-
多环芳烃(Polycyclic aromatic hydrocarbons, PAHs)是一类具有两个或多个苯环结构的稠环化合物,广泛存在于大气、土壤和水等环境介质中[1]。当前已经发现的PAHs有200多种,多具有致癌性、致突变性、致畸性等毒性作用,其中16种已被美国环境保护署(EPA)列为优先控制的有机污染物[2]。环境中的PAHs主要有两种来源,一是来自火山爆发、森林火灾等自然因素,二是来源于汽车尾气排放和化学燃料不完全燃烧等人为因素[3]。研究表明,人体受到环境中的PAHs的暴露后,可进入消化道、呼吸道和皮肤,进而影响人体健康[4]。同时,PAHs具有高生物蓄积性,这使得环境中微量PAHs暴露也可能会对人体的健康造成严重的威胁[5]。为了更好地监测环境安全,防止PAHs超标带来的环境安全隐患,必须对环境中的多环芳烃进行监测。
目前,已经构建的PAHs检测方法包括液相色谱法(LC)[6]、气相色谱法(GC)[7]、气相色谱-质谱联用法(GC-MS)等[8],但由于PAHs在大气、水体和土壤中的含量较低,甚至是痕量存在,且环境基质复杂,无论采用何种检测方法,分析复杂环境基质中的痕量PAHs均需进行高效且选择性的样品预处理,以便获得更“纯净”的提取物,从而加强样品中多环芳烃的响应度,并减少复杂基质对检测结果的影响。因此,建立快捷、高效的前处理方法对提高测定PAHs的效率和增强检测结果的可靠性具有重要意义[9].
目前已经广泛应用于环境中PAHs前处理的方法有液-液萃取[10]、索氏提取[11]和超声辅助提取[12]等,但这些方法往往存在处理时间长和溶剂消耗多等缺点[13],更重要的是这些方法缺乏选择性,导致提取后的样品中含有众多的干扰物质,进而会影响测定的灵敏度和重复性。固相萃取技术(Solid-phase extraction, SPE)自20世纪70年代问世以来,由于操作简便、处理时间短、萃取精度高和易与LC、GC、GC-MS等检测仪器联用等优点,已被成功应用于水和土壤中PAHs的测定[14-16]。然而,传统的固相萃取吸附剂材料依然存在特异性低和重现性差的问题,这也限制了其在测定复杂环境基质中PAHs的应用。为进一步解决这一问题,亟待寻找特异性高、重复性好的吸附材料或方法。近年来,分子印迹聚合物(Molecularly imprinting polymers, MIPs)由于吸附特异性高、制备简单且可重复使用等优点有效弥补了固相萃取传统吸附材料的不足,在PAHs检测中显示出良好的应用前景[17-18]。
本文概述了固相萃取技术、分子印迹聚合物及两者结合应用的原理,着重介绍了其在环境中PAHs检测中的应用进展,并分析了当前存在的问题与应用前景,旨在为快速、有效地测定环境中的PAHs提供参考。
分子印迹固相萃取技术及其在环境中多环芳烃测定中的应用进展
Recent advances of molecularly imprinted solid-phase extraction technique and its application for the determination of polycyclic aromatic hydrocarbons in environment
-
摘要: 多环芳烃(Polycyclic aromatic hydrocarbons, PAHs)具有致癌性、致突变性和致畸性等毒性作用,被列为需优先控制的有机污染物。由于持久性和生物蓄积性,环境中存在的PAHs会对人体健康产生不利的影响。本文简要阐述了利用分子印迹聚合物作为吸附剂的固相萃取技术的原理及工作模式,着重介绍了其在环境中多环芳烃检测中的应用进展,并分析了当前存在的问题与应用前景。Abstract: Polycyclic aromatic hydrocarbons (PAHs) are listed as priority organic pollutants due to its potential carcinogenic, mutagenic and teratogenictoxicity. PAHs in the environment have adverse effects on human health because of persistence and bioaccumulation. This study briefly reviews the principal mechanism and the application of molecularly imprinted polymers-based solid-phase extraction technology, especially for the detection of PAHs in environment. The existing problems and application prospects were also discussed.
