-
细颗粒物(PM2.5)可以吸附富集大气污染物并经呼吸道进入人体肺部[1],影响人群健康。水溶性离子(WSIs)是PM2.5的重要组成部分,一般占PM2.5的30%—60%[2-4],主要成分为二次离子SNA(
${\rm{SO}}_4^{2-} $ 、${\rm{NO}}_3^- $ 、$ {\rm{NH}}_4^+$ ),最高可达到WSIs的80%左右[5]。水溶性离子的存在影响颗粒物的吸湿性和吸光度[3],并具有一定催化作用和毒性增强作用[6]。因此,研究PM2.5中的水溶性离子有助于更好地了解PM2.5的污染特征和环境效应。2016年《环境空气质量标准(GB 3095—2012)》正式实施,政府推出了更严的空气质量标准。面对新的标准,保定市在2017年积极推行“煤改气”政策[7],空气质量有了明显改善。然而,为了深入了解煤改气后对颗粒物组分的影响以及各种污染源贡献比例的变化,需要进行水溶性离子和源解析研究。保定作为《打赢蓝天保卫战三年行动计划》“2+26”城中的一员和京津冀通道中极其重要的通道城市,具有重要的区域地位。王永慧等[4]研究表明,2016年保定市水溶性离子占PM2.560%以上,其中二次离子含量最高;郑悦等[8]研究发现,与2016年相比,2017年保定市PM2.5、PM10浓度均下降,而且PM2.5季节特征是冬季最高,夏季最低;刘旭阳等[9]的研究发现,2017年保定市二次离子在PM2.5中占比37.6%,主要以(NH4)2SO4和NH4NO3存在,
${\rm{NO}}_3^- $ /${\rm{SO}}_4^{2-} $ 年均值为1.23;于平等[10]发现,2016年夏季保定PM2.5污染以一次源为主,且大气中重金属致癌风险高。以上报道为保定市的PM2.5污染特征研究提供了重要参考,但限煤措施实施后的相关研究还未见报道,同时也需要对采取污染源控制措施以后的源解析进行从新研究,为进一步改进措施提供参考依据。常用的源解析模型主要包括PMF、CMB、PCA和FA模型。与CMB相比,PMF模型不需要本地源谱数据,对污染源的解析结果要优于FA和PCA。本次研究分析了2018年保定市污染天气条件下PM2.5和水溶性离子的污染特征,并探讨了水溶性离子之间的关系以及影响水溶性离子的因素,最后利用PMF模型对PM2.5进行源解析,为区域大气环境治理提供参考依据。
保定市污染天气PM2.5中水溶性离子的特征和源解析
Characteristics and source apportionment of PM2.5 water-soluble ions in Baoding City under pollution weather conditions
-
摘要: 采集了2018年保定市污染天气的PM2.5样品,采用离子色谱法测定了PM2.5样品中的水溶性离子(WSIs),分析了不同季节PM2.5及其水溶性离子的分布特征,并采用PMF模型对PM2.5进行了源解析。结果表明,采样期间保定市的PM2.5浓度为18.4—258.0 μg∙m−3,年均值为(91.5±62.5)μg∙m−3;季节规律是冬季(160.6 μg∙m−3)>秋季(105.3 μg∙m−3)>春季(57.6 μg∙m−3)>夏季(53.2 μg∙m−3)。WSIs年均值为49.20 μg∙m−3,占PM2.5的63.95%,WSIs的季节规律和PM2.5的一致。二次离子占水溶性离子的77.12%。湿度和温度与SOR和NOR成正相关。春夏两季水溶性离子主要以Na2SO4和NaNO3存在,秋季主要以NH4HSO4和NH4NO3形式存在,冬季以(NH4)2SO4和NH4NO3为主,还有部分NH4Cl。
${\rm{NO}}_3^- $ /${\rm{SO}}_4^{2-} $ 年均值为1.16,说明保定市的二次离子多来自移动源。采用PMF模型对PM2.5进行源解析,得到4个污染源贡献,二次源占比11.90%,生物质燃烧+交通源占比41.13%,工业源+燃煤源占比31.94%,扬尘源占比15.03%。Abstract: PM2.5 samples were collected on the polluted days in Baoding city in 2018. The water-soluble ions (WSIs) in the PM2.5 samples were determined by ion chromatography. The distribution characteristics of PM2.5 and water-soluble ions in different seasons were analyzed, and the PMF model was used for source apportionment. The results showed that during the sampling period, the PM2.5 concentration in Baoding was in the range of 18.4—258.0 μg∙m−3, and the annual average value was (91.5±62.5) μg∙m−3. The seasonal distribution pattern was winter (160.6 μg∙m−3)> autumn (105.3 μg∙m−3)>spring (57.6 μg∙m−3)>summer (53.2 μg∙m−3). The annual average value of WSIs was 49.20 μg∙m−3, accounting for 63.95% of PM2.5. The seasonal distribution pattern of WSIs was consistent with that of PM2.5. The secondary pollution ions were the dominant components, accounting for 77.12%. Humidity and temperature were positively correlated with SOR, and humidity