-
大气颗粒物PM2.5与PM10除了来源于自然界本身以外,其产生多与人类的活动有关[1-2]。工业生产及燃料的使用过程中会造成大量的颗粒物排放,除了会污染排放源周边的环境之外,还会通过大气运动进行远距离传输,进而危害远处区域的大气环境[3]。除此以外,风力及其他的人为活动也会使已经沉降至地面的颗粒物获得一定的动力条件,从而再次悬浮造成大气污染[4]。
重金属是大气颗粒物的主要组分之一,能够在大气环境中长期滞留,并主要通过皮肤接触,口腔摄入,呼吸道吸入等途径进入人体[5-6],当重金属通过生物富集作用蓄积至一定水平后,会对人体产生毒性作用[7]。我国学者对大气颗粒物重金属的污染特征,来源解析以及重金属健康风险评价等方面做了大量研究[8-11],研究地点多集中于我国东南沿海地区和中部及东北部的各大城市,对于西部地区的研究案例相对较少。国外学者也进行了大量相关研究,并且研究区域涉及较广,除欧美一些大城市外,一些人口较少的地区也有所涉及[12-13]。
嘉峪关市位于我国甘肃省河西走廊地区,是我国西北地区最大的钢铁企业酒钢集团的所在地,被称作“戈壁钢城”,是典型的工业城市,其产业以冶金工业为主,化工、机械加工等产业为辅[14]。虽然嘉峪关地处河西走廊地区,拥有良好的风能资源[15]及污染扩散条件,但是在冬季,工业生产排放、燃煤取暖、机动车尾气排放等人为活动依然会给嘉峪关市冬季的大气环境治理增加负担。根据全国第二次污染源普查结果可知,嘉峪关年颗粒物产生量(354.24万吨)和年排放量(17.75万吨)均位列甘肃省第一,年能源消耗总量(1565万吨)与年人均能源消耗量(67.5吨)同为全省第一,其中年人均能源消耗量是全省排名第二的金昌市的8倍。
对于西北地区的重工业城市,大气颗粒物重金属方面的研究案例少有报道。本研究对嘉峪关市冬季PM2.5,PM10中的16种金属及无机元素的污染特征进行分析,并运用富集因子分析法及主成分分析法对其来源进行解析,再利用健康风险评价方法对颗粒物中重金属对人体的危害程度进行评价。最终为嘉峪关市大气环境污染治理提供科学依据,并为西北地区工业城市的大气颗粒物重金属研究提供典型的案例参考。
典型西北钢铁城市冬季大气颗粒物重金属来源解析及健康风险评价——以嘉峪关为例
Source analysis and health risk assessment of heavy metals in air particulates of typical northwest steel cities in winter: A case study in Jiayuguan
-
摘要: 为研究嘉峪关市冬季PM2.5,PM10中重金属来源并对其健康风险进行评估,于2019年12月18日—2020年1月16日进行PM2.5,PM10样品的采集,并利用电感耦合等离子体质谱法(ICP-MS)对16种金属及无机元素(Mg、Al、Ca、Fe、V、Cr、Mn、Co、Ni、Cu、Zn、As、Se、Cd、Ba、Pb)进行质量浓度的分析;通过富集因子及主成分分析法对16种金属及无机元素的来源进行解析;用EPA的健康风险评估模型对Cr、Ni、As、Co、Cd、Cu、Mn、Zn、Pb、V等10种元素进行健康风险评价。结果表明,PM2.5与PM10中质量浓度较高的元素为Mg、Al、Ca、Fe等4种地壳元素,其余12种元素的浓度相对较低;Se、Cd、Pb、Zn、Mg等5种元素在PM2.5与PM10中的富集因子值均大于10,其中Cd元素在PM2.5与PM10中的富集因子值最大,分别为367.29与458.45;PM2.5中各类元素主要来自于扬尘源、工业源、燃煤源、燃油源,PM10中各类元素主要来自于钢铁尘源、扬尘源、燃煤源、交通源;PM2.5与PM10中的Cr元素存在一定的致癌风险,其中对儿童的致癌风险ILCR分别为2.13×10−4与3.58×10−4,高于成年人;PM2.5与PM10中各元素对不同人群的非致癌危险指数HI均小于1,不具备非致癌风险。Abstract: To study the sources of heavy metals in PM2.5 and PM10 of Jiayuguan City in winter and assess their health risks, PM2.5 and PM10 samples were collected from December 18, 2019 to January 16, 2020, and using inductively coupled plasma mass spectrometry (ICP-MS) to detect 16 kinds of metals and inorganic elements (Mg, Al, Ca, Fe, V, Cr, Mn, Co, Ni, Cu, Zn, As, Se, Cd, Ba, Pb) analysis of mass concentration. The sources of 16 metals and inorganic elements were analyzed by enrichment factor and principal component analysis. The health risk assessment of 10 elements including Cr, Ni, As, Co, Cd, Cu, Mn, Zn, Pb, and V was carried out using the EPA's health risk assessment model. The results show that the elements with higher mass concentrations in PM2.5 and PM10 are four crustal elements: Mg, Al, Ca, Fe, and the remaining 12 elements have relatively low concentrations. The enrichment factor values of the five