-
焚烧处理已成为我国城市生活垃圾和危险固体废物无害化处理的主要方式[1−3]。然而,固体废物焚烧过程中不可避免会产生新的污染物,对人类健康及大气环境造成影响。目前,固体废物焚烧产生的污染物研究主要集中在二噁英等持久性有机污染物和重金属等方面[4−6],对挥发性有机物(VOCs)的研究非常有限。VOCs不但有较高的急性毒性和致癌性,而且可参与大气中一些自由基反应,促进臭氧和二次有机气溶胶生成,造成大气污染[7−9]。2019年,我国生态环境部和国家卫生健康委员会发布的《有毒有害大气污染物名录(2018年)》中共包含11种污染物,其中有机污染物有6种,全部属于VOCs。
固体废物焚烧是大气VOCs的一个不可忽视的排放源。Liu等[10]研究发现,某垃圾焚烧发电厂在运行状态下,烟囱排放VOCs的总浓度为(270.6 ± 2.8)μg·m−3,是垃圾存放车间VOCs总浓度的近5倍。Beylot等[3]对法国90个城市垃圾焚烧发电厂的研究发现,VOCs的排放因子是4.68 g·t−1垃圾,而二噁英的排放因子只有7.78×10−8 g ·t−1垃圾。目前,我国尚未对固体废物焚烧行业的VOCs排放进行管控。
现代化的大型固体废物焚烧系统普遍采取严格的污染排放管控措施,通常安装脱硫脱硝设备、活性炭喷射装置和布袋除尘器,重点控制氮氧化物、二氧化硫、二噁英、重金属和烟尘的排放。为将氮氧化物的大气排放浓度控制在100 mg·Nm−3以下,大部分新建的大型固体废物焚烧系统在布袋除尘器后安装了选择性催化还原(SCR)装置。SCR催化剂同时具有较高的催化氧化还原活性,可改变焚烧烟气中有机污染物的浓度和分布[11]。有研究表明,SCR装置也可有效去除烟气中的二噁英[12-13]。但尚未有研究报道安装SCR装置对固体废物焚烧过程VOCs排放的影响。
本文在一安装于医疗废弃物焚烧系统布袋除尘器后的SCR侧线装置上,研究了不同温度条件下SCR催化对VOCs排放的影响,分别采集SCR装置进口和出口烟气,对烟气中的VOCs进行广谱筛查和定量分析;通过调控SCR装置的运行温度,研究了SCR装置运行状态对焚烧烟气中VOCs浓度和分布的影响。相关研究结果可为固体废物焚烧行业VOCs的排放管控提供参考。
选择性催化还原装置对固体废物焚烧过程挥发性有机物排放的影响
Influence of selective catalytic reduction equipment on the emission of volatile organic compounds from the incineration of solid waste
-
摘要: 在某一大型医疗废物焚烧系统研究了选择性催化还原(SCR)装置的运行温度(200—350 ℃)对挥发性有机物(VOCs)大气排放的影响。采用固相吸附-热脱附/气相色谱-质谱法对SCR装置进口和出口处烟气中的VOCs进行分析。在焚烧烟气中共鉴定出46种VOCs,包括烷烃、烯烃、卤代烃、芳烃、醇、酮、醚、醛、酚、脂肪酸、脂肪酸酯、酰胺、硅氧烷和腈类化合物。在SCR装置进口烟气中鉴定出VOCs的总浓度均值为313.3 μg·m−3。SCR装置的运行导致VOCs的大气排放浓度明显增加。当SCR装置运行温度为200 ℃和250 ℃时,排放烟气中鉴定出VOCs的总浓度均值分别增加了0.8倍和5.0倍。SCR装置的运行也显著改变了焚烧烟气中VOCs的组成分布。当SCR装置运行温度为200 ℃时,出口烟气中含氧VOCs的浓度大幅增加,尤其是酮和脂肪酸。当SCR装置运行温度为250 ℃和350 ℃时,排放烟气中鉴定出烷烃的平均浓度分别增加了15.6倍和3.7倍。导致SCR装置出口烟气中VOCs增加的主要原因可能为:VOCs没有被完全降解,半挥发性有机物经SCR催化剂催化后形成分子量更小的VOCs,较高的运行温度促进了VOCs从颗粒相向气相中迁移。Abstract: The effect of the operation temperature of selective catalytic reduction (SCR) equipment on the atmospheric emission of volatile organic compounds (VOCs) was investigated on a full-scale medical waste incineration system. Sorbent adsorption-thermal desorption/gas chromatography-mass spectrometry method was adopted to analyze the composition of VOCs in flue gases at the inlet and outlet of SCR equipment. A total of 46 VOCs were identified, including alkanes, olefins, halogenated hydrocarbons, aromatic hydrocarbons, alcohols, ketones, ethers, aldehydes, phenols, fatty acids, fatty acid esters, amides, siloxanes and nitriles. The average total concentration of identified VOCs in the inlet of SCR equipment was measured to be 313.3 μg·m−3. The operation of SCR equipment induced an obvious increase in the emission concentration of VOCs. When the SCR equipment was operated at 200 ℃ and 250 ℃, the average emission concentrations of total identified