with NOR. The water-soluble ions mainly existed in spring and summer as Na2SO4 and NaNO3, in autumn as NH4HSO4 and NH4NO3, and in winter as (NH4)2SO4 and NH4NO3, and partly as NH4Cl. The annual average value of$ {\rm{NO}}_3^- $ /${\rm{SO}}_4^{2-} $ was 1.16, indicating that most of secondary ions in Baoding came from mobile sources. The PMF model was applied for source apportionment of PM2.5. Four pollution sources were identified: secondary pollution source (11.90%), biomass combustion/traffic source (41.13%), industrial source/coal combustion source (31.94%), and dust source (15.03%).-
Key words:
- PM2.5 /
- source apportionment /
- water-soluble ions /
- seasonal variation /
- baoding
-
表 1 保定市2014—2018年PM2.5年均值
Table 1. Annual average value and standard deviation of PM2.5 in Baoding from 2014 to 2018
表 2 2018年PM2.5样品中水溶性离子各季节的平均质量浓度(平均值±相对标准偏差,μg∙m−3)
Table 2. Seasonal average mass concentrations of water-soluble ions in PM2.5 in Baoding City in 2018(Mean±RSD)
物种
Species春
Spring夏
Summer秋
Autumn冬
Winter年均值
AnnualF− 0.12±0.56 0.12±0.55 0.07±0.46 0.19±0.43 0.13±0.60 Cl− 1.98±0.34 1.31±0.48 3.79±0.53 7.51±0.43 3.50±0.87 ${\rm{NO}}_2^ - $ 0.03±0.90 0.01±1.90 0.05±0.42 0.09±0.26 0.04±0.91 ${\rm{SO}}_4^{2 - } $ 14.15±0.49 20.42±0.30 13.32±0.57 14.25±0.37 15.87±0.44 ${\rm{NO}}_3^ - $ 15.84±0.59 13.39±0.29 26.37±1.02 20.41±0.46 18.52±0.79 ${\rm{H}}{_2}{\rm{PO}}_4^- $ 0.04±1.88 0.03±0.86 0.04±2.37 0.06±1.38 0.04±1.65 Na+ 6.56±0.70 6.93±0.57 3.66±0.60 3.45±0.30 5.28±0.68 ${\rm{NH}}_4^ + $ 0.21±1.55 0.50±1.73 6.84±1.15 9.06±0.54 3.88±1.50 K+ 0.25±0.74 0.23±0.57 1.10±0.78 1.61±0.44 0.76±1.05 Mg2+ 0.17±0.91 0.26±0.39 0.22±0.75 0.27±0.36 0.23±0.57 Ca2+ 0.61±0.65 0.89±0.25 1.13±0.84 1.18±0.38 0.94±0.61 SNA 30.20±0.52 34.31±0.27 46.53±0.91 43.72±0.41 38.27±0.62 WSIs 39.94±0.54 44.08±0.31 56.58±0.85 58.09±0.40 49.20±0.58 SNA/WSIs/% 76.84±0.04 79.09±0.08 77.26±0.10 74.81±0.03 77.12±0.07 WSIs/PM2.5/% 69.55±0.12 94.49±0.48 47.59±0.27 35.18±0.25 63.95±0.54 -
[1] XIE J J, YUAN C G, XIE J, et al. Speciation and bioaccessibility of heavy metals in PM2.5 in Baoding city, China[J]. Environmental Pollution, 2019, 252(Pt A): 336-343. [2] QIAO B, CHEN Y, TIAN M, et al. Characterization of water soluble inorganic ions and their evolution processes during PM2.5 pollution episodes in a small city in southwest China[J]. Science of The Total Environment, 2019, 650(Pt 2): 2605-2613. [3] 任娇, 尹诗杰, 郭淑芬, 等. 太原市大气PM_(2.5)中水溶性离子的季节污染特征及来源分析 [J]. 环境科学学报, 2020, 40(9): 3120-3130. REN J, YIN S J, GUO S F, et al. Seasonal variation and source analysis of water-soluble ions in PM2.5 in Taiyuan [J]. Acta Scientiae Circumstantiae, 2020, 40(9): 3120-3130(in Chinese).