-
-
[1] HUA L T, GUO S, WANG Y, et al. Simultaneous determination of multiple isomeric hydroxylated polycyclic aromatic hydrocarbons in urine by using ultra-high performance liquid chromatography tandem mass spectrometry [J]. Journal of Chromatography B, 2021, 1184: 122983-122990. doi: 10.1016/j.jchromb.2021.122983 [2] BENEDETTI B, di CARRO M, MAGI E. Multivariate optimization of an extraction procedure based on magnetic molecular imprinted polymer for the determination of polycyclic aromatic hydrocarbons in sea water [J]. Microchemical Journal, 2019, 145: 1199-1206. doi: 10.1016/j.microc.2018.12.048 [3] 王勤, 袁月, 邢燕, 等. 水中多环芳烃检测技术及污染现状研究进展 [J]. 预防医学论坛, 2021, 27(7): 558-562. WANG Q, YUAN Y, XING Y, et al. Research progress of polycyclic aromatic hydrocarbons detection technology and pollution status in water [J]. Preventive Medicine Tribune, 2021, 27(7): 558-562(in Chinese).
[4] YIN S, TAN H X, HUI N, et al. Polycyclic aromatic hydrocarbons in leaves of Cinnamomum camphora along the urban-rural gradient of a megacity: Distribution varies in concentration and potential toxicity [J]. Science of the Total Environment, 2020, 732: 139328-139334. doi: 10.1016/j.scitotenv.2020.139328 [5] JAMHARI A A, LATIF M T, WAHAB M I A, et al. Size-segregated atmospheric polycyclic aromatic hydrocarbons down to PM0.1 in urban tropical environment: Temporal distribution, potential sources and human health risk [J]. Urban Climate, 2021, 40: 100996-101008. doi: 10.1016/j.uclim.2021.100996 [6] KIM D Y, LEE B E, SHIN H S. Determination of polycyclic aromatic hydrocarbons (PAHs) in smoking cessation aids by using high-performance liquid chromatography [J]. Analytical Biochemistry, 2021, 617: 114119-114125. doi: 10.1016/j.ab.2021.114119 [7] SABUROUH N, JABBARI A, PARASTAR H. An innovative chemometric approach for simultaneous determination of polycyclic aromatic hydrocarbons in oil-contaminated waters based on dispersive micro-solid phase extraction followed by gas chromatography [J]. Microchemical Journal, 2020, 159: 105407-105416. doi: 10.1016/j.microc.2020.105407 [8] SÁNCHEZ N E, SALAFRANCA J, CALLEJAS A, et al. Quantification of polycyclic aromatic hydrocarbons (PAHs) found in gas and particle phases from pyrolytic processes using gas chromatography-mass spectrometry (GC-MS) [J]. Fuel, 2013, 107: 246-253. doi: 10.1016/j.fuel.2013.01.065 [9] GILART N, BORRULL F, FONTANALS N, et al. Selective materials for solid-phase extraction in environmental analysis [J]. Trends in Environmental Analytical Chemistry, 2014, 1: e8-e18. doi: 10.1016/j.teac.2013.11.002 [10] BRUM D M, CASSELLA R J, PEREIRA NETTO A D. Multivariate optimization of a liquid-liquid extraction of the EPA-PAHs from natural contaminated waters prior to determination by liquid chromatography with fluorescence detection [J]. Talanta, 2008, 74(5): 1392-1399. doi: 10.1016/j.talanta.2007.09.013 [11] HWANG S, CUTRIGHT T J. Preliminary evaluation of PAH sorptive changes in soil by Soxhlet extraction [J]. Environment International, 2004, 30(2): 151-158. doi: 10.1016/S0160-4120(03)00158-2 [12] OH J Y, CHOI S D, KWON H O, et al. Leaching of polycyclic aromatic hydrocarbons (PAHs) from industrial wastewater sludge by ultrasonic treatment [J]. Ultrasonics Sonochemistry, 2016, 33: 61-66. doi: 10.1016/j.ultsonch.2016.04.027 [13] 王春琼, 李苓, 李振杰, 等. 分子印迹固相萃取技术在农药残留检测中的应用进展 [J]. 江西农业学报, 2021, 33(6): 59-64. WANG C Q, LI L, LI Z J, et al. Application of molecularly imprinted solid-phase extraction in determination of pesticide residues [J]. Acta Agriculturae Jiangxi, 2021, 33(6): 59-64(in Chinese).