VOCs were increased by 0.8-fold and 5.0-fold, respectively. The operation of SCR equipment also induced a remarkable variation in the compositional distribution of VOCs in the flue gas. When the SCR equipment was operated at 200 ℃, the concentrations of oxygen-containing VOCs especially ketones and fatty acids in the flue gas at the outlet of SCR equipment were increased largely. When the SCR equipment was operated at 250 ℃ and 350 ℃, the average emission concentrations of total identified alkanes were increased by 15.6-fold and 3.7-fold, respectively. The possible main reasons for the increase in the concentration of VOCs in the flue gas at the outlet of SCR equipment were speculated as: incomplete degradation of VOCs, transformation of semi-volatile organic compounds to VOCs with smaller molecular weight, temperature-induced transfer of VOCs from the particle phase into the gas phase.
-
表 1 SCR装置进口和出口处烟气中鉴定出的VOCs种类及其平均浓度
Table 1. Species and average concentrations of identified VOCs in combustion flue gases at the inlet and outlet of SCR equipment
序号
No.化合物
Compounds保留时间/min
Retention timeSCR装置进口烟气浓度/(μg·m−3)
SCR equipment inlet Flue gasSCR装置出口处烟气浓度/(μg·m−3)
SCR equipment outlet flue gasSCR装置运行温度
SCR equipment operation temperature200 ℃ 250 ℃ 300 ℃ 350 ℃ 1 1-异氰基丁烷b 4.49 0.7 1.2 7.7 1.6 2.1 2 2-甲基丁烷b 5.96 26.4 28.0 511.8 32.6 169.0 3 正戊烷b 6.68 14.0 13.1 338.5 12.2 81.9 4 乙醇b 7.05 6.4 16.4 28.6 8.7 6.5 5 丙酮a 8.01 10.6 32.4 116.3 23.4 10.6 6 异丙醇a 8.37 5.3 15.6 66.7 8.7 5.6 7 乙腈b 8.72 14.5 23.1 51.5 18.1 14.5 8 乙酸甲酯b 8.82 n.d. n.d. 7.1 0.3 n.d. 9 二氯甲烷b 9.04 20.8 26.4 75.4 16.0 28.5 10 环戊烷b 9.18 n.d. n.d. n.d. n.d. 3.1 11 3-甲基戊烷b 9.65 0.4 6.8 41.1 1.7 0.6 12 正己烷a 10.27 17.7 12.6 40.2 22.0 22.0 13 丙基环丙烷b 11.67 n.d. 0.5 7.8 0.9 n.d. 14 2-丁酮b 11.99 0.4 1.0 14.4 1.0 0.3 15 乙酸乙酯a 12.12 3.4 6.5 50.8 3.0 12.8 16 四氢呋喃b 12.57 1.2 2.7 2.2 n.d. n.d. 17 三氯甲烷b 12.65 n.d. n.d. 1.1 n.d. n.d. 18 2,4-二甲基戊烷b 13.02 n.d. n.d. 5.1 n.d. n.d. 19 环己烷b 13.13 n.d. n.d. 17.6 n.d. n.d. 20 3-甲基己烷b 13.41 n.d. n.d. 11.6 n.d. n.d. 21 苯a 13.82 6.1 15.1 21.3 5.6 6.4 22 1,2-二氯乙烷b 13.89 0.4 n.d. 6.2 n.d. n.d. 23 乙酸b 14.04 1.0 57.3 n.d. 0.3 1.0 24 3-己酮b 14.35 n.d. 17.2 3.6 n.d. n.d. 25 1-丁酮b 15.05 n.d. 4.2 25.9 2.3 0.4 26 过氧化二叔丁基b 16.34 n.d. n.d. 12.4 n.d. n.d. 27 乙酸仲丁酯b 17.42 n.d. n.d. 9.9 n.d. n.d. 28 甲苯a 17.65 11.1 21.1 96.5 19.9 22.4 29 六甲基环三硅氧烷b 18.18 14.1 23.5 24.9 9.5 26.8 30 1,1,2-三氯乙烷b 18.27 n.d. n.d. 4.4 n.d. n.d. 31 乙酸丁酯a 18.76 5.9 6.1 7.5 5.3 6.0 32 正丁醚b 19.70 n.d. n.d. 3.5 n.d. n.d. 33 乙苯a 19.76 4.2 6.3 16.7 4.1 4.2 34 间,对-二甲苯a 19.89 7.1 14.7 48.2 7.8 6.8 35 2-丙烯酸丁酯b 20.28 n.d. n.d. 