-
PM2.5在空气中悬浮的时间久、输送距离远[1],对大气能见度[2]、全球气候变化[3]、人体健康及我国经济[4-6]均造成严重影响。PM2.5中主要包括碳质组分、水溶性化合物、地壳元素和各种微量元素等[7]。离子组分和其浓度变化对云和霾的形成,气候的变化都有重要影响[8-9]。研究得出,总水溶性离子浓度在PM2.5中的占比一般在20%—60%[10-12],最高可达80%以上[13],可知水溶性离子是PM2.5中较为重要的组分,且来源复杂,可作为大气污染来源的标识物[14-15],因此,研究PM2.5中的水溶性离子浓度变化特征对了解PM2.5污染物性质和来源,以及制定相关污染防治措施具有重要意义。
目前,学者对大气PM2.5中水溶性离子的研究主要集中在其浓度水平、季节变化特征、粒径分布及污染来源等方面,对不同污染等级下的水溶性离子特征研究甚少。研究区多集中在京津冀[16-17]、珠三角[18]、长三角[19]等经济较为发达的地区。对汾渭平原大气污染的研究主要集中西安[20-21]、运城[12-22]和咸阳[23],针对水溶性离子的研究主要集中在西安[24-25],对宝鸡及其他城市的研究甚少。周变红等[26]的研究表明,宝鸡市灰霾天的总水溶性离子对PM2.5浓度的贡献率及二次离子的质量浓度均高于非灰霾天。Zhao等[27]研究发现,嘉兴地区水溶性离子的浓度在PM2.5中占比为34.3%—49.6%,其中二次离子占总质量浓度的32.4%—47.0%。陶月乐等[28]研究得出成都市水溶性离子相比粗粒子则多富集在细粒子中,主要成分是(NH4)2SO4、NH4HSO4和NH4NO3。刘晓迪等[29]利用热力学模型ISORROPIA-Ⅱ得出济南市夏季和冬季PM2.5的酸度分别为5.3±1.0和4.2±1.3,表明冬季PM2.5的酸性比夏季强。高洁等[30]基于ISORROPIA-Ⅱ模型结果,研究表明,
${\rm{SO}}_4^{2-} $ 浓度对气溶胶pH值影响最大,其次是${\rm{NO}}_3^{-} $ 、Ca2+和${\rm{NH}}_4^{+} $ 。Shen等[31]基于中国东北及西北的11个城市道路扬尘和建筑扬尘的研究,表明扬尘中总水溶性离子浓度较小,并以Ca2+和${\rm{SO}}_4^{2-} $ 为主,其中几乎检测不到${\rm{NH}}_4^{+} $ 。张扬等[32]通过PMF源解析结果得出,影响南京市霾和雾形成的主导因素是二次源,同时海盐和燃烧源也是雾形成的主要来源,降水对燃煤源和二次源的清除作用在霾过程中更为明显。宝鸡市位于关中西部,不仅是关天经济区的副中心城市,还是我国的重工业基地,加之宝鸡市典型的河谷地形及较大湿度等不利的扩散条件,使宝鸡市面临严重的大气环境污染问题。本文研究了宝鸡市冬季城郊不同污染等级水溶性离子的特征及来源,以期为宝鸡市进一步开展大气气溶胶研究提供基础数据,同时为制定PM2.5污染控制措施提供相应的科学依据。
宝鸡市城郊冬季水溶性离子在不同等级污染天的特征及来源分析
Characteristics and source analysis of water-soluble ions in Baoji urban and suburban areas on different levels of polluted days
-
摘要: 为探究宝鸡市冬季城郊不同污染天大气PM2.5中水溶性离子的污染特征,于2019年10月15日至2020年1月31日分别对宝鸡市城郊连续PM2.5样品采集并进行研究分析。结果表明,2019年冬季宝鸡市城郊平均PM2.5质量浓度分别为(96.9±51.4)μg·m−3和(111.2±48.2)μg·m−3,总水溶性离子日平均质量浓度分别为(46.2±31.9)μg·m−3和(48.7±30.2)μg·m−3,二次离子SNA(
${{\rm{NO}}_3^{-} }$ 、${{\rm{SO}}_4^{2-}} $ 和${{\rm{NH}}_4^{+}} $ )分别占城郊总水溶性离子平均质量浓度的90.7%和89.7%。污染加重,SNA质量浓度越高,在总离子和PM2.5中质量浓度占比也越大。城区SNA质量浓度、占总离子和PM2.5的比例分别由优良天的16.1 μg·m−3、82.5%和31.4%增加到重度污染天的89.6 μg·m−3、93.0%和50.5%。郊区SNA质量浓度、占总离子和PM2.5的比例分别由优良天的15.7 μg·m−3、81.6%和27.1%增加到重度污染天的84.9 μg·m−3、91.8%和46.5%。城郊NO3−质量浓度在不同污染等级下始终最高,城郊不同污染等级平均质量浓度分别为(22.2±17.6)μg·m−3和(21.3±15.0)μg·m−3。城郊冬季大气污染受移动源的影响较大,随着污染加重,移动源的贡献有升高趋势。不同等级污染天大气PM2.5整体偏碱性,随着污染加重,酸性有所降低。PMF源解析结果表明,宝鸡市冬季大气PM2.5中的水溶性离子主要来源有:二次反应源(硫酸盐和硝酸盐)、生物质燃烧、燃煤及扬尘源。城区的硫酸盐和生物质燃烧对大气污染贡献较大,郊区对大气污染贡献较大的是燃煤和生物质燃烧。