-
Cr(Ⅵ)是广为关注的地下水和土壤污染物之一。目前,在酸性条件下加入还原剂将Cr(Ⅵ)还原为Cr(Ⅲ),随后生成Cr(OH)3沉淀来降低其毒性是修复铬污染环境介质的常用策略[1-3],如式(1)所示。此外,在自然环境中也存在Cr(Ⅵ)的还原过程,铁还原菌可以通过产生Fe(Ⅱ)抑制厌氧条件下Cr(Ⅵ)的产生[4]。还原生成的Cr(Ⅲ)主要以非晶态Cr(OH)3存在,其原子排列具有近程有序、长程无序状态特性,在热力学上属于非平衡的亚稳态[5]。
在对Cr(Ⅵ)污染土壤和地下水修复后,较长时间后会出现Cr(Ⅵ)再次超标现象。有研究[6]认为,Cr(Ⅲ)在一定环境条件下会被再次氧化生成Cr(Ⅵ),是土壤和地下水中Cr(Ⅵ)浓度升高的原因之一。人们认为锰氧化物是将还原生成的Cr(Ⅲ)重新氧化的氧化剂[7]。Mcclain等[8]发现矿物结合态的Cr(Ⅲ)会与结构类似水钠锰矿的生物性Mn(Ⅲ/Ⅳ)氧化物结合并生成Cr(Ⅵ)。Gonzalez等[9]认为加州圣克鲁斯县饮用水中所存在的大量Cr(Ⅵ)是由于Cr (Ⅲ)矿床被锰氧化物氧化。
研究表明[5],锰氧化物的类型和结构(包括δ-MnO2、水钠锰矿、水锰矿、钡镁锰矿、软锰矿等)对锰氧化物氧化Cr(Ⅲ)的速率和比率影响较大。由于晶性、价态和形态不同,氧化锰对Cr(Ⅲ)氧化能力有明显差异,顺序为δ-MnO2>α-MnO2>γ-MnOOH。相较于γ-MnOOH,δ-MnO2、α-MnO2中的Mn氧化度和活度更高,且δ-MnO2的晶性较差、比表面积大,故δ-MnO2对Cr(Ⅲ)的氧化能力强,γ-MnOOH相对较弱[10]。
当前研究中,对环境酸碱性在锰氧化物对Cr(Ⅲ)氧化过程的影响的认识尚存有争议。SEONYI等[11]研究了Cr(OH)3(s)和Mn(Ⅱ)共存时Cr(OH)3(s)的氧化反应,pH=7时未发现Cr(Ⅵ)的生成,pH≥8时,Cr(OH)3(s)被氧化并释放大量Cr(Ⅵ)。OZE等[12]探究了Cr(Ⅲ)与水钠锰矿反应19 d时Cr(Ⅵ)的生成速率,发现pH=7时,Cr(Ⅵ)的生成速率为0.001 μmol·d−1,pH=8时,反应速率为0,说明pH的升高会减小Cr(Ⅵ)的生成量。而PAN等[13]研究了δ-MnO2氧化铬铁氢氧化物的速率和机制,认为在Cr(Ⅲ)初始浓度为770 μmol·L−1、δ-MnO2初始浓度为436 μmol·L−1时,随着pH从5增大到9,Cr(Ⅵ)产生量从80 μmol·L−1逐渐减小至15 μmol·L−1。
本研究旨在探究含氧水环境中非晶态Cr(OH)3的氧化过程及环境酸碱性、有机质等环境因素对该过程的影响,具体包括:(1)实验观测δ-MnO2对水溶液中非晶态Cr(OH)3的氧化过程;(2)分析pH和DOM对δ-MnO2氧化非晶态Cr(OH)3的影响及潜在机理。
含氧水溶液中δ-MnO2对非晶态Cr(OH)3的化学氧化:影响因素和作用机理
Chemical oxidation of amorphous Cr(OH)3 in oxygen-containing aqueous solution: influencing factors and mechanisms
-
摘要: 对六价铬污染水体和土壤修复常采用化学还原方法,但是当前研究对还原产物非晶态Cr(OH)3的再氧化过程以及环境酸碱性、有机质等因素对该过程的影响仍有较多分歧。本研究通过批试验,观测了含氧水溶液体系中非晶态Cr(OH)3的长期稳定性及pH和溶解性有机质(Dissolved organic matter,DOM)对δ-MnO2氧化非晶态Cr(OH)3的影响。研究结果表明,在含氧水溶液中,Cr(OH)3具有较好的长期稳定性;δ-MnO2会显著增大Cr(OH)3的氧化量,Cr(Ⅵ)生成量从0.03 mg·L−1增大为0.83 mg·L−1。环境酸碱性可显著影响δ-MnO2对Cr(OH)3的氧化行为,碱性条件下Cr(Ⅵ)生成量更大。当pH=8,反应365 d时,总Cr(Ⅵ)浓度可达0.83 mg·L−1;pH=6时,反应365 d时,总Cr(Ⅵ)浓度为0.15 mg·L−1。弱酸条件(pH=6)下生成的Cr(VI)以溶解态和固相结合态存在;弱碱条件(pH=8)下δ-MnO2氧化Cr(OH)3生成的Cr(Ⅵ)主要以溶解态存在。DOM对δ-MnO2氧化Cr(OH)3的影响在弱酸条件(pH=6)下不显著;弱碱条件(pH=8)下,低浓度DOM (1 mg·L−1)对δ-MnO2氧化Cr(OH)3的影响不显著,高浓度DOM(10 mg·L−1)可显著增大Cr(OH)3的氧化量。