-
我国矿产资源丰富,种类繁多,为经济发展做出了巨大贡献,但是随着社会的快速发展,所需要的矿产资源总量随之增加。选矿作为矿产开采中的重要环节之一,在工艺实施过程中,处理1 t 矿石的耗水量为4—6 t,且需投入药剂数十克,甚至是数千克,而残留在废水中的药剂为65%左右[1]。这些含有大量有害药剂的废水如果不加以处理而被随意排入环境,不仅污染区域内水体,对动植物产生毒害作用,同时经多途径进入食物链,并对人体健康产生威胁。处理选矿废水使其达标排放或循环利用[2],是一个重要的行业问题。
水杨羟肟酸可以与金属矿中的阳离子产生反应形成螯合物[3],提高选矿过程中的选矿效率,目前已被广泛应用于一些氧化矿选矿过程中,但也因被大量滥用使其成为残留于选矿废水中较为典型的选矿药剂。水杨羟肟酸分子中含有苯环,属于难降解有机污染物,具有较强的生物毒性,进入到环境中对区域生态会产生一定的污染,同时会通过各种各样的途径进入到动植物和人体内,毒害器官,扰乱内分泌系统,危及生物的生命安全[4]。
选矿药剂的处理方法主要有自然净化法[5],酸碱中合法[6],混凝沉淀法[7],微生物处理法[8]等。这些方法存在投资成本高,二次污染风险大,适应性不强和操作难度大等缺点。硫酸根自由基(SO4−·)具备较高的氧化还原电位(2.5—3.1 V),其应用在水处理中受到广泛的关注,是一种具有发展潜力的有机污染物高级氧化技术[9—12]。SO4−·主要是通过光照、加热、金属离子等外部因素作用于过硫酸盐而产生,具有稳定,二次污染风险低,适应性强等特点[13],SO4−·氧化技术是环境友好型的新技术[14]。
本论文拟研究微波(MW)活化过硫酸钾(PS)降解典型选矿药剂水杨羟肟酸的效果及反应机制:考察水杨羟肟酸降解效果与PS浓度、微波功率、溶液初始pH等的关系;考察选矿废水中常见阴、阳离子对有机选矿药剂降解的影响;考察降解过程中总有机碳变化;通过乙醇与叔丁醇的捕获实验考察活性自由基类型。最终,经综合分析,确定微波活化过硫酸盐解水杨羟肟酸的机制。该研究将在理论和技术层面上为微波活化过硫酸盐降解水环境中的有机选矿药剂给予支撑。
微波活化过硫酸盐降解典型选矿药剂水杨羟肟酸
Degradation of salicylhydroxamic acid by microwave activated persulfate
-
摘要: 以水杨羟肟酸为目标污染物,利用微波活化过硫酸盐的高级氧化技术考察微波功率、过硫酸盐投加量、反应溶液初始pH、主要金属离子和常见阴离子等因素对水杨羟肟酸降解影响。结果表明,水杨羟肟酸的降解率随着微波功率和过硫酸盐投加量的增加而提高; 当反应溶液pH=3时,水杨羟肟酸的降解率最高,而提高pH对水杨羟肟酸的降解有抑制作用; Fe2+,Cu2+的添加对水杨羟肟酸的降解表现出低促高抑的效果,最佳添加量分别为0.25 mmol·L−1、0.1 mmol·L−1; 无机阴离子Cl−、HCO3−、NO3−、SiO32−的添加均抑制水杨羟肟酸的降解; 反应180 min后,水杨羟肟酸得到明显矿化,主要中间产物为水杨酸和邻二苯酚。研究证明了热活化效应在微波活化过硫酸盐降解水杨羟肟酸过程中的重要性,以及SO4−·的主导作用。Abstract: An advanced oxidation technology of persulfate activated by microwave was developed with salicylhydroxamic acid as the target pollutant. The effects of microwave power, persulfate dosage, initial pH of reaction solution, main metal ions and common anions on the degradation of salicylhydroxamic acid were investigated.The results showed that the degradation rate of salicylhydroxamic acid increased with the increase of microwave power and the dosage of persulfate.When the pH of the reaction solution was 3, the degradation rate of salicylhydroxamic acid was the highest, and the degradation of salicylhydroxamic acid was gradually inhibited with the increase of the initial pH of the reaction solution.The addition of Fe2+ and Cu2+ in the reaction system had the effect of low promoting and high inhibiting on the degradation of salicylhydroxamic acid, and the optimal supplemental levels were 0.25 mmol·L−1 and 0.1 mmol·L−1.The addition of inorganic anions Cl−, HCO3−, NO3−, SiO32− inhibited the degradation of salicylhydroxamic acid.After reaction for 180 min, salicylhydroxamic acid was mineralized obviously, and the main products were salicylic acid and o-diphenol.The study proved the importance of thermal activation effect in the process of microwave activated persulfate degradation of salicylhydroxamic acid,and the leaded role of SO4−·.