Abstract: Continuous PM2.5 samples were collected from October 15, 2019 to January 31, 2020 in Baoji urban and suburban areas to explore the pollution characteristics of water-soluble ions in PM2.5 on different levels of polluted days. The results showed that the average PM2.5 mass concentrations in the urban and suburban areas of Baoji city in winter 2019 were (96.9±51.4) μg·m−3 and (111.2±48.2) μg·m−3, respectively. The average daily mass concentrations of total water-soluble ions were (46.2±31.9) μg·m−3 and (48.7±30.2) μg·m−3, respectively. Under the different pollution levels in the urban and suburban areas, secondary ions SNA (${\rm{NO}}_3^{-} $ ,${\rm{SO}}_4^{2-} $ and${\rm{NH}}_4^{+} $ ) accounted for 90.7% and 89.7% of the average mass concentrations of total water-soluble ions in the urban and suburban areas, respectively. As the pollution intensifies, the higher the mass concentration of SNA, the greater the proportion of SNA in total ions and PM2.5 mass concentrations. For urban areas, the mass concentration of SNA, and its proportion of total ions and PM2.5 increased from 16.1 μg·m−3, 82.5% and 31.4% in clean days, to 89.6 μg·m−3, 93.0% and 50.5% in severe polluted days. While for suburban areas, they increased from 15.7 μg·m−3, 81.6% and 27.1% to 84.9 μg·m−3, 91.8% and 46.5%. The concentrations of NO3− in urban and suburban areas were the highest under all pollution levels with the averaged mass concentrations of (22.2±17.6) μg·m−3 and (21.3±15.0) μg·m−3, respectively. Mobile sources had considerable impacts on winter air pollution in Baoji urban and suburban areas and the contribution increased as the pollution aggravated. Under different levels of pollution, the atmospheric PM2.5 were generally alkaline, and the acidity decreased with increasing pollution. The results of PMF source analysis showed that the main sources of water-soluble ions in winter atmospheric PM2.5 in Baoji including secondary reaction sources (sulfate and nitrate), biomass burning, coal burning and dust. Sulfate and biomass burning contributed the most to air pollution in urban areas, while coal and biomass burning dominated in suburban areas.-
Key words:
- water soluble ions /
- different pollution levels /
- PMF source analysis /
- Baoji suburban
-
表 1 不同污染等级下城郊采样天数及占比
Table 1. Sampling days and proportion of different pollution levels in suburban areas
优良Fine 轻度污染Mind 中度污染Moderate 重度污染Serious 严重污染Severe 总和Sum 城区 天数/d 33 19 13 10 1 76 占比/% 43.4 25.0 17.1 13.2 1.3 100 郊区 天数/d 20 26 12 17 0 75 占比/% 26.7 34.7 16.0 22.7 0 100 表 2 不同污染等级下城郊PM2.5质量浓度(μg·m-3)
Table 2. Mass concentration of PM2.5 in suburban areas under different pollution levels (μg·m-3)
优良Fine 轻度污染Mind 中度污染Moderate 重度污染Serious 严重污染Severe 平均值Average 城区 51.2±15.9 99.3±10.7 133.7±8.0 177.3±25.2 274.3 96.9±51.4 郊区 57.8±13.5 96.1±9.6 131.4±9.8 182.7±26.8 0 111.2±48.2 表 3 城郊不同污染等级下PM2.5中水溶性离子质量浓度 (μg·m-3)