Abstract: Chemical reduction methods are generally used to remediate hexavalent chromium-contaminated water and soil, but the reoxidation process of amorphous Cr(OH)3—the main reduction product—and the effects of pH, organic matter remain unclear. This study investigated the long-term stability of amorphous Cr(OH)3 and the effects of pH and dissolved organic matter (DOM) on the oxidation of amorphous Cr(OH)3 by δ-MnO2 in an oxygen-containing aqueous solution system through batch experiments. The results showed that Cr(OH)3 had long-term stability in an oxygen-containing aqueous solution. δ-MnO2 significantly increased the oxidation of Cr(OH)3, and the amount of generated Cr(Ⅵ) increased from 0.03 to 0.83 mg·L−1. pH significantly affected the oxidation of Cr(OH)3 by δ-MnO2, and more Cr(Ⅵ) was produced under alkaline conditions than acidic conditions. When the reaction time reached 365 d, the total Cr(Ⅵ) concentration reached 0.83 mg·L−1 at pH=8, whereas the total Cr(Ⅵ) concentration was 0.15 mg·L−1 at pH=6. At a weakly acidic pH (pH=6), the generated Cr(Ⅵ) mainly existed as dissolved ions and solid-binding species, whereas at a weakly alkaline pH (pH=8), the generated Cr(Ⅵ) mainly existed as dissolved ions. DOM had an insignificant effect on the oxidation of Cr(OH)3 by δ-MnO2 under weakly acidic (pH=6) conditions. Under weakly alkaline (pH=8) conditions, the effect of DOM on the oxidation of Cr(OH)3 by δ-MnO2 was not significant at a low concentration of 1 mg·L−1; however, a high DOM concentration of 10 mg·L−1 significantly increased the oxidation of Cr(OH)3.
-
Key words:
- chromium hydroxide /
- manganese dioxide /
- chemical oxidation /
- pH /
- dissolved organic matter
-
图 4 δ-MnO2氧化Cr(OH)3生成固相产物的 (a) XPS全谱图(pH=6);(b) Cr 2p XPS图谱(pH=6);(c) XPS全谱图(pH=8);(d) Cr 2p XPS图谱(pH=8);
Figure 4. (a) Survey XPS spectra (pH=6), (b) Cr 2p XPS spectra (pH=6), (c) survey XPS spectra (pH=8) and (d) Cr 2p XPS spectra (pH=8) of the solid phase product formed from the oxidation of Cr(OH)3 by δ-MnO2.
-
[1] 王兴润, 李磊, 颜湘华, 等. 铬污染场地修复技术进展 [J]. 环境工程, 2020, 38(6): 1-8,23. WANG X R, LI L, YAN X H, et al. Progress in remediation of chromium-contaminated sites [J]. Environmental Engineering, 2020, 38(6): 1-8,23(in Chinese).