elements Se, Cd, Pb, Zn, and Mg in PM2.5 and PM10 are all greater than 10, and the enrichment factor values of Cd element in PM2.5 and PM10 are the largest, respectively 367.29 and 458.45. Various elements in PM2.5 mainly come from dust sources, industrial sources, coal-burning sources, and fuel sources. Various elements in PM10 mainly come from steel dust sources, dust sources, coal-burning sources, and transportation sources. The Cr in PM2.5 and PM10 has a certain carcinogenic risk, and the carcinogenic risk ILCR of Cr in PM2.5 and PM10 to children is 2.13×10−4 and 3.58×10−4, respectively, which is higher than that of adults. The non-carcinogenic risk index HI of each element in PM2.5 and PM10 to different groups of people is less than 1, and there is no non-carcinogenic risk.
-
Key words:
- PM2.5 /
- PM10 /
- heavy metals /
- source apportionment /
- health risk assessment /
- Jiayuguan City
-
表 1 暴露量计算模型中各参数的相关信息
Table 1. Relevant information of each parameter in the exposure calculation model
参数
Parameter意义
Meaning单位
Unit儿童
Children成年男性
Adult male成年女性
Adult women来源
SourceIR 呼吸速率 m3·d−1 5 19.02 14.17 [23-24] BLPL 暴露频率 d·a−1 365 365 365 ED 暴露年限 a 6 30 30 BW 平均体重 kg 15 62.7 54.4 AT(致癌) 平均暴露时间 d 365·ED 365·ED 365·ED AT(非致癌) 平均暴露时间 d 365·18 365·72.4 365·77.4 注:暴露频率通常使用EF(Exposure Frequency)来表示,本研究中为了防止其与富集因子EF(Enrichment Factors)混淆,故将暴露频率改用BLPL来表示。 表 2 参考剂量RfD与致癌斜率因子SF的取值
Table 2. The value of RfD(Reference Dose)and SF (Slope Factor)
表 3 嘉峪关市冬季PM2.5及PM10中各元素平均浓度
Table 3. Average concentration of various elements in PM2.5 and PM10 in winter in Jiayuguan City
元素
ElementPM2.5中元素浓度/(ng·m−3)
Element concentration in PM2.5PM10中元素浓度/(ng·m−3)
Element concentration in PM10V 1.53±0.69 3.28±1.49 Cr 15.19±9.78 25.58±25.45 Mn 41.61±35.97 83.09±64.80 Co 0.84±0.61 1.25±0.96 Ni 1.10±1.86 3.92±4.15 Cu 5.54±4.77 8.56±8.09 Zn 48.03±43.44 61.51±49.84 As 3.31±2.36 3.92±2.19 Se 0.66±1.11 1.17±1.01 Cd 1.07±2.54 2.07±1.42 Ba 27.99±24.91 83.42±82.42 Pb 85.68±60.23 97.39±73.84 Mg 4921.47±3469.33 5623.37±3395.17 Al 1574.66±921.44 2440.57±1151.04 Ca 5679.62±3864.90 6798.71±3763.85 Fe 1157.93±815.99 2800.70±2349.79 注:表内各项数据为平均值±标准差(The data in the table are mean ± standard deviation) 表 4 嘉峪关市冬季PM2.5及PM10中元素富集因子
Table 4. Enrichment factors of elements in PM2.5 and PM10 in winter in Jiayuguan City
元素
ElementEF(PM2.5)
Enrichment factors (PM2.5)EF(PM10)
Enrichment factors (PM10)V 0.74 1.03 Cr 8.62 9.36 Mn 2.54 3.27 Co 2.65 2.55 Ni 1.24 2.86 Cu 9.15 9.13 Zn 27.92 23.07 As 10.46 7.99 Se 241.10 275.76 Cd 367.29 458.45 Ba 2.50 4.81 Pb 181.47 133.09 Mg 14.00 10.32 Al 1.00 1.00 Ca 5.13 3.96 Fe 1.49 2.33 表 5 PM2.5及PM10中元素主成分载荷矩阵