[14] YU C, WU F S, LUO X G, et al. Porphyrin-based covalent organic framework coated stainless steel fiber for solid-phase microextraction of polycyclic aromatic hydrocarbons in water and soil samples [J]. Microchemical Journal, 2021, 168: 106364-106372. doi: 10.1016/j.microc.2021.106364 [15] BROWN J N, PEAKE B M. Determination of colloidally-associated polycyclic aromatic hydrocarbons (PAHs) in fresh water using C18 solid phase extraction disks [J]. Analytica Chimica Acta, 2003, 486(2): 159-169. doi: 10.1016/S0003-2670(03)00472-0 [16] PAN D, WANG J P, CHEN C Y, et al. Ultrasonic assisted extraction combined with titanium-plate based solid phase extraction for the analysis of PAHs in soil samples by HPLC-FLD [J]. Talanta, 2013, 108: 117-122. doi: 10.1016/j.talanta.2013.02.066 [17] AZIZI A, BOTTARO C S. A critical review of molecularly imprinted polymers for the analysis of organic pollutants in environmental water samples [J]. Journal of Chromatography A, 2020, 1614: 460603-460637. doi: 10.1016/j.chroma.2019.460603 [18] KRUPADAM R J, KHAN M S, WATE S R. Removal of probable human carcinogenic polycyclic aromatic hydrocarbons from contaminated water using molecularly imprinted polymer [J]. Water Research, 2010, 44(3): 681-688. doi: 10.1016/j.watres.2009.09.044 [19] MARANATA G J, SURYA N O, HASANAH A N. Optimising factors affecting solid phase extraction performances of molecular imprinted polymer as recent sample preparation technique [J]. Heliyon, 2021, 7(1): e05934-e05945. doi: 10.1016/j.heliyon.2021.e05934 [20] ZHANG C, XING H F, YANG L R, et al. Development trend and prospect of solid phase extraction technology[J]. Chinese Journal of Chemical Engineering, 2021, 45:245-255. [21] MAURI-AUCEJO A, AMORÓS P, MORAGUES A, et al. Comparison of the solid-phase extraction efficiency of a bounded and an included cyclodextrin-silica microporous composite for polycyclic aromatic hydrocarbons determination in water samples [J]. Talanta, 2016, 156/157: 95-103. doi: 10.1016/j.talanta.2016.05.011 [22] COSTA J A S, de JESUS R A, da SILVA C M P, et al. Efficient adsorption of a mixture of polycyclic aromatic hydrocarbons (PAHs) by Si-MCM-41 mesoporous molecular sieve [J]. Powder Technology, 2017, 308: 434-441. doi: 10.1016/j.powtec.2016.12.035 [23] ZHAO J, WANG Z Y, ZHAO Q, et al. Adsorption of phenanthrene on multilayer graphene as affected by surfactant and exfoliation [J]. Environmental Science & Technology, 2014, 48(1): 331-339. [24] WANG Y X, WANG S H, NIU H Y, et al. Preparation of polydopamine coated Fe3O4 