[4] 王永慧, 刘芃岩, 于泊蕖, 等. 保定市日间、夜间大气PM2.5中无机组分的特征及来源分析 [J]. 环境化学, 2017, 36(9): 1941-1948. WANG Y H, LIU P Y, YU B G, et al. Characteristics and source analysis of inorganic components in PM2.5 samples collected during daytime and night in Baoding City [J]. Environmental Chemistry, 2017, 36(9): 1941-1948(in Chinese).
[5] YANG Y J, ZHOU R, YU Y, et al. Size-resolved aerosol water-soluble ions at a regional background station of Beijing, Tianjin, and Hebei, North China [J]. Journal of Environmental Sciences, 2017, 55(5): 146-156. [6] WANG G, WANG H, YU Y, et al. Chemical characterization of water-soluble components of PM10 and PM2.5 atmospheric aerosols in five locations of Nanjing, China [J]. Atmospheric Environment, 2003, 37(21): 2893-2902. doi: 10.1016/S1352-2310(03)00271-1 [7] XIE J J, YUAN C G, XIE J, et al. PM2.5-bound potentially toxic elements (PTEs) fractions, bioavailability and health risks before and after coal limiting [J]. Ecotoxicology and Environmental Safety, 2020, 192: 110249. doi: 10.1016/j.ecoenv.2020.110249 [8] 郑悦, 程方, 张凯, 等. 保定市大气污染特征和潜在输送源分析 [J]. 环境科学研究, 2020, 33(2): 260-270. ZHENG Y, CHENG F, ZHANG K, et al. Analysis of air pollution characteristics and potential transportation sources in Baoding City [J]. Environmental Science Research, 2020, 33(2): 260-270(in Chinese).
[9] 刘旭阳, 王献玲, 张维, 等. 保定市大气PM2.5中Cl−、${\rm{NO}}_3^ - $、$ {\rm{SO}}_4^{2 - }$和${\rm{NH}}_4^ + $的污染特征[J]. 职业与健康, 2020, 36(16): 2241-2244. LIU X Y, WANG X L, ZHANG W, et al. Pollution characteristics of Cl−, ${\rm{NO}}_3^ - $, ${\rm{SO}}_4^{2 - } $ and ${\rm{NH}}_4^ + $ in atmospheric PM2.5 in Baoding City[J]. Occupation and Health, 2020, 36(16): 2241-2244(in Chinese).
[10] 于平, 孙家仁, 张烃, 等. 保定市室外环境大气PM2.5中重金属的健康风险及PM2.5来源分析 [J]. 现代预防医学, 2019, 46(16): 40-46. YU P, SUN J R, ZHANG W, et al. Health risks of heavy metals in PM2.5 in outdoor environment of Baoding City and analysis of sources of PM2.5 [J]. Modern Preventive Medicine, 2019, 46(16): 40-46(in Chinese).
[11] 中华人民共和国环境保护部. 中华人民共和国环保行业标准: 环境空气PM10和PM2.5的测定 重量法 HJ 618—2011[S]. 北京: 中国环境科学出版社. [12] 环境保护部. 中华人民共和国环保行业标准: 环境空气颗粒物 HJ 93—2013[S]. 北京: 中国环境科学出版社, 2013. Ministry of Environmental Protection of the People's Republic of China. Environmental Protection Standard of the People's Republic of China: Specifications and test procedures for PM10 and PM2.5 sampler. HJ 93—2013[S]. Beijing: China Environment Science Press, 2013(in Chinese).