-
Key words:
- microwave /
- persulfate /
- salicylhydroxamic acid /
- beneficiation reagents
-
-
[1] 侯春燕. 选矿废水处理研究进展 [J]. 化工设计通讯, 2020, 46(6): 226, 271. HOU C Y. Progress in research on treatment of ore dressing wastewater [J]. Chemical Engineering Design Communications, 2020, 46(6): 226, 271(in Chinese).
[2] 唐明刚, 张红地. 选矿废水处理及回用技术探讨 [J]. 冶金与材料, 2019, 39(6): 100-101. TANG M G, ZHANG H D. Discussion on treatment and reuse technology of mine wastewater [J]. Metallurgy and Materials, 2019, 39(6): 100-101(in Chinese).
[3] 王成行, 邱显扬, 胡真, 等. 水杨羟肟酸对氟碳铈矿的捕收机制研究 [J]. 中国稀土学报, 2014, 32(6): 727-735. WANG C H, QIU X Y, HU Z, et al. Flotation mechanism of bastnaesite by salicylhydroxamic acid [J]. Journal of the Chinese Society of Rare Earths, 2014, 32(6): 727-735(in Chinese).
[4] 杨萍, 黄金波, 曾维伟. 浅谈金属矿山选矿尾矿的废水处理 [J]. 中国资源综合利用, 2018, 36(8): 69-70, 73. doi: 10.3969/j.issn.1008-9500.2018.08.023 YANG P, HUANG J B, ZENG W W. Discussion on the wastewater treatment of metal mine beneficiation tailings [J]. China Resources Comprehensive Utilization, 2018, 36(8): 69-70, 73(in Chinese). doi: 10.3969/j.issn.1008-9500.2018.08.023
[5] 赵永红, 成先雄, 谢明辉, 等. 选矿废水中黄药自然降解特性的研究 [J]. 矿业安全与环保, 2006, 33(6): 33-34. doi: 10.3969/j.issn.1008-4495.2006.06.013 ZHAO Y H, CHENG X X, XIE M H, et al. Study on natural deterioration of xanthate in flotation wastewater [J]. Mining Safety & Environmental Protection, 2006, 33(6): 33-34(in Chinese). doi: 10.3969/j.issn.1008-4495.2006.06.013
[6] FENG D, van DEVENTER J S J, ALDRICH C. Removal of pollutants from acid mine wastewater using metallurgical by-product slags [J]. Separation and Purification Technology, 2004, 40(1): 61-67. doi: 10.1016/j.seppur.2004.01.003 [7] 黄筱迪, 张松. 我国磷矿选矿废水处理工艺综述 [J]. 化工设计通讯, 2020, 46(5): 223-224. doi: 10.3969/j.issn.1003-6490.2020.05.145 HUANG X D, ZHANG S. Review on the treatment technology of phosphate ore dressing wastewater in China [J]. Chemical Engineering Design Communications, 2020, 46(5): 223-224(in Chinese). doi: 10.3969/j.issn.1003-6490.2020.05.145
[8] 尹业兴, 李青云, 刘幽燕. 产碱杆菌DN25去除金矿废水中的氰 [J]. 化工环保, 2017, 37(1): 49-54. doi: 10.3969/j.issn.1006-1878.2017.01.009 YIN Y X, LI Q Y, LIU Y Y. Removal of cyanide from gold mining wastewater using Alcaligenes sp. DN25 [J]. Environmental Protection of Chemical Industry, 2017, 37(1): 49-54(in Chinese). doi: 10.3969/j.issn.1006-1878.2017.01.009
[9] 邓靖, 冯善方, 马晓雁, 等. 均相活化过硫酸氢盐高级氧化技术研究进展 [J]. 水处理技术, 2015, 41(4): 13-19. DENG J, FENG S F, MA X Y, et al. Research development in advanced oxidation processes based on homogeneous activation of peroxymonosulfate [J]. Technology of Water Treatment, 2015, 41(4): 13-19(in Chinese).