nanoparticles and their application for enrichment of polycyclic aromatic hydrocarbons from environmental water samples [J]. Journal of Chromatography A, 2013, 1283: 20-26. doi: 10.1016/j.chroma.2013.01.110 [25] XUE S W, TANG M Q, XU L, et al. Magnetic nanoparticles with hydrophobicity and hydrophilicity for solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water samples [J]. Journal of Chromatography A, 2015, 1411: 9-16. doi: 10.1016/j.chroma.2015.07.104 [26] YAZDANPANAH M, NOJAVAN S. Cyclodextrin-starch hard gel as an efficient green sorbent for dispersive micro solid-phase extraction of eight polycyclic aromatic hydrocarbons from environmental water samples [J]. Microchemical Journal, 2021, 168: 106509-106518. doi: 10.1016/j.microc.2021.106509 [27] ATIRAH MOHD NAZIR N, RAOOV M, MOHAMAD S. Spent tea leaves as an adsorbent for micro-solid-phase extraction of polycyclic aromatic hydrocarbons (PAHs) from water and food samples prior to GC-FID analysis [J]. Microchemical Journal, 2020, 159: 105581-105587. doi: 10.1016/j.microc.2020.105581 [28] YANG X P, YIN Y R, ZONG Y Y, et al. Magnetic nanocomposite as sorbent for magnetic solid phase extraction coupled with high performance liquid chromatography for determination of polycyclic aromatic hydrocarbons [J]. Microchemical Journal, 2019, 145: 26-34. doi: 10.1016/j.microc.2018.10.013 [29] MAJD M, NOJAVAN S. Determination of polycyclic aromatic hydrocarbons in soil, tree leaves, and water samples by magnetic dispersive solid-phase extraction based on β-cyclodextrin functionalized graphene oxide followed by GC-FID [J]. Microchemical Journal, 2021, 171: 106852-106862. doi: 10.1016/j.microc.2021.106852 [30] YAN X Q, GUO Y N, ZHENG S J, et al. Solid phase extraction of 16 polycyclic aromatic hydrocarbons from environmental water samples by π-hole bonds [J]. Journal of Chromatography A, 2021, 1645: 462067-462074. doi: 10.1016/j.chroma.2021.462067 [31] 押浩博, 姜博, 邢奕, 等. 分子印迹技术在水环境抗生素富集中的应用进展 [J]. 环境化学, 2021, 40(2): 343-354. doi: 10.7524/j.issn.0254-6108.2020052902 YA H B, JIANG B, XING Y, et al. Recent advances of molecularly imprinted technology in the enrichment of antibiotics in aquatic environment [J]. Environmental Chemistry, 2021, 40(2): 343-354(in Chinese). doi: 10.7524/j.issn.0254-6108.2020052902
[32] 许祯毅, 吴玉琼, 范俐, 等. 分子印迹技术在食品安全检测领域的应用进展 [J]. 食品研究与开发, 2021, 42(3): 207-212. XU Z Y, WU Y Q, FAN L, et al. Application progress of molecular imprinting technology in food safety detection [J]. Food Research and Development, 2021, 42(3): 207-212(in Chinese).
