-
公众日益关注交通运输和建筑物中的室内空气质量。研究报道,乘坐私家车、公共汽车、地铁和飞机的人群可能暴露在更高的污染物浓度下[1-4]。由于船舶不如其他运输方式普及,其舱室内空气污染水平的研究也较少[5]。然而,研究表明船员健康风险相对较高[6],舱室内的工作环境对船员身体健康的影响不容忽视[7]。舰艇封闭舱室环境中污染源众多,如人体代谢产物产生的氨、甲酸、尿酸、醛、甲硫醇、挥发性胺等有害物质; 烹饪产生的大量丙烯醛、含氧化合物和气溶胶等; 非金属材料如油漆、塑料、橡胶、燃料、润滑油、粘合剂等产生的大量烷烃、烯烃、卤代烃、芳香烃、含氧化合物、含硫化合物、气溶胶等多种有害物质[8]。挥发性有机化合物(volatile organic compounds, VOCs),作为舱室内重要的污染物[9],在室温下很容易蒸发,并通过呼吸途径进入到人体内[10-12]。美国环保署将苯系物列为优先控制的污染物。此外,长期暴露于环境空气中的苯系物下不仅会刺激人体皮肤和粘膜[13],还会引起呼吸系统,造血系统和神经系统的慢性和急性病变[14-16]。国际癌症研究机构(IARC)已证实,苯是一类致癌物质,长期暴露在高浓度苯的环境空气中会增加人类患癌症的风险,并可能导致白血病和淋巴疾病[17-20]。
空气中的苯系物可通过主动或被动采样器采集。被动空气采样器使用的吸附剂包括浸渍聚氨酯泡沫(SIP)[21-22]、聚氨酯泡沫(PUF)[23]、聚苯乙烯-二乙烯基苯共聚树脂(XAD)[24]和Tenax[25-26]。相比于主动采样,被动采样不需要外接电源,可以灵活设置采样地点,适合各类现场监测,另外主动采样器的气泵会造成噪声污染[27]。被动采样周期可长达数个月,并且不存在样品穿透等问题[27]。近年来已有研究使用TD管作为被动采样器来采集空气中VOCs[28]。其优点是样品制备不需要溶剂萃取,可直接在气相色谱上机检测,从而降低了中间程序导致样品污染的风险[27]。
方晶晶等[8]使用Tedlar采气袋在舰艇舱室封闭环境中检测了27种VOCs。张锦岚等[29]使用主动采样方法通过Tenax-TA采样管对舰船舱室内以苯、甲苯、乙基苯和二甲苯(BTEX)为代表的 VOCs 释放速率进行研究。Kim等[5]使用主动采样方法(Tenax-TA)监测了两艘新船舱室中VOCs浓度。本研究使用被动采样方法,即通过内含Tenax-TA吸附剂的TD管采集了某实习船舱室内外空气中苯系物样品,分析了样品浓度水平、组分特征,并评估了苯系物对船员的潜在健康风险,可为舱室空气污染治理提供理论依据。
船员苯系物暴露职业健康风险评估—基于被动监测实船案例
Occupational health risk assessment of seafarers exposed to BTEX—based on passive monitoring of an actual ship case
-
摘要: 利用TD管(Thermal desorption tube)采集了某实习船出访活动期间舱室内外的空气样品,使用全自动热解析系统TD-GC/MSD分析了样品中苯、甲苯、间,对二甲苯、1,3,5-三甲基苯、乙基苯和苯乙烯等6种苯系物的浓度,并采用美国环保署(US EPA)健康风险评估模型对甲板部及轮机部船员进行了职业健康风险评估。结果表明,航行及停泊期间主机舱苯系物的平均浓度均最高,分别为71.47 μg·m−3和422.74 μg·m−3,航行期间6种苯系物占比大小依次为苯(43%)、甲苯(26%)、1,3,5-三甲基苯(13%)、间,对二甲苯(8%)、乙基苯(9%)和苯乙烯(1%);停泊期间大小依次为乙基苯(29%)、间,对二甲苯(26%)、1,3,5-三甲基苯(25%)、甲苯(14%)、苯(5%)和苯乙烯(1%)。停泊期间,各监测点位(除驾驶台外)苯系物总浓度为航行期间的5倍。对船员的健康风险评估结果表明,甲板部和轮机部船员职业环境中危险商值(HQ)小于1,表明其职业环境中苯、甲苯、间,对二甲苯、乙基苯和苯乙烯的暴露对其不存在显著的非致癌风险;通过对其职业环境中苯和乙基苯的致癌风险值分析,表明甲板部与轮机部船员职业环境中的苯及乙基苯存在潜在的致癌风险。Abstract: TD tube (Thermal desorption tube) were used to collect air samples on a training vessel during navigation and berthing. The concentration levels of six BTEX, benzene, toluene, m-xylene, 1,3,5-trimethylbenzene, ethylbenzene and styrene in the samples were analyzed using TD/GC-MSD, and the health risk assessment model of US EPA was used to assess the occupational health risks for deck department seafarers and engine department seafarers. The results showed that the concentration of BTEX in the main engine room during the navigation and berthing was both the highest with the concentration of 71.47 μg·m−3, 422.74 μg·m−3, respectively. During navigation, the rank of six individual BTEX fraction was listed as follows: benzene (43%)、toluene (26%)、1,3,5-trimethylbenzene (13%)、m, p-xylene (8%)、ethylbenzene (9%) and styrene (1%), while during berthing, the rank was: ethylbenzene (29%)、m, p-xylene (26%)、1,3,5-trimethylbenzene (25%)、toluene (14%)、benzene (5%) and styrene (1%). The total concentration of BTEX at all monitoring points (except the bridge) during berthing was 5 times of that during navigation. According to seafarers’ health risk assessment, the hazard quotient (HQ) in deck department and engine department occupation environment was less than 1, indicating that BTEX in occupational environment has no significant non-carcinogenic risk to deck department seafarers and engine department seafarers, while there is a potential carcinogenic risk of benzene and ethylbenzene in the occupational environment of seafarers in the deck department and the engine department.