10.0 n.d. n.d. 36 邻-二甲苯a 20.38 4.9 7.3 15.9 4.9 5.0 37 N,N-二甲基乙酰胺b 20.80 5.0 n.d. 1.7 26.3 15.0 38 苯甲醛a 21.84 76.7 139.3 118.4 106.7 124.4 39 D-柠檬烯b 22.04 10.8 17.8 n.d. 2.2 2.2 40 2-乙基-1-己醇b 22.28 1.4 3.1 1.3 2.9 1.2 41 苯甲腈b 22.32 12.4 29.3 18.3 18.4 18.7 42 苯酚b 22.53 15.3 4.3 17.5 31.9 29.6 43 壬醛b 23.14 6.1 0.8 3.9 1.1 3.2 44 苯乙酮b 23.18 17.9 10.5 12.4 8.2 10.4 45 2-乙基己酸b 23.47 8.3 3.8 13.9 2.9 n.d. 46 2-硝基酚b 24.14 4.3 10.7 nd 6.7 1.6 注:a,用标准品准确定量;b,通过同类化合物相对响应因子估算含量;n.d.,未检出.
Note: a, quantified with standard substance; b, contents estimated with relative response factor of similar compounds; n.d., not detected. -
[1] 俞明锋, 付建英, 詹明秀, 等. 生活废弃物焚烧处置烟气中二(口恶)英排放特性研究 [J]. 环境科学学报, 2018, 38(5): 1983-1988. YU M F, FU J Y, ZHAN M X, et al. The research of PCDD/Fs emission characteristics in flue gas from municipal solid waste incinerations [J]. Acta Scientiae Circumstantiae, 2018, 38(5): 1983-1988(in Chinese).
[2] SETYAN A, PATRICK M, WANG J. Very low emissions of airborne particulate pollutants measured from two municipal solid waste incineration plants in Switzerland [J]. Atmospheric Environment, 2017, 166(octa): 99-109. [3] BEYLOT A, HOCHAR A, MICHEL P, et al. Municipal solid waste incineration in France: an overview of air pollution control techniques, emissions, and energy efficiency [J]. Journal of Industrial Ecology, 2018, 22(5): 1016-1026. doi: 10.1111/jiec.12701 [4] TIAN H Z, GAO J J, LU L, et al. Temporal trends and spatial variation characteristics of hazardous air pollutant emission inventory from municipal solid waste incineration in China [J]. Environmental Science & Technology, 2012, 46(18): 10364-10371. [5] ZHOU Q, YANG J X, LIU M M, et al. Toxicological risk by inhalation exposure of air pollution emitted from China's municipal solid waste incineration [J]. Environmental Science & Technology, 2018, 52(20): 11490-11499. [6] YANG L L, ZHENG M H, ZHU Q Q, et al. Inventory of polychlorinated naphthalene emissions from waste incineration and metallurgical sources in China [J]. Environmental Science & Technology, 2020, 54(2): 842-850. [7] HUANG B B, LEI C, WEI C H, et al. Chlorinated volatile organic compounds (Cl-VOCs) in environment - sources, potential human health impacts, and current remediation technologies [J]. Environment International, 2014, 71: 118-138. doi: 10.1016/j.envint.2014.06.013 [8] 付昱萌, 杨红刚, 卢民瑜, 等. 鄂州市大气VOCs污染特征及来源解析 [J]. 环境科学, 2020, 41(3): 1085-1092. FU Y M, YANG H G, LU M Y, et al. Analysis of pollution characteristics and sources of atmospheric VOCs in Ezhou city [J]. Environmental Science, 2020, 41(3): 1085-1092(in Chinese).