[10] 杨世迎, 杨鑫, 王萍, 等. 过硫酸盐高级氧化技术的活化方法研究进展 [J]. 现代化工, 2009, 29(4): 13-19. doi: 10.3321/j.issn:0253-4320.2009.04.004 YANG S Y, YANG X, WANG P, et al. Advances in persulfate oxidation activation methods of persulfate oxidation [J]. Modern Chemical Industry, 2009, 29(4): 13-19(in Chinese). doi: 10.3321/j.issn:0253-4320.2009.04.004
[11] YANG S Y, WANG P, YANG X, et al. Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat, UV and anions with common oxidants: Persulfate, peroxymonosulfate and hydrogen peroxide [J]. Journal of Hazardous Materials, 2010, 179(1/2/3): 552-558. [12] 张磊, 祝思频, 袁熙, 等. 微波活化过硫酸盐降解典型选矿药剂丁基黄药的研究 [J]. 有色金属工程, 2020(11): 93-100. doi: 10.3969/j.issn.2095-1744.2020.11.014 ZHANG L, ZHU S P, YUAN X, et al. Study on the degradation of butyl xanthate by microwave activated persullfate [J]. Nonferrous Metals Engineering, 2020(11): 93-100(in Chinese). doi: 10.3969/j.issn.2095-1744.2020.11.014
[13] 沈一君, 彭明国, 徐彬焜, 等. 紫外活化过硫酸盐降解二苯甲酮-4的动力学影响及降解机理与风险评价 [J]. 环境科学研究, 2019, 32(1): 174-182. SHEN Y J, PENG M G, XU B K, et al. Degradation of BP4 by UV-activated persulfate process: Kinetic, mechanism and risk [J]. Research of Environmental Sciences, 2019, 32(1): 174-182(in Chinese).
[14] 林天来, 刘秀峰, 黄灿克. 光源强度对UV活化过硫酸盐降解甲基叔丁基醚效果的影响研究 [J]. 环境与可持续发展, 2017, 42(5): 103-105. doi: 10.3969/j.issn.1673-288X.2017.05.032 LIN T L, LIU X F, HUANG C K. Effect of light intensity on UV-assited persulfate degradation of MTBE [J]. Environment and Sustainable Development, 2017, 42(5): 103-105(in Chinese). doi: 10.3969/j.issn.1673-288X.2017.05.032
[15] 杨世迎, 陈友媛, 胥慧真, 等. 过硫酸盐活化高级氧化新技术 [J]. 化学进展, 2008, 20(9): 1433-1438. YANG S Y, CHEN Y Y, XU H Z, et al. A novel advanced oxidation technology based on activated persulfate [J]. Progress in Chemistry, 2008, 20(9): 1433-1438(in Chinese).
[16] 王鸿斌, 王群, 刘义青, 等. 亚铁活化过硫酸盐降解水中双氯芬酸钠 [J]. 环境化学, 2020, 39(4): 869-875. doi: 10.7524/j.issn.0254-6108.2019040806 WANG H B, WANG Q, LIU Y Q, et al. Degradation of diclofenac by ferrous activated persulfate [J]. Environmental Chemistry, 2020, 39(4): 869-875(in Chinese). doi: 10.7524/j.issn.0254-6108.2019040806
[17] 郑伟, 杨曦, 张金凤, 等. Fe(Ⅱ)/K2S2O8对水体中As(Ⅲ)的氧化研究 [J]. 环境科学与技术, 2007, 30(11): 41-42, 57. doi: 10.3969/j.issn.1003-6504.2007.11.015 ZHENG W, YANG X, ZHANG J F, et al. Oxidation of as (ⅲ) by Fe(ⅱ)/K2S2O8 [J]. Environmental Science & Technology, 2007, 30(11): 41-42, 57(in Chinese). doi: 10.3969/j.issn.1003-6504.2007.11.015
[18] 周爱娟, 赵玉珏, 刘芝宏, 等. Fe(Ⅱ)活化过硫酸盐处理喹啉工艺参数优化及生物毒性 [J]. 中国环境科学, 2020, 40(11): 4795-4803. doi: 10.3969/j.issn.1000-6923.2020.11.019 ZHOU A J, ZHAO Y J, LIU Z H, et al. Accelerated quinoline removal by Fe(II)-activated persulfate: Parameters optimization and biological detoxification analysis [J]. China Environmental Science, 2020, 40(11): 4795-4803(in Chinese). doi: 10.3969/j.issn.1000-6923.2020.11.019
[19] 王群, 卢晓辉, 白晓峰, 等. Cu2+对热活化过硫酸钾氧化双酚S效果的影响 [J]. 水处理技术, 2018, 44(2): 42-45, 55. WANG Q, LU X H, BAI X F, et al. Effect of cupric ion on bisphenol S degradation by thermal activated potassium persulfate [J]. Technology of Water Treatment, 2018, 44(2): 42-45, 55(in Chinese).