-
Key words:
- BTEX /
- passive sampling /
- occupational environment /
- seafarer health risk
-
表 1 采样信息表
Table 1. Sampling information
工况(位置)
Working condition(Location)时间
Period采样点位(样本数)
Monitoring sites (samples)航行(大连—横滨) 2016.5.5—2016.5.6 辅机舱(1),主机舱(1) 2016.5.5—2016.5.9 船员室(1),罗经甲板(1),游步甲板前侧(1),游步甲板后侧(1) 2016.5.6—2016.5.7 主机舱(1),辅机舱(1) 2016.5.7—2016.5.8 主机舱(1),辅机舱(1) 2016.5.8—2016.5.9 主机舱(1),辅机舱(1) 停泊(横滨) 2016.5.9—2016.5.12 船员室(1),罗经甲板(1),游步甲板前侧(1),游步甲板后侧(1) 航行(横滨—神户) 2016.5.12—2016.5.13 船员室(1),主机舱(1),辅机舱(1),罗经甲板(1),游步甲板前侧(1),游步甲板后侧(1) 停泊(神户) 2016.5.13—2016.5.16 船员室(1),罗经甲板(1),游步甲板前侧(1),游步甲板后侧(1) 航行(神户—大连) 2016.5.16—2016.5.17 主机舱(1),辅机舱(1) 2016.5.17—2016.5.18 主机舱(1),辅机舱(1) 2016.5.16—2016.5.19 船员室(1),罗经甲板(1),游步甲板前侧(1),游步甲板后侧(1) 停泊(大连港) 2016.4.17—2016.4.24 船员室(8),主机舱(1),辅机舱(1),罗经甲板(2),驾驶甲板(2),游步甲板后侧(2) 2016.4.17—2016.4.18 主机舱(1),辅机舱(1) 2016.4.18—2016.4.21 主机舱(1),辅机舱(1) 表 2 苯系物的信噪比(S/N)、检出限(LOD)和定量限(LOQ)
Table 2. Signal to noise ratio (S/N) and limit of detection (LOD) and quantification (LOQ) for individual BTEX
苯系物
BTEX信噪比
S/NLOD/
(μg·L−1)LOQ/
(μg·L−1)苯 174.8 1.37 4.58 甲苯 179.6 1.34 4.45 乙基苯 760.2 0.32 1.05 苯乙烯 314.5 0.76 2.54 间,对二甲苯 1335.2 0.18 0.60 1,3,5-三甲基苯 193.5 1.24 4.13 表 3 各监测点苯系物浓度水平(单位:μg·m−3)
Table 3. Concentrations of BTEX at ship monitoring sites (unit: μg·m−3)
工况
Working
condition监测点
Monitoring
sites苯
Benzene甲苯
Toluene乙基苯
Ethylbenzene间,对二甲苯
M,p-xylene1,3,5-三甲基苯
1,3,5-
trimethylbenzene苯乙烯
StyreneΣ苯系物
ΣBTEX航行(n=26) 游步甲板前侧(n=3) 4.56±3.29 5.27±4.48 3.19±3.41 2.55±2.76 10.05±14.15 0.20±0.15 25.82±26.87 游步甲板后侧(n=3) 10.96±15.40 5.55±8.44 2.69±4.10 2.55±3.92 4.10±5.63 0.32±0.48 26.18±37.95 罗经甲板(n=3) 2.10±0.82 2.21±1.21 1.31±1.37 1.31±1.34 2.83±1.97 0.08±0.02 9.84±4 船员室(n=3) 5.76±2.75 12.48±15.52 4.07±2.96 3.84±2.74 7.46±4.35 0.24±0.18 33.85±24.55 主机舱(n=7) 30.66±54.74 18.79±33.11 6.12±7.67 5.56±6.64 9.34±8.37 0.98±1.88 71.47±111.39 辅机舱(n=7) 10.78±8.13 8.05±5.53 6±7.78 5.31±6.36 10.52±10.18 0.22±0.23 40.88±34.73 停泊(n=28) 游步甲板前侧(n=2) 2.37±1.49 2±1.88 1.08±1.22 1.11±1.24 1.78±1.87 0.06±0 8.41±4.72 游步甲板后侧(n=4) 3.06±1.37 2.49±0.77 47.09±52.36 32.68±35.47 51.62±55.98 0.22±0.07 137.16±144.45 罗经甲板(n=4) 2.78±2.72 3.06±1.82 1.94±0.97 1.80±0.94 