Table 3. Mass concentration and proportion of water-soluble ions in PM2.5 at different pollution levels in suburban areas (μg·m-3)
名称
Name污染等级
Class of pollutionCl− ${\rm{NO}}_3^{-} $ ${\rm{SO}}_4^{2-} $ Na+ ${\rm{NH}}_4^{+} $ K+ Mg2+ Ca2+ 城区 优良 0.8±0.4 7.8±4.8 5.6±2.4 1.0±0.4 2.7±2.1 0.2±0.2 0.2±0.1 1.2±0.6 轻度 1.7±0.5 21.7±5.3 11.2±4.7 0.9±0.6 9.4±2.7 0.6±0.3 0.1±0.1 1.2±0.6 中度 2.2±0.5 32.2±5.9 14.6±5.0 0.7±0.5 21.5±2.5 0.8±0.3 0.2±0.1 1.1±0.5 重度 3.0±0.8 45.2±9.1 22.9±8.0 1.3±0.3 38.3±5.1 1.2±0.6 0.1±0.1 1.2±0.5 严重 3.9 84.9 34.3 0.9 38.3 1.7 0.1 1.1 郊区 优良 1.2±0.5 6.8±3.1 6.0±2.1 0.9±0.3 2.9±1.5 0.3±0.1 0.1±0.1 1.0±0.5 轻度 2.1±0.7 16.0±6.2 9.9±3.6 0.8±0.3 7.5±2.4 0.6±0.2 0.2±0.2 0.8±0.4 中度 2.6±0.8 26.5±5.3 14.5±5.3 0.8±0.4 12.9±2.5 0.9±0.4 0.3±0.2 1.0±0.5 重度 3.6±0.8 42.6±11.7 21.5±7.6 1.1±0.3 20.8±5.7 1.3±0.6 0.2±0.1 1.3±0.6 -
[1] 曹军骥. 我国PM2.5污染现状与控制对策 [J]. 地球环境学报, 2012(5): 1030-1036. CAO J J. Pollution status and control strategies of PM2.5 in China [J]. Journal of Earth Environment, 2012(5): 1030-1036(in Chinese).
[2] LIU F, TAN Q W, JIANG X, et al. Effects of relative humidity and PM2.5 chemical compositions on visibility impairment in Chengdu, China [J]. Journal of Environmental Sciences (China), 2019, 86: 15-23. doi: 10.1016/j.jes.2019.05.004 [3] SORRIBAS M, ANDREWS. Climatological study for understanding the aerosol radiative effects at southwest Atlantic coast of Europe [J]. Atmospheric Environment, 2019, 205(MAY): 52-66. [4] MAJI K J, YE W F, ARORA M, et al. PM2.5-related health and economic loss assessment for 338 Chinese cities [J]. Environment International, 2018, 121(Pt 1): 392-403. [5] 李勇, 廖琴, 赵秀阁, 等. PM2.5污染对我国健康负担和经济损失的影响 [J]. 环境科学, 2021, 42(4): 1688-1695. LI Y, LIAO Q, ZHAO X G, et al. Effects of PM2.5 pollution on health burden and economic loss in China [J]. Environmental Science, 2021, 42(4): 1688-1695(in Chinese).
[6] QI M, ZHU X, DU W, et al. Exposure and health impact evaluation based on simultaneous measurement of indoor and ambient PM2.5 in Haidian, Beijing [J]. Environmental Pollution, 2017, 220(Pt A): 704-712. [7] CALVO AI, ALVES C, CASTRO A, et al. Research on aerosol sources and chemical composition: Past, current and emerging issues [J]. Atmospheric Research, 2013, 120-121: 1-28. doi: 10.1016/j.atmosres.2012.09.021 [8] 吴丹, 蔺少龙, 杨焕强, 等. 杭州市PM2.5中水溶性离子的污染特征及其消光贡献 [J]. 环境科学, 2017, 38(7): 2656-2666. WU D, LIN S L, YANG H Q, et al. Pollution characteristics and light extinction contribution of water-soluble ions of PM2.5 in Hangzhou [J]. Environmental Science, 2017, 38(7): 2656-2666(in Chinese).