Table 5. Principal component loading matrix of elements in PM2.5 and PM10
元素
ElementPM2.5 PM10 1 2 3 4 1 2 3 4 V 0.12 0.29 −0.09 0.76 0.51 0.17 0.52 0.26 Cr 0.64 0.56 0.04 0.02 0.83 0.04 −0.12 0.17 Mn −0.06 0.32 0.73 0.25 0.50 −0.12 0.72 −0.12 Co 0.20 0.84 −0.08 −0.07 0.61 −0.18 −0.32 0.52 Ni 0.53 0.46 −0.44 0.43 0.81 −0.15 −0.07 −0.20 Cu 0.05 0.68 −0.36 0.13 0.32 −0.26 −0.28 0.67 Zn 0.46 0.64 0.05 −0.40 0.72 −0.22 −0.36 0.07 As −0.42 0.59 0.23 0.21 −0.04 −0.69 0.44 0.27 Se −0.30 0.43 0.53 −0.19 0.52 −0.26 −0.22 −0.63 Cd 0.30 0.45 −0.14 −0.29 −0.34 0.13 −0.42 0.02 Ba 0.74 −0.15 0.35 −0.21 0.62 0.29 −0.09 −.39 Pb −0.32 0.48 0.70 0.06 0.31 −0.67 0.43 −0.01 Mg 0.61 −0.50 0.36 0.25 −0.01 0.84 0.35 0.21 Al 0.85 −0.09 0.09 −0.24 0.57 0.56 −0.19 0.13 Ca 0.68 −0.44 0.31 0.35 0.04 0.84 0.21 0.13 Fe 0.84 0.09 0.02 −0.02 0.84 0.31 0.12 −0.14 特征值
Eigenvalues4.23 3.75 2.06 1.46 4.74 3.13 1.94 1.59 方差/%
Variance26.42 23.42 12.89 9.13 29.59 19.57 12.13 9.94 累计方差/%
Cumulative variance26.42 49.84 62.74 71.87 29.59 49.16 61.29 71.24 来源
Source扬尘源
Dust sources工业源
Industrial sources燃煤源
Coal-burning sources燃油源
Fuel sources钢铁尘源
Steel dust sources扬尘源
Dust sources燃煤源
Coal-burning sources交通源
Transportation sources表 6 大气颗粒物重金属对不同人群的致癌风险
Table 6. Carcinogenic risks of heavy metals in atmospheric particulates to different populations
元素
ElementILCR(PM2.5) ILCR(PM10) 儿童
Children成年男性
Adult male成年女性
Adult women儿童
Children成年男性
Adult male成年女性
Adult womenCr 2.13×10−4 1.94×10−4 1.66×10−4 3.58×10−4 3.26×10−4 2.80×10−4 Ni 3.08×10−7 2.80×10−7 2.41×10−7 1.10×10−6 9.99×10−7 8.58×10−7 As 1.67×10−5 1.52×10−5 1.30×10−5 1.97×10−5 1.80×10−5 1.54×10−5 Co 2.74×10−6 2.50×10−6 2.14×10−6 4.08×10−6 3.72×10−6 3.19×10−6 Cd 3.00×10−6 2.73×10−6 2.34×10−6 5.80×10−6 5.27×10−6 4.53×10−6 Pb 8.00×10−6 7.28×10−6 6.25×10−6 9.09×10−6 8.27×10−6 7.10×10−6 表 7 大气颗粒物重金属对不同人群的非致癌风险
Table 7. Non-carcinogenic risks of heavy metals in atmospheric particulates to different populations
元素
ElementHQ(PM2.5) HQ(PM10) 儿童
Children成年男性
Adult male成年女性
Adult women儿童
Children成年男性
Adult male成年女性
Adult womenCu 1.54×10−5 1.74×10−5 1.40×10−5 2.38×10−5 2.69×10−5 2.16×10−5 Mn 3.23×10−1 3.66×10−1 2.94×10−1 6.46×10−1 7.30×10−1 5.87×10−1 Zn 1.78×10−5 2.01×10−5 1.62×10−5 2.28×10−5 2.58×10−5 2.07×10−5 Pb 2.72×10−3 3.08×10−3 2.47×10−3 3.09×10−3 3.50×10−3 2.81×10−3 V 2.43×10−5 2.75×10−5 2.21×10−5 5.21×10−5 5.89×10−5 4.73×10−5 HI 3.26×10−1 3.69×10−1 2.96×10−1 6.49×10−1 7.34×10−1 5.90×10−1 -