[2] 刘涛, 祝方, 赵晋宇, 等. 降雨条件下纳米零价铁镍对污染土壤中六价铬迁移的影响 [J]. 环境化学, 2017, 36(4): 812-820. doi: 10.7524/j.issn.0254-6108.2017.04.2016080201 LIU T, ZHU F, ZHAO J Y, et al. Effect of nano zero valent iron/nickel under rain condition on the transportation of hexavalent chromium in contaminated soil [J]. Environmental Chemistry, 2017, 36(4): 812-820(in Chinese). doi: 10.7524/j.issn.0254-6108.2017.04.2016080201
[3] 高卫国, 钱林波, 韩璐, 等. 锰铁氧体吸附及催化柠檬酸还原六价铬的过程及机理 [J]. 环境化学, 2018, 37(7): 1525-1533. doi: 10.7524/j.issn.0254-6108.2017101302 GAO W G, QIAN L B, HAN L, et al. Iron manganese minerals catalyzed Cr(Ⅵ) reduction by citric acid and its mechanism [J]. Environmental Chemistry, 2018, 37(7): 1525-1533(in Chinese). doi: 10.7524/j.issn.0254-6108.2017101302
[4] MENG Y, ZHAO Z W, BURGOS W D, et al. Iron(Ⅲ) minerals and anthraquinone-2, 6-disulfonate (AQDS) synergistically enhance bioreduction of hexavalent chromium by Shewanella oneidensis MR-1 [J]. Science of the Total Environment, 2018, 640/641: 591-598. doi: 10.1016/j.scitotenv.2018.05.331 [5] TANG Y Z, WEBB S M, ESTES E R, et al. Chromium(III) oxidation by biogenic manganese oxides with varying structural ripening [J]. Environmental Science. Processes & Impacts, 2014, 16(9): 2127-2136. [6] 许维通, 苑文仪, 李培中, 等. 六价铬污染土壤还原处理后再氧化因素分析综述 [J]. 环境工程, 2018, 36(10): 130-134, 58. XU W T, YUAN W Y, LI P Z, et al. Analysis of re-oxidation factors in Cr(Ⅵ) contaminated soil after reduction treatment: A review [J]. Environmental Engineering, 2018, 36(10): 130-134, 58(in Chinese).
[7] 戴儒南. 环境中Cr(Ⅲ)的MnO2氧化以及光化学氧化研究[D]. 南京: 南京农业大学, 2010. DAI R N. The oxidation of Cr (Ⅲ) by MnO2 and its photooxidation in environments[D]. Nanjing: Nanjing Agricultural University, 2010(in Chinese).
[8] MCCLAIN C N, FENDORF S, WEBB S M, et al. Quantifying Cr(Ⅵ) production and export from serpentine soil of the California Coast range [J]. Environmental Science & Technology, 2017, 51(1): 141-149. [9] GONZALEZ A R, NDUNG'U K, FLEGAL A R. Natural occurrence of hexavalent chromium in the aromas red sands aquifer, California [J]. Environmental Science & Technology, 2005, 39(15): 5505-5511. [10] 孙亚乔, 校康, 段磊, 等. 粘土矿物作用下铬的迁移转化机理研究进展 [J]. 生态环境学报, 2019, 28(7): 1484-1491. SUN Y Q, XIAO K, DUAN L, et al. Chromium migration and transformation mechanism in the presence of clay minerals: A review [J]. Ecology and Environmental Sciences, 2019, 28(7): 1484-1491(in Chinese).