[9] SONG S, GAO M, XU W, et al. Fine-particle pH for Beijing winter haze as inferred from different thermodynamic equilibrium models [J]. Atmospheric Chemistry and Physics, 2018, 18(10): 7423-7438. doi: 10.5194/acp-18-7423-2018 [10] LI T C, YUAN C S, HUANG H C, et al. Clustered long-range transport routes and potential sources of PM2.5 and their chemical characteristics around the Taiwan Strait [J]. Atmospheric Environment, 2017, 148: 152-166. doi: 10.1016/j.atmosenv.2016.10.010 [11] 王少博, 王涵, 张敬巧, 等. 邢台市秋季PM2.5及水溶性离子污染特征 [J]. 中国环境科学, 2020(5): 1877-1884. doi: 10.3969/j.issn.1000-6923.2020.05.003 WANG S B, WANG H, ZHANG J Q, et al. Characterization analysis of PM2.5 and water-soluble ions during autumn in Xingtai City [J]. China Environmental Science, 2020(5): 1877-1884(in Chinese). doi: 10.3969/j.issn.1000-6923.2020.05.003
[12] 赵清, 李杏茹, 王国选, 等. 运城秋冬季大气细粒子化学组成特征及来源解析 [J]. 环境科学, 2021, 42(4): 1626-1635. ZHAO Q, LI X R, WANG G X, et al. Chemical composition and source analysis of atmospheric fine particles in Yuncheng in autumn and winter [J]. Environmental Science, 2021, 42(4): 1626-1635(in Chinese).
[13] LIU P, ZHANG C, MU Y, et al. The possible contribution of the periodic emissions from farmers' activities in the North China Plain to atmospheric water-soluble ions in Beijing [J]. Atmospheric Chemistry and Physics, 2016, 16(15): 10097-10109. doi: 10.5194/acp-16-10097-2016 [14] 庄马展, 杨红斌, 王坚, 等. 厦门大气可吸入颗粒物离子成分特征研究 [J]. 现代科学仪器, 2006(6): 92-95. doi: 10.3969/j.issn.1003-8892.2006.06.026 ZHUANG M Z, YANG H B, WANG J, et al. Research on ionic characteristics of air particles in Xiamen [J]. Modern Scientific Instruments, 2006(6): 92-95(in Chinese). doi: 10.3969/j.issn.1003-8892.2006.06.026
[15] HAN X, GUO Q, LIU C, et al. Effect of the pollution control measures on PM2.5 during the 2015 China Victory Day Parade: Implication from water-soluble ions and sulfur isotope [J]. Environ Pollut, 2016, 218: 230-241. doi: 10.1016/j.envpol.2016.06.038 [16] 李欢, 唐贵谦, 张军科, 等. 2017—2018年北京大气PM2.5中水溶性无机离子特征 [J]. 环境科学, 2020, 41(10): 4364-4373. LI H, TANG G Q, ZHANG J K, et al. Characteristics of water-soluble inorganic ions in PM in Beijing during 2017-2018 [J]. Environmental Science, 2020, 41(10): 4364-4373(in Chinese).
[17] 刘保献, 张大伟, 陈添, 等. 北京市PM2.5主要化学组分浓度水平研究与特征分析 [J]. 环境科学学报, 2015, 35(12): 4053-4060. LIU B X, ZHANG D W, CHEN T, et al. Characteristics and major chemical compositions of PM2.5 in Beijing [J]. Acta Scientiae Circumstantiae, 2015, 35(12): 4053-4060(in Chinese).
[18] 俞娟, 李明, 康辉, 等. 沿海城市珠海PM2.5中水溶性离子特征及来源分析 [J]. 地球环境学报, 2020, 11(2): 151-160. YU J, LI M, KANG H, et al. Characteristics and sources of water-soluble ions in PM2.5 in the coastal city of Zhuhai, China [J]. Journal of Earth Environment, 2020, 11(2): 151-160(in Chinese).
[19] 王振彬, 刘安康, 卢文, 等. 霾不同发展阶段下污染气体和水溶性离子变化特征分析 [J]. 环境科学, 2019, 40(12): 5213-5223. WANG Z B, LIU A K, LU W, et al. Change in characteristics of pollution gas and water-soluble ions at different development stages of haze [J]. Environmental Science, 2019, 40(12): 5213-5223(in Chinese).