[9] VARUTBANGKUL V, BRECHTEL F J, BAHREINI R, et al. Hygroscopicity of secondary organic aerosols formed by oxidation of cycloalkenes, monoterpenes, sesquiterpenes, and Related Compounds[J]. Atmospheric Chemistry and Physics 2006, 6: 2367–2388. [10] LIU S L, WANG B G, HE J, et al. Source fingerprints of volatile organic compounds emitted from a municipal solid waste incineration power plant in Guangzhou, China [J]. 2011 International Conference of Environmental Science and Engineering. Procedia Environmental Sciences, 2012, 12: 103-115. [11] 任美慧, 樊芸, 王胜, 等. SCR装置对焦炉煤气燃烧废气中PCDD/Fs、PCBs和PCNs的协同脱除 [J]. 环境科学, 2019, 40(1): 143-148. REN M H, FAN Y, WANG S, et al. Simultaneous removal of polychlorinated dibenzo-p-dioxins/dibenzofurans, polychlorinated biphenyls, and polychlorinated naphthalenes from flues gases from coke gas burning using selective catalytic reduction equipment [J]. Environmental Science, 2019, 40(1): 143-148(in Chinese).
[12] LIU X L, WANG J, WANG X, et al. Simultaneous removal of PCDD/Fs and NOx from the flue gas of a municipal solid waste incinerator with a pilot plant [J]. Chemosphere, 2015, 133: 90-96. doi: 10.1016/j.chemosphere.2015.04.009 [13] GALLASTEGI-VILLA M, ARANZABAL A, GONZALEZ-MARCOS J A, et al. Tailoring dual redox-acid functionalities in VOx/TiO2/ZSM5 catalyst for simultaneous abatement of PCDD/Fs and NOx from municipal solid waste incineration [J]. Applied Catalysis B:Environmental, 2017, 205: 310-318. doi: 10.1016/j.apcatb.2016.12.020 [14] 陈进生, 袁东星, 洪有为, 等. 烟气催化脱硝装置对多环芳烃排放特性的影响 [J]. 燃料化学学报, 2007, 35(6): 722-726. doi: 10.1016/S1872-5813(08)60006-7 CHEN J S, YUAN D X, HONG Y W, et al. Effect of catalytic de-Nox device on the emission characteristics of polycyclic aromatic hydrocarbon in flue gas [J]. Journal of Fuel Chemistry and Technology, 2007, 35(6): 722-726(in Chinese). doi: 10.1016/S1872-5813(08)60006-7
[15] BUSCA G, BALDI M, PISTARINO C, et al. Evaluation of V2O5-WO3-TiO2 and alternative SCR catalysts in the abatement of VOCs [J]. Catalysis Today, 1999, 53(4): 525-533. doi: 10.1016/S0920-5861(99)00140-6 [16] FINOCCHIO E, BALDI M, BUSCA G, et al. Study of the abatement of VOC over V2O5-WO3-TiO2 and alternative SCR catalysts [J]. Catalysis Today, 2000, 59(3): 261-268. [17] CHAGGER H K, JONES J M, POURKASHANIAN M, et al. The formation of VOC, PAH and dioxins during incineration [J]. Process Safety and Environmental Protection, 2000, 78: 53-59. doi: 10.1205/095758200530457 [18] CHEN J C, HUANG J S, CHEN C M, et al. Emission characteristics of PAHs, benzene and phenol group hydrocarbons in O2/RFG waste incineration processes [J]. Fuel, 2008, 87: 2787-2797. doi: 10.1016/j.fuel.2008.02.012 [19] LIU J, WANG J W, CHENG J, et al. Distribution and emission of speciated volatile organic compounds from a coal-fired power plant with ultra-low emission technologies [J]. Journal of Cleaner Production, 2020, 264: 121686. doi: 10.1016/j.jclepro.2020.121686 [20] CHENG J, ZHANG Y S, WANG T, et al. Emission of volatile organic compounds (VOCs) during coal combustion at different heating rates [J]. Fuel, 2018, 225: 554-562. doi: 10.1016/j.fuel.2018.03.185 [21] JAY K, STIEGLITZ L. Identification and quantification of volatile organic components in emissions of waste incineration plants [J]. Chemosphere, 1995, 30(7): 1249-1260. doi: 10.1016/0045-6535(95)00021-Y [22] 陈海秀, 李军, 李冠华. 固体吸附-热脱附/气相色谱-质谱法测定固定污染源废气中50种挥发性有机物 [J]. 环境监控与预警, 2020, 12(1): 36-40. CHEN H X, LI J, LI G H. Determination of 50 volatile organic compounds in stationary source emission [J]. Environmental Monitoring and Forewarning, 2020, 12(1): 36-40(in Chinese).