[20] 郭佑罗, 关小红, 高乃云, 等. 紫外/过硫酸盐工艺降解水中氯贝酸的研究 [J]. 中国环境科学, 2016, 36(7): 2014-2019. doi: 10.3969/j.issn.1000-6923.2016.07.016 GUO Y L, GUAN X H, GAO N Y, et al. Kinetics of clofibric acid degradation by UV/persulfate system in aqueous solution [J]. China Environmental Science, 2016, 36(7): 2014-2019(in Chinese). doi: 10.3969/j.issn.1000-6923.2016.07.016
[21] 王陆瑶, 孟东, 李璐. “热效应”或“非热效应”: 微波加热反应机理探讨 [J]. 化学通报, 2013, 76(8): 698-703. WANG L Y, MENG D, LI L. Thermal or nonthermal microwave effects-the mechanism of microwave heating [J]. Chemistry, 2013, 76(8): 698-703(in Chinese).
[22] 马双忱, 姚娟娟, 金鑫, 等. 微波化学中微波的热与非热效应研究进展 [J]. 化学通报, 2011, 74(1): 41-46. MA S C, YAO J J, JIN X, et al. Progress for thermal and non-thermal effects of microwave chemistry [J]. Chemistry, 2011, 74(1): 41-46(in Chinese).
[23] 王禹, 孙海涛, 王宝辉, 等. 微波的热效应与非热效应 [J]. 辽宁化工, 2006, 35(3): 167-169. doi: 10.3969/j.issn.1004-0935.2006.03.015 WANG Y, SUN H T, WANG B H, et al. A study on thermal efficiency and non- thermal efficiency of microwave [J]. Liaoning Chemical Industry, 2006, 35(3): 167-169(in Chinese). doi: 10.3969/j.issn.1004-0935.2006.03.015
[24] 马京帅, 吕文英, 刘国光, 等. 热活化过硫酸盐降解水中的普萘洛尔 [J]. 环境化学, 2017, 36(2): 221-228. doi: 10.7524/j.issn.0254-6108.2017.02.2016060204 MA J S, LYU W Y, LIU G G, et al. Degradation of propranolol in aqueous solution by heat-activated persulfate [J]. Environmental Chemistry, 2017, 36(2): 221-228(in Chinese). doi: 10.7524/j.issn.0254-6108.2017.02.2016060204
[25] LIANG C J, SU H W. Identification of sulfate and hydroxyl radicals in thermally activated persulfate [J]. Industrial & Engineering Chemistry Research, 2009, 48(11): 5558-5562. [26] 孙鹏, 柳佳鹏, 王维大, 等. 活性炭强化热活化过硫酸盐降解对硝基苯酚 [J]. 中国环境科学, 2020, 40(11): 4779-4785. doi: 10.3969/j.issn.1000-6923.2020.11.017 SUN P, LIU J P, WANG W D, et al. Active carbon enhanced thermal activation of persulfate for degradation of p-nitrophenol [J]. China Environmental Science, 2020, 40(11): 4779-4785(in Chinese). doi: 10.3969/j.issn.1000-6923.2020.11.017
[27] 孙晓娟, 苏跃增, 金凤明. 微波化学非热效应初探 [J]. 江苏石油化工学院学报, 2000, 12(3): 42-45. SUN X J, SU Y Z, JIN F M. A study on non - thermal efficiency of microwave chemical reaction [J]. Journal of Jiangsu Institute of Petrochemical Technology, 2000, 12(3): 42-45(in Chinese).
[28] 章丽萍, 项俊, 严振宇, 等. O3降解水杨羟肟酸选矿废水机理研究 [J]. 矿业科学学报, 2019, 4(1): 79-85. ZHANG L P, XIANG J, YAN Z Y, et al. Mechanism study on ozonization degradation of salicylhydroxamic acid in flotation wastewater [J]. Journal of Mining Science, 2019, 4(1): 79-85(in Chinese).