[11] NAMGUNG S, KWON M J, QAFOKU N P, et al. Cr(OH)3(s) oxidation induced by surface catalyzed Mn(Ⅱ) oxidation [J]. Environmental Science & Technology, 2014, 48(18): 10760-10768. [12] OZE C, BIRD D K, FENDORF S. Genesis of hexavalent chromium from natural sources in soil and groundwater [J]. PNAS, 2007, 104(16): 6544-6549. doi: 10.1073/pnas.0701085104 [13] PAN C, LIU H, CATALANO J G, et al. Rates of Cr(Ⅵ) generation from CrxFe1-x(OH)3 solids upon reaction with manganese oxide [J]. Environmental Science & Technology, 2017, 51(21): 12416-12423. [14] HUANG Z L, CHEN C G, XIE J Y, et al. The evolution of dehydration and thermal decomposition of nanocrystalline and amorphous chromium hydroxide [J]. Journal of Analytical and Applied Pyrolysis, 2016, 118: 225-230. doi: 10.1016/j.jaap.2016.02.006 [15] VILLALOBOS M, TONER B, BARGAR J, et al. Characterization of the manganese oxide produced by Pseudomonas putida strain MnB1 [J]. Geochimica et Cosmochimica Acta, 2003, 67(14): 2649-2662. doi: 10.1016/S0016-7037(03)00217-5 [16] 黄中林. 氢氧化铬的基础及应用研究[D]. 重庆: 重庆大学, 2016. HUANG Z L. The investigation of fundamental and applications of chromium hydroxide[D]. Chongqing: Chongqing University, 2016(in Chinese).
[17] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 中华人民共和国推荐性国家标准: 地下水质量标准 GB/T 14848—2017[S]. 北京: 中国标准出版社, 2017. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. National Standard (Recommended) of the People's Republic of China: Standard for groundwater quality. GB/T 14848—2017[S]. Beijing: Standards Press of China, 2017(in Chinese).
[18] SCHROEDER D C, LEE G F. Potential transformations of chromium in natural waters [J]. Water, Air, and Soil Pollution, 1975, 4(3/4): 355-365. [19] EARY L E, RAI D. Kinetics of chromium(Ⅲ) oxidation to chromium(Ⅵ) by reaction with manganese-dioxide [J]. Environmental Science & Technology, 1987, 21: 1187-1193. [20] 曾淦宁, 武晓, 郑林, 等. 负载纳米零价铁铜藻基活性炭的制备及其去除水中Cr(Ⅵ)的研究 [J]. 环境科学, 2015, 36(2): 530-536. ZENG G N, WU X, ZHENG L, et al. Preparation of nano zero-valent iron / Sargassum horneri based activated carbon for removal of Cr(Ⅵ) from aqueous solution [J]. Environmental Science, 2015, 36(2): 530-536(in Chinese).
[21] 孙西同. 磁性高分子复合材料的制备及对Cr(Ⅵ)的吸附性能研究[D]. 北京: 中国科学院研究生院(过程工程研究所), 2015. SUN X T. Preparation of magnetic polymer composite and its adsorption properties for Cr(Ⅵ)[D]. Beijing: University of Chinese Academy of Sciences, 2015(in Chinese).
[22] 肖俊杰. 改性海泡石对水体中Cu2+、Cd2+、Cr3+的吸附特性及机理研究[D]. 湘潭: 湘潭大学, 2018. XIAO J J. The adsorption characteristics and mechanism of Cu2+, Cd2+, Cr3+on modified sepiolite[D]. Xiangtan: Xiangtan University, 2018(in Chinese).
[23] 汪婷, 高滢, 金晓英, 等. 纳米四氧化三铁同步去除水中的Pb(Ⅱ)和Cr(Ⅲ)离子 [J]. 环境工程学报, 2013, 7(9): 3476-3482. WANG T, GAO Y, JIN X Y, et al. Simultaneous removal of Pb(Ⅱ) and Cr(Ⅲ) from wastewater by magnetite nanoparticles [J]. Chinese Journal of Environmental Engineering, 2013, 7(9): 3476-3482(in Chinese).
[24] MANDIWANA K L, PANICHEV N, KATAEVA M, et al. The solubility of Cr(Ⅲ) and Cr(Ⅵ) compounds in soil and their availability to plants [J]. Journal of Hazardous Materials, 2007, 147(1/2): 540-545. [25] GUSTAFSSON J P, PERSSON I, OROMIEH A G, et al. Chromium(Ⅲ) complexation to natural organic matter: Mechanisms and modeling [J]. Environmental Science & Technology, 2014, 48(3): 1753-1761. [26] 何振立. 污染及有益元素的土壤化学平衡[M]. 北京: 中国环境科学出版社, 1998. HE Z L. Soil-Chemical balances of pollution and beneficial elements[M]. Beijing: China Environment Science Press, 1998(in Chinese).