[20] 曹宁, 黄学敏, 祝颖, 等. 西安冬季重污染过程PM2.5理化特征及来源解析 [J]. 中国环境科学, 2019, 39(1): 32-39. doi: 10.3969/j.issn.1000-6923.2019.01.004 CAO N, HUANG X M, ZHU Y, et al. Pollution characteristics and source apportionment of fine particles during a heavy pollution in winter in Xi'an City [J]. China Environmental Science, 2019, 39(1): 32-39(in Chinese). doi: 10.3969/j.issn.1000-6923.2019.01.004
[21] 曹夏, 周变红, 王锦, 等. 西安城区黑碳气溶胶的污染特征及来源解析 [J]. 环境化学, 2020, 39(11): 3072-3082. doi: 10.7524/j.issn.0254-6108.2020061501 CAO X, ZHOU B H, WANG J, et al. Pollution characteristics and sources of black carbon aerosol in Xi 'an city [J]. Environmental Chemistry, 2020, 39(11): 3072-3082(in Chinese). doi: 10.7524/j.issn.0254-6108.2020061501
[22] 武媛媛. 运城市大气细颗粒物(PM2.5)化学组成特征研究[D]. 太原: 太原理工大学, 2017. WU Y Y. Chemical composition characteristics of atmospheric fine particulate matter PM2.5 in Yuncheng city[D]. Taiyuan: Taiyuan University of Technology, 2017(in Chinese).
[23] 张勇. 咸阳市大气颗粒物污染来源解析及其控制[D]. 北京: 中国科学院大学, 2018. ZHANG Y. Source analysis and control of atmospheric particulate matter pollution in Xianyang[D]. Beijing: University of Chinese Academy of Sciences, 2018(in Chinese).
[24] 朱常琳, 李富渊, 李夏清. 西安市大气PM2.5中无机离子的季节特征 [J]. 环境与健康杂志, 2017(10): 902-904. ZHU C L, LI F Y, LI X Q. Seasonal characteristics of inorganic ions in atmospheric PM2.5 in Xi 'an [J]. Journal of Environment and Health, 2017(10): 902-904(in Chinese).
[25] 黄含含, 王羽琴, 李升苹, 等. 西安市PM2.5中水溶性离子的季节变化特征 [J]. 环境科学, 2020, 41(6): 2528-2535. HUANG H H, WANG Y Q, LI S P, et al. Seasonal variation of water-soluble ions in PM2.5 in Xi'an [J]. Environmental Science, 2020, 41(6): 2528-2535(in Chinese).
[26] 周变红, 武洋洋, 刘雅雯, 等. 宝鸡城郊灰霾与非灰霾天大气颗粒物中水溶性无机离子的粒径分布特征及区域传输 [J]. 环境化学, 2019, 38(3): 565-571. doi: 10.7524/j.issn.0254-6108.2018100901 ZHOU B H, WU Y Y, LIU Y W, et al. Particle size distribution and regional transport of water soluble inorganic ions in atmospheric particulates in the haze and non-haze days in the urban and suburban areas of Baoji, China [J]. Environmental Chemistry, 2019, 38(3): 565-571(in Chinese). doi: 10.7524/j.issn.0254-6108.2018100901
[27] ZHAO Z P, LV S, ZHANG Y H, et al. Characteristics and source apportionment of PM2.5 in Jiaxing, China [J]. Environmental Science and Pollution Research, 2019, 26(8): 7497-7511. doi: 10.1007/s11356-019-04205-2 [28] 陶月乐, 李亲凯, 张俊, 等. 成都市大气颗粒物粒径分布及水溶性离子组成的季节变化特征 [J]. 环境科学, 2017, 38(10): 4034-4043. TAO Y L, LI Q K, ZHANG J, et al. Seasonal variations in particle size distribution and water-soluble ion composition of atmospheric particles in Chengdu [J]. Environmental Science, 2017, 38(10): 4034-4043(in Chinese).
[29] 刘晓迪, 孟静静, 侯战方, 等. 济南市夏、冬季PM2.5中化学组分的季节变化特征及来源解析 [J]. 环境科学, 2018, 39(9): 4014-4025. LIU X D, MENG J J, HOU Z F, et al. Analysis of seasonal variations in chemical characteristics and sources of PM2.5 during summer and winter in ji'nan city [J]. Environmental Science, 2018, 39(9): 4014-4025(in Chinese).