[33] MOSTAFA A M, BARTON S J, WREN S P, et al. Review on molecularly imprinted polymers with a focus on their application to the analysis of protein biomarkers [J]. TrAC Trends in Analytical Chemistry, 2021, 144: 116431-116468. doi: 10.1016/j.trac.2021.116431 [34] XIE J Q, CAI C Q, LAI S Z, et al. Synthesis and application of a molecularly imprinted polymer as a filter to reduce polycyclic aromatic hydrocarbon levels in mainstream cigarette smoke [J]. Reactive and Functional Polymers, 2013, 73(12): 1606-1611. doi: 10.1016/j.reactfunctpolym.2013.09.003 [35] EGLI S N, BUTLER E D, BOTTARO C S. Selective extraction of light polycyclic aromatic hydrocarbons in environmental water samples with pseudo-template thin-film molecularly imprinted polymers [J]. Analytical Methods, 2015, 7(5): 2028-2035. doi: 10.1039/C4AY02849J [36] FLOTRON V, DELTEIL C, PADELLEC Y, et al. Removal of sorbed polycyclic aromatic hydrocarbons from soil, sludge and sediment samples using the Fenton's reagent process [J]. Chemosphere, 2005, 59(10): 1427-1437. doi: 10.1016/j.chemosphere.2004.12.065 [37] KRUPADAM R J, KORDE B A, ASHOKKUMAR M, et al. Novel molecularly imprinted polymeric microspheres for preconcentration and preservation of polycyclic aromatic hydrocarbons from environmental samples [J]. Analytical and Bioanalytical Chemistry, 2014, 406(22): 5313-5321. doi: 10.1007/s00216-014-7952-z [38] KRUPADAM R J, NESTEROV E E, SPIVAK D A. Highly selective detection of oil spill polycyclic aromatic hydrocarbons using molecularly imprinted polymers for marine ecosystems [J]. Journal of Hazardous Materials, 2014, 274: 1-7. doi: 10.1016/j.jhazmat.2014.03.050 [39] MUNAWAR H, MANKAR J S, SHARMA M D, et al. Highly selective electrochemical nanofilm sensor for detection of carcinogenic PAHs in environmental samples [J]. Talanta, 2020, 219: 121273-121279. doi: 10.1016/j.talanta.2020.121273 [40] NCUBE S, KUNENE P, TAVENGWA N T, et al. Synthesis and characterization of a molecularly imprinted polymer for the isolation of the 16 US-EPA priority polycyclic aromatic hydrocarbons (PAHs) in solution [J]. Journal of Environmental Management, 2017, 199: 192-200. [41] NCUBE S, TAVENGWA N, SOQAKA A, et al. Development of a single format membrane assisted solvent extraction-molecularly imprinted polymer technique for extraction of polycyclic aromatic hydrocarbons in wastewater followed by gas chromatography mass spectrometry determination [J]. Journal of Chromatography A, 2018, 1569: 36-43. doi: 10.1016/j.chroma.2018.07.061 [42] HIJAZI H Y, BOTTARO C S. Molecularly imprinted polymer thin-film as a micro-extraction adsorbent for selective determination of trace concentrations of polycyclic aromatic sulfur heterocycles in seawater [J]. Journal of Chromatography A, 2020, 1617: 460824-460831. doi: 10.1016/j.chroma.2019.460824 [43] ÇORMAN M E, ARMUTCU C, UZUN L, et al. Rapid, efficient and selective preconcentration of benzo[a]Pyrene (BaP) by molecularly imprinted composite cartridge and HPLC [J]. Materials Science and Engineering:C, 2017, 70: 41-53. doi: 10.1016/j.msec.2016.08.040 [44] 王新鑫, 杨军, 谢晟瑜, 等. 基于分子印迹磁性复合材料的基质分散-固相萃取/液相色谱法测定海水中的氯酚类污染物 [J]. 分析测试学报, 2015, 34(11): 1213-1219. doi: 10.3969/j.issn.1004-4957.2015.11.001 WANG X X, YANG J, XIE S Y, et al. Analysis of chlorophenols in seawater samples by molecular imprinted magnetic composite-based dispersive solid phase extraction coupled with liquid chromatography [J]. Journal of Instrumental Analysis, 2015, 34(11): 1213-1219(in Chinese). doi: 10.3969/j.issn.1004-4957.2015.11.001