[1] SEIBERT R, NIKOLOVA I, VOLNÁ V, et al. Air pollution sources’ contribution to PM2.5 concentration in the northeastern part of the Czech republic [J]. Atmosphere, 2020, 11(5): 522. doi: 10.3390/atmos11050522 [2] CHANG F J, CHANG L C, KANG C C, et al. Explore spatio-temporal PM2.5 features in northern Taiwan using machine learning techniques [J]. Science of the Total Environment, 2020, 736: 139656. doi: 10.1016/j.scitotenv.2020.139656 [3] 任浦慧, 解静芳, 姜洪进, 等. 太原市大气PM2.5季节传输路径和潜在源分析 [J]. 中国环境科学, 2019, 39(8): 3144-3151. doi: 10.3969/j.issn.1000-6923.2019.08.002 REN P H, XIE J F, JIANG H J, et al. Transport pathways and potential sources of PM2.5 in different seasons in Taiyuan city [J]. China Environmental Science, 2019, 39(8): 3144-3151(in Chinese). doi: 10.3969/j.issn.1000-6923.2019.08.002
[4] LIOY P J, FREEMAN N C G, MILLETTE J R. Dust: A metric for use in residential and building exposure assessment and source characterization [J]. Environmental Health Perspectives, 2002, 110(10): 969-983. doi: 10.1289/ehp.02110969 [5] CHEN P F, BI X H, ZHANG J Q, et al. Assessment of heavy metal pollution characteristics and human health risk of exposure to ambient PM2.5 in Tianjin, China [J]. Particuology, 2015, 20: 104-109. doi: 10.1016/j.partic.2014.04.020 [6] HSU C Y, CHIANG H C, CHEN M J, et al. Ambient PM2.5 in the residential area near industrial complexes: Spatiotemporal variation, source apportionment, and health impact [J]. Science of the Total Environment, 2017, 590/591: 204-214. doi: 10.1016/j.scitotenv.2017.02.212 [7] LIU X L, OUYANG W Y, SHU Y L, et al. Incorporating bioaccessibility into health risk assessment of heavy metals in particulate matter originated from different sources of atmospheric pollution [J]. Environmental Pollution, 2019, 254: 113113. doi: 10.1016/j.envpol.2019.113113 [8] 田建立, 代进, 周静博, 等. 石家庄市春季大气颗粒物的铅污染特征 [J]. 中国环境监测, 2019, 35(6): 57-64. TIAN J L, DAI J, ZHOU J B, et al. Pollution characteristics of lead particles in the spring atmosphere of Shijiazhuang city [J]. Environmental Monitoring in China, 2019, 35(6): 57-64(in Chinese).
[9] 杨弘, 张君秋, 王维, 等. 太原市大气颗粒物中重金属的污染特征及来源解析 [J]. 中国环境监测, 2015, 31(2): 24-28. doi: 10.3969/j.issn.1002-6002.2015.02.005 YANG H, ZHANG J Q, WANG W, et al. The elemental pollution characteristics and source apportionment of atmospheric particulate in Taiyuan [J]. Environmental Monitoring in China, 2015, 31(2): 24-28(in Chinese). doi: 10.3969/j.issn.1002-6002.2015.02.005
[10] 何瑞东, 张轶舜, 陈永阳, 等. 郑州市某生活区大气PM2.5中重金属污染特征及生态、健康风险评估 [J]. 环境科学, 2019, 40(11): 4774-4782. HE R D, ZHANG Y S, CHEN Y Y, et al. Heavy metal pollution characteristics and ecological and health risk assessment of atmospheric PM2.5 in a living area of Zhengzhou city [J]. Environmental Science, 2019, 40(11): 4774-4782(in Chinese).