[30] 高洁, 史旭荣, 卫昱婷, 等. 基于天津市在线数据评估ISORROPIA-Ⅱ模式结果及气溶胶pH的影响因素 [J]. 环境科学, 2020, 41(8): 3458-3466. GAO J, SHI X R, WEI Y T, et al. Evaluation of different ISORROPIA-Ⅱ modes and the influencing factors of aerosol pH based on Tianjin online data [J]. Environmental Science, 2020, 41(8): 3458-3466(in Chinese).
[31] SHEN Z, SUN J, CAO J, et al. Chemical profiles of urban fugitive dust PM2.5 samples in Northern Chinese cities [J]. Sci Total Environ, 2016, 569-570: 619-626. doi: 10.1016/j.scitotenv.2016.06.156 [32] 张扬, 王红磊, 刘安康, 等. 南京市不同天气过程下颗粒物中水溶性离子分布特征及其来源解析 [J]. 环境科学, 2021(2): 564-573. ZHANG Y, WANG H L, LIU A K, et al. Distribution characteristics and source analysis of water-soluble ions in particulate matter under different weather processes in Nanjing [J]. Environmental Science, 2021(2): 564-573(in Chinese).
[33] NENES A, PANDIS S N, PILINIS C. ISORROPIA: A new thermodynamic equilibrium model for multiphase multicomponent inorganic aerosols [J]. Aquatic Geochemistry, 1998, 4(1): 123-152. doi: 10.1023/A:1009604003981 [34] 周敏. 上海大气PM2.5来源解析对比: 基于在线数据运用3种受体模型 [J]. 环境科学, 2020, 41(5): 1997-2005. ZHOU M. Comparison of three receptor models for source apportionment of PM2.5 in Shanghai: Using hourly resolved PM2.5 chemical composition data [J]. Environmental Science, 2020, 41(5): 1997-2005(in Chinese).
[35] PAATERO P. Least squares formulation of robust non-negative factor analysis [J]. Chemometrics and Intelligent Laboratory Systems, 1997, 37(1): 23-35. doi: 10.1016/S0169-7439(96)00044-5 [36] 张婷, 曹军骥, 刘随心. 宝鸡市PM2.5中水溶性离子组分污染特征及来源分析 [J]. 地球环境学报, 2017, 8(1): 46-54. doi: 10.7515/JEE201701006 ZHANG T, CAO J J, LIU S X. Pollution characteristics and sources of water-soluble ions in PM2.5 in Baoji [J]. Journal of Earth Environment, 2017, 8(1): 46-54(in Chinese). doi: 10.7515/JEE201701006
[37] BAUER S E KD, UNGER N, METZGER S M, et al. Nitrate aerosols today and in 2030: A global simulation including aerosols and tropospheric ozone [J]. Atmospheric Chemistry and Physics, 2007, 7(105): 5043-5059. [38] PAULOT F, JACOB D J, PINDER R W, et al. Ammonia emissions in the United States, European Union, and China derived by high-resolution inversion of ammonium wet deposition data: Interpretation with a new agricultural emissions inventory (MASAGE NH3) [J]. Journal of Geophysical Research Atmospheres, 2014, 119(7): 4343-4364. doi: 10.1002/2013JD021130 [39] ZONG Z, WANG X P, TIAN C G, et al. Source apportionment of PM2.5 at a regional background site in North China using PMF linked with radiocarbon analysis: insight into the contribution of biomass burning [J]. Atmospheric Chemistry and Physics, 2016, 16(17): 11249-11265. doi: 10.5194/acp-16-11249-2016 [40] XIE Z S, FAN C L, LU R, et al. Characteristics of ambient bioaerosols during haze episodes in China: A review [J]. Environmental Pollution, 2018, 243(Pt B): 1930-1942. [41] LI J M, WANG N N, WANG J F, et al. Spatiotemporal evolution of the remotely sensed global continental PM2.5 concentration from 2000-2014 based on Bayesian statistics [J]. Environmental Pollution, 2018, 238: 471-481. doi: 10.1016/j.envpol.2018.03.050 [42] ZHANG X M, GAO J J, LI L M, et al. Characterization of atmospheric aerosol over Xi’an in the South Margin of the Loess Plateau, China [J]. Atmospheric Environment, 2002, 36: 4189-4199. doi: 10.1016/S1352-2310(02)00347-3 [43] QIU X H, DUAN L, GAO J, et al. Chemical composition and source apportionment of PM10 and PM2.5 in different functional areas of Lanzhou, China [J]. Journal of Environmental Sciences (China), 2016, 40: 75-83. doi: 10.1016/j.jes.2015.10.021 [44] 闫广轩, 张靖雯, 雷豪杰, 等. 郑州市大气细颗粒物中水溶性离子季节性变化特征及其源解析 [J]. 环境科学, 2019, 40(4): 1545-1552. YAN G X, ZHANG J W, LEI H J, et al. Seasonal variation and source analysis of water-soluble inorganic ions in fine particulate matter in Zhengzhou [J]. Environmental Science, 2019, 40(4): 1545-1552(in Chinese).
