issn.0254-6108.2014.12.005 ZHENG N J, TAN J H, DUAN J C, et al. Research progress of water-soluble heavy metal elements in atmospheric particulate matter [J]. Environmental Chemistry, 2014, 33(12): 2109-2116(in Chinese). doi: 10.7524/j.issn.0254-6108.2014.12.005