[11] 杨毅红, 贾燕, 卞国建, 等. 珠海市郊区大气PM2.5中元素特征及重金属健康风险评价 [J]. 环境科学, 2019, 40(4): 1553-1561. YANG Y H, JIA Y, BIAN G J, et al. Elemental characteristics and health risk assessment of heavy metals in atmospheric PM2.5 in a suburb of Zhuhai city [J]. Environmental Science, 2019, 40(4): 1553-1561(in Chinese).
[12] SALMABADI H, KHALIDY R, SAEEDI M. Transport routes and potential source regions of the Middle Eastern dust over Ahvaz during 2005-2017 [J]. Atmospheric Research, 2020, 241: 104947. doi: 10.1016/j.atmosres.2020.104947 [13] FOULADI FARD R, NADDAFI K, HASSANVAND M S, et al. Trends of metals enrichment in deposited particulate matter at semi-arid area of Iran [J]. Environmental Science and Pollution Research, 2018, 25(19): 18737-18751. doi: 10.1007/s11356-018-2033-z [14] 郑海松, 石培基, 康靖. 河西地区产业结构趋同及其合理性分析 [J]. 资源开发与市场, 2017, 33(10): 1171-1175. doi: 10.3969/j.issn.1005-8141.2017.10.004 ZHENG H S, SHI P J, KANG J. Convergence and rationality analysis of industrial structure in Hexi region [J]. Resource Development & Market, 2017, 33(10): 1171-1175(in Chinese). doi: 10.3969/j.issn.1005-8141.2017.10.004
[15] 王毅荣, 张存杰. 河西走廊风速变化及风能资源研究 [J]. 高原气象, 2006, 25(6): 1196-1202. doi: 10.3321/j.issn:1000-0534.2006.06.030 WANG Y R, ZHANG C J. Changes of wind speed and wind energy over Gansu corridor [J]. Plateau Meteorology, 2006, 25(6): 1196-1202(in Chinese). doi: 10.3321/j.issn:1000-0534.2006.06.030
[16] 中华人民共和国环境保护部. 中华人民共和国环保行业标准: 环境空气 PM10和PM2.5的测定 重量法 HJ 618—2011[S]. 北京: 中国环境科学出版社, 2011. Ministry of Environmental Protection of the People's Republic of China. Environmental Protection Standard of the People's Republic of China: Determination of atmospheric articles PM10 and PM2.5 in ambient air by gravimetric method. HJ 618—2011[S]. Beijing: China Environment Science Press, 2011 (in Chinese).
[17] BUCK C S, AGUILAR-ISLAS A, MARSAY C, et al. Trace element concentrations, elemental ratios, and enrichment factors observed in aerosol samples collected during the US GEOTRACES eastern Pacific Ocean transect (GP16) [J]. Chemical Geology, 2019, 511: 212-224. doi: 10.1016/j.chemgeo.2019.01.002 [18] GARCı́A J H, LI W W, ARIMOTO R, et al. Characterization and implication of potential fugitive dust sources in the Paso del Norte region [J]. Science of the Total Environment, 2004, 325(1/2/3): 95-112. [19] 国家环境保护局主持中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990: 329-483. China National Environmental Monitoring Centre, Chinese soil element background value [M]. Beijing: China Environment Science Press, 1990: 329-483(in Chinese).
[20] NAYEBARE S R, ABURIZAIZA O S, SIDDIQUE A, et al. Ambient air quality in the holy city of Makkah: A source apportionment with elemental enrichment factors (EFs) and factor analysis (PMF) [J]. Environmental Pollution, 2018, 243: 1791-1801. doi: 10.1016/j.envpol.2018.09.086 [21] 陈培飞. 校园PM2.5中重金属的污染特征及健康风险评价[D]. 天津: 天津理工大学, 2014. CHEN P F. Assessment on heavy metal pollution characteristics and human health risk exposure over ambient PM2.5 in campus[D]. Tianjin: Tianjin University of Technology, 2014(in Chinese).