[13] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 中华人民共和国国家标准: 环境空气质量标准 GB 3095—2012[S]. 北京: 中国环境科学出版社, 2016. [14] GAO J J, WANG K, WANG Y, et al. Temporal-spatial characteristics and source apportionment of PM2.5 as well as its associated chemical species in the Beijing-Tianjin-Hebei region of China [J]. Environmental Pollution, 2018, 233: 714-724. doi: 10.1016/j.envpol.2017.10.123 [15] XIE J J, YUAN C G, XIE J, et al. Comparison of arsenic fractions and health risks in PM2.5 before and after coal-gas replacement [J]. Environmental Pollution, 2020, 259: 113811. [16] 冯炎鹏, 张军科, 黄小娟, 等. 成都夏冬季PM2.5中水溶性无机离子污染特征 [J]. 环境科学, 2020, 41(7): 3012-3020. FENG Y P, ZHANG J K, HUANG X J, et al. Pollution characteristics of water-soluble inorganic ions in PM2.5 in summer and winter in Chengdu [J]. Environmental Science, 2020, 41(7): 3012-3020(in Chinese).
[17] XU W, LIU X J, LIU L, et al. Impact of emission controls on air quality in Beijing during APEC 2014: Implications from water-soluble ions and carbonaceous aerosol in PM2.5 and their precursors [J]. Atmospheric Environment, 2019, 210(AUGa): 241-252. [18] 郑玫, 张延君, 闫才青, 等. 中国PM2.5来源解析方法综述 [J]. 北京大学学报(自然科学版), 2014, 50(6): 1141-1154. ZHENG M, ZHANG Y J, YAN C Q, et al. Overview of China PM2.5 Source Analysis Methods [J]. Journal of Peking University (Natural Science Edition), 2014, 50(6): 1141-1154(in Chinese).
[19] XU J S, XU M X, SNAPE C, et al. Temporal and spatial variation in major ion chemistry and source identification of secondary inorganic aerosols in Northern Zhejiang Province, China [J]. Chemosphere, 2017, 179: 316-330. doi: 10.1016/j.chemosphere.2017.03.119 [20] ZHOU, H J, Lü C W, HE J, et al. Stoichiometry of water-soluble ions in PM2.5: Application in source apportionment for a typical industrial city in semi-arid region, Northwest China [J]. Atmospheric Research, 2018, 204: 149-160. doi: 10.1016/j.atmosres.2018.01.017 [21] HUANG T, CHEN J, ZHAO W, et al. Seasonal Variations and Correlation Analysis of Water-Soluble Inorganic Ions in PM2.5 in Wuhan, 2013 [J]. Atmosphere, 2016, 7(4): 49. doi: 10.3390/atmos7040049 [22] MI K. Atmospheric conversion of sulfur dioxide to particulate sulfate and nitrogen dioxide to particulate nitrate and gaseous nitric acid in an urban area [J]. Chemosphere, 2002, 49(6): 675-684. doi: 10.1016/S0045-6535(02)00391-0 [23] YU Q, CHEN J, QIN W H, et al. Characteristics and secondary formation of water-soluble organic acids in PM1, PM2.5 and PM10 in Beijing during haze episodes [J]. Science of The Total Environment, 2019, 669(JUNa15): 175-184. [24] STENINFELD J H, PANDIS S N. Atmospheric chemistry and physics: From air pollution to climate change[M]. Taylor & Francis Group, 1998. [25] ZHANG X Y, ZHAO X, JI G X, et al. Seasonal variations and source apportionment of water-soluble inorganic ions in PM2.5 in Nanjing, a megacity in southeastern China [J]. Journal of Atmospheric Chemistry, 2019, 76(1): 73-88. doi: 10.1007/s10874-019-09388-z [26] MANTAS E, REMOUNDAKI E, HALARI I, et al. Mass closure and source apportionment of PM2.5 by Positive Matrix Factorization analysis in urban Mediterranean environment [J]. Atmospheric Environment, 2014, 94: 154-163. doi: 10.1016/j.atmosenv.2014.05.002 [27] 李颖慧, 李如梅, 胡冬梅, 等. 太原市不同功能区环境空气中挥发性有机物特征与来源解析[J]. 环境化学, 2020, 39(4): 920-930. LI Y H, LI R M, HU D M, et al. Characteristics and source apportionment of ambient volatile organic compounds of different functional areas in Taiyuan City[J] Environmental Chemistry, 2020, 39(4): 920-930(in Chinese).
[28] BROWN S G, EBERLY S, PAATERO P, et al. Methods for estimating uncertainty in PMF solutions: Examples with ambient air and water quality data and guidance on reporting PMF results [J]. Science of the Total Environment, 2015, 518-519: 626-635. doi: 10.1016/j.scitotenv.2015.01.022 [29] CAO J J. A brief introduction and progress summary of the PM2.5 source profile compilation project in China [J]. Aerosol Science & Engineering, 2018, 2(2): 43-50.