[45] 别淑君, 杨凌霄, 高颖, 等. 济南市背景区域大气PM2.5污染特征及其对能见度的影响 [J]. 环境科学, 2019, 40(9): 3868-3874. BIE S J, YANG L X, GAO Y, et al. Characteristics of atmospheric PM2.5 pollution and its influence on visibility in background areas of ji'nan [J]. Environmental Science, 2019, 40(9): 3868-3874(in Chinese).
[46] 杨留明, 王申博, 郝祺, 等. 郑州市PM2.5中水溶性离子特征及来源分析 [J]. 环境科学, 2019(7): 2977-2984. YANG L M, WANG S B, HAO Q, et al. Characteristics and source analysis of water-soluble ions in PM2.5 in Zhengzhou [J]. Environmental Science, 2019(7): 2977-2984(in Chinese).
[47] 张云峰, 于瑞莲, 胡恭任, 等. 泉州市大气PM2.5中水溶性离子季节变化特征及来源解析 [J]. 环境科学, 2017, 38(10): 4044-4053. ZHANG Y F, YU R L, HU G R, et al. Seasonal variation and source apportionment of water-soluble ions in PM2.5 in Quanzhou City [J]. Environmental Science, 2017, 38(10): 4044-4053(in Chinese).
[48] YUET L L, SEQUEIRA R. Water-soluble aerosol and visibility degradation in Hong Kong during autumn and early winter, 1998 [J]. Environmental Pollution, 2002, 116(2): 225-233. doi: 10.1016/S0269-7491(01)00135-X [49] WANG G H, ZHANG R Y, GOMEZ M E, et al. Persistent sulfate formation from London Fog to Chinese haze [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(48): 13630-13635. doi: 10.1073/pnas.1616540113 [50] GUO H Y, SULLIVAN A P, JOST P C, et al. Fine particle pH and the partitioning of nitric acid during winter in the northeastern United States [J]. Journal of Geophysical Research: Atmospheres, 2016, 121(17): 10357-10376. [51] HAN Y, STROUD CA, LIGGIO J, et al. The effect of particle acidity on secondary organic aerosol formation from α-pinene photooxidation under atmospherically relevant conditions [J]. Atmospheric Chemistry and Physics, 2016, 16(21): 13929-13944. doi: 10.5194/acp-16-13929-2016 [52] 房文旭, 宋维薇, 梁宇暄, 等. 哈尔滨市供暖期PM2.5组分特征及来源解析 [J]. 环境科学学报, 2020(10): 3794-3802. FANG W X, SONG W W, LIANG Y X, et al. Chemical composition characteristics and source apportionment of PM2.5 during heating period in Harbin [J]. Acta Scientiae Circumstantiae, 2020(10): 3794-3802(in Chinese).
[53] ZHOU J, XING Z, DENG J, et al. Characterizing and sourcing ambient PM2.5 over key emission regions in China I: Water-soluble ions and carbonaceous fractions [J]. Atmospheric Environment, 2016, 135: 20-30. doi: 10.1016/j.atmosenv.2016.03.054 [54] 孙有昌, 姜楠, 王申博, 等. 安阳市大气PM2.5中水溶性离子季节特征及来源解析 [J]. 环境科学, 2020, 41(1): 75-81. SUN Y C, JIANG N, WANG S B, et al. Seasonal characteristics and source analysis of water-soluble ions in PM2.5 of Anyang city [J]. Environmental Science, 2020, 41(1): 75-81(in Chinese).
[55] MENG C C, WANG L T, ZHANG F F, et al. Characteristics of concentrations and water-soluble inorganic ions in PM2.5 in Handan City, Hebei Province, China [J]. Atmospheric Research, 2016, 171: 133-146. doi: 10.1016/j.atmosres.2015.12.013