[22] USEPA, Risk assessment guidance for superfund (RAGS), Volume Ⅰ: human health evaluation manual (Part D, standardized planning, reporting, and review of superfund reporting and review of superfund risk assessment) [R]. Washington DC: USEPA, 2001. [23] 王宗爽, 段小丽, 刘平, 等. 环境健康风险评价中我国居民暴露参数探讨 [J]. 环境科学研究, 2009, 22(10): 1164-1170. WANG Z S, DUAN X L, LIU P, et al. Human exposure factors of Chinese people in environmental health risk assessment [J]. Research of Environmental Sciences, 2009, 22(10): 1164-1170(in Chinese).
[24] 中华人民共和国环境保护部. 中国人群暴露参数手册-成人卷[M]. 北京: 中国环境科学出版社, 2013: 793 Ministry of Environmental Protection of the People's Republic of China. Exposure Factors Handbook of Chinese Population[M]. Beijing: China Environmental Press, 2013: 793(in Chinese).
[25] EPA. Risk assessment guidance for superfund volume Ⅰ: human health evaluation manual. Supplemental guidance. “Standard default exposure fators” interim final [S]. EPA, 1991. [26] US EPA. Review of EPA's integrated risk information system (IRIS) process[M]. Washington D C. : National Academies Press, 2014. [27] 袁宏林, 杨梦妮, 张颖, 等. 西安市冬季大气颗粒物中重金属污染特征及健康风险评价 [J]. 环境工程, 2019, 37(1): 176-181. YUAN H L, YANG M N, ZHANG Y, et al. Assessment of pollution characteristics and health risks of heavy metals in winter atmospheric particulate matters in Xi'an [J]. Environmental Engineering, 2019, 37(1): 176-181(in Chinese).
[28] 张帆, 成海容, 王祖武, 等. 武汉大气PM2.5中微量元素的污染特征和来源分析 [J]. 武汉大学学报(工学版), 2012, 45(6): 757-761. ZHANG F, CHENG H R, WANG Z W, et al. Pollution characteristics and sources analysis of trace elements in PM2.5 in Wuhan City [J]. Engineering Journal of Wuhan University, 2012, 45(6): 757-761(in Chinese).
[29] 刘威杰, 石明明, 程铖, 等. 夏季大气PM2.5中元素特征及源解析: 以华中地区平顶山-随州-武汉为例 [J]. 环境科学, 2020, 41(1): 23-30. LIU W J, SHI M M, CHENG C, et al. Characteristics and sources of elements in PM2.5 during summer for three typical cities in Pingdingshan-Suizhou-Wuhan, central China [J]. Environmental Science, 2020, 41(1): 23-30(in Chinese).
[30] ZHANG R, JING J, TAO J, et al. Chemical characterization and source apportionment of PM2.5 in Beijing: Seasonal perspective [J]. Atmospheric Chemistry and Physics, 2013, 13(14): 7053-7074. doi: 10.5194/acp-13-7053-2013 [31] ZHANG N N, CAO J J, XU H M, et al. Elemental compositions of PM2.5 and TSP in Lijiang, southeastern edge of Tibetan Plateau during pre-monsoon period [J]. Particuology, 2013, 11(1): 63-69. doi: 10.1016/j.partic.2012.08.002 [32] PANT P, HARRISON R M. Critical review of receptor modelling for particulate matter: A case study of India [J]. Atmospheric Environment, 2012, 49: 1-12. doi: 10.1016/j.atmosenv.2011.11.060 [33] HSU C Y, CHIANG H C, LIN S L, et al. Elemental characterization and source apportionment of PM10 and PM2.5 in the western coastal area of central Taiwan [J]. Science of the Total Environment, 2016, 541: 1139-1150. doi: 10.1016/j.scitotenv.2015.09.122 [34] de MIGUEL E, IRIBARREN I, CHACÓN E, et al. Risk-based evaluation of the exposure of children to trace elements in playgrounds in Madrid (Spain) [J]. Chemosphere, 2007, 66(3): 505-513. doi: 10.1016/j.chemosphere.2006.05.065