[45] SUN X L, WANG J C, LI Y, et al. Novel dummy molecularly imprinted polymers for matrix solid-phase dispersion extraction of eight fluoroquinolones from fish samples [J]. Journal of Chromatography A, 2014, 1359: 1-7. doi: 10.1016/j.chroma.2014.07.007 [46] ANSELL R J, MOSBACH K. Magnetic molecularly imprinted polymer beads for drug radioligand binding assay [J]. The Analyst, 1998, 123(7): 1611-1616. doi: 10.1039/a801903g [47] LIU Y H, LIAN Z R, LI F F, et al. Review on molecular imprinting technology and its application in pre-treatment and detection of marine organic pollutants [J]. Marine Pollution Bulletin, 2021, 169: 112541-112555. doi: 10.1016/j.marpolbul.2021.112541 [48] MULLETT W M, MARTIN P, PAWLISZYN J. In-tube moleculary imprinted polymer solid-phase microextraction for the selective determination of propranolol [J]. Analytical Chemistry, 2001, 73(11): 2383-2389. doi: 10.1021/ac0100502 [49] TURIEL E, MARTÍN-ESTEBAN A. Molecularly imprinted polymers-based microextraction techniques [J]. TrAC Trends in Analytical Chemistry, 2019, 118: 574-586. doi: 10.1016/j.trac.2019.06.016 [50] LIU Y, HUANG Y T, WANG D M, et al. Molecularly imprinted polymers hydrogel for the rapid risk-category-specific screening of food using SPE followed by fluorescence spectrometric detection [J]. Microchemical Journal, 2020, 159: 105408-105413. doi: 10.1016/j.microc.2020.105408 [51] FU X, ZHU D L, HUANG L, et al. Superparamagnetic core-shell dummy template molecularly imprinted polymer for magnetic solid-phase extraction of food additives prior to the determination by HPLC [J]. Microchemical Journal, 2019, 150: 104169-104176. doi: 10.1016/j.microc.2019.104169 [52] CARO E, MARCÉ R M, BORRULL F, et al. Application of molecularly imprinted polymers to solid-phase extraction of compounds from environmental and biological samples [J]. TrAC Trends in Analytical Chemistry, 2006, 25(2): 143-154. doi: 10.1016/j.trac.2005.05.008 [53] MADIKIZELA L M, TAVENGWA N T, CHIMUKA L. Applications of molecularly imprinted polymers for solid-phase extraction of non-steroidal anti-inflammatory drugs and analgesics from environmental waters and biological samples [J]. Journal of Pharmaceutical and Biomedical Analysis, 2018, 147: 624-633. doi: 10.1016/j.jpba.2017.04.010 [54] SONG X L, LI J H, XU S F, et al. Determination of 16 polycyclic aromatic hydrocarbons in seawater using molecularly imprinted solid-phase extraction coupled with gas chromatography-mass spectrometry [J]. Talanta, 2012, 99: 75-82. doi: 10.1016/j.talanta.2012.04.065 [55] 李成, 张雪娜, 师耀龙, 等. 分子印迹固相萃取-气相色谱/质谱联用法测定污泥中多环芳烃 [J]. 环境化学, 2017, 36(1): 190-197. doi: 10.7524/j.issn.0254-6108.2017.01.2016032203 LI C, ZHANG X N, SHI Y L, et al. Determination of polycyclic aromatic hydrocarbons in sludge by molecular imprinting solid phase extraction and gas chromatography/mass spectrometry [J]. Environmental Chemistry, 2017, 36(1): 190-197(in Chinese). doi: 10.7524/j.issn.0254-6108.2017.01.2016032203
[56] VILLAR-NAVARRO M, MARTÍN-VALERO M J, FERNÁNDEZ-TORRES R M, et al. Easy, fast and environmental friendly method for the simultaneous extraction of the 16 EPA PAHs using magnetic molecular imprinted polymers (mag-MIPs) [J]. Journal of Chromatography B, 2017, 1044/1045: 63-69. doi: 10.1016/j.jchromb.2016.12.009 [57] AZIZI A, SHAHHOSEINI F, BOTTARO C S. Magnetic molecularly imprinted polymers prepared by reversible addition fragmentation chain transfer polymerization for dispersive solid phase extraction of polycyclic aromatic hydrocarbons in water [J]. Journal of Chromatography A, 2020, 1610: 460534-460548. doi: 10.1016/j.chroma.2019.460534