1.69±0.59 0.11±0.07 11.38±4.81 停泊(n=28) 船员室(n=10) 2.42±0.78 10.20±4.43 42.38±32.56 35.29±22.93 41.56±28.52 0.31±0.22 132.16±86.78 主机舱(n=3) 22.09±15.20 60.15±19.64 124.15±15.52 108.08±33.62 105.35±7.98 2.93±1.46 422.74±59.94 辅机舱(n=3) 29.52±27.03 70.28±6.86 79.93±23.10 67.52±16.67 64.54±16.97 3.02±2.01 314.81±35.38 驾驶台(n=2) 2.56±0.39 25.07±6.68 20.16±3.01 20.27±2.84 19.81±4.51 0.39±0.31 88.26±16.34 表 4 职业和非职业室内环境空气苯系物指导值(mg·m−3)[40]
Table 4. Guideline values for BTEX species in occupational and non-occupational indoor air in mg·m−3
苯系物
BTEXCNIAQSa WHO OSHA ACGIH OEHHA 苯 0.11 [1 h]f — 32 2 0.06 甲苯 0.20 [1 h] 0.26 [1 wk] 754 189 0.3 乙基苯 — 22 [1 a] 435 434 2 二甲苯 0.20 [1 h] 4.8 [24 h] 435 434 0.7 注: a:中国室内空气质量标准(GB/T18883-2002);—:未给出. 表 5 船舰典型污染物容许浓度 (mg·m−3)[41]
Table 5. Permissible concentration of typical composition abord ship cabin in mg·m−3
苯系物
BTEX水面舰船
Surface vessel常规潜艇
Conventional submarine核潜艇
Nuclear submarine苯 1.5 6 3 甲苯 8 40 10 表 6 船员苯系物暴露浓度和暴露时间
Table 6. Seafares’ exposure concentrationsand exposure time of BTEX
职位
Position工况
Working condition位置
Location暴露时间/(h·d−1)
Exposure time暴露浓度/(μg·m−3)
Exposure concentration苯
Benzene甲苯
Toluene间,对二甲苯
M,p-xylene乙基苯Ethylbenzene 苯乙烯
StyreneΣ苯系物
ΣBTEX甲板部
船员航行 船员室 16 0.80 1.73 0.53 0.57 0.03 3.66 驾驶台 8 0.18 1.74 1.41 1.40 0.03 4.75 停泊 船员室 24 1.92 8.07 27.94 33.55 0.25 71.73 轮机部
船员航行 船员室 16 0.80 1.73 0.53 0.57 0.03 3.66 辅机舱 4 0.75 0.56 0.37 0.42 0.02 2.11 主机舱 4 1.06 0.65 0.19 0.21 0.03 2.16 停泊 船员室 16 1.28 5.38 18.63 22.37 0.16 47.82 辅机舱 4 3.90 9.27 8.91 10.55 0.40 33.03 主机舱 4 2.91 7.94 14.26 16.38 0.39 41.88 表 7 船员职业环境苯系物非致癌风险危险商值(HQ)
Table 7. Non-cancer risk of hazard quotient (HQ) of BTEX in seafarer occupational environment
职位
Position工况
Woring condition位置
Location苯
Benzene甲苯
Toluene间,对二甲苯
M,p-xylene乙基苯
Ethylbenzene苯乙烯
StyreneHI 甲板部船员 航行 驾驶台 0.01 3.48×10−4 0.01 1.40×10−3 2.72×10−5 0.02 航行 船员室 0.03 3.46×10−4 0.01 5.65×10−4 3.28×10−5 0.03 停泊 船员室 0.06 1.61×10−3 0.28 0.03 2.47×10−4 0.38 总和 0.10 2.30×10−3 0.30 0.04 3.07×10−4 0.43 轮机部船员 航行 船员室 0.03 3.46×10−4 0.01 5.65×10−4 3.28×10−5 0.03 航行 辅机舱 0.02 1.12×10−4 3.68×10−3 4.17×10−4 1.54×10−5 0.03 航行 主机舱 0.04 1.30×10−4 1.93×10−3 2.12×10−4 3.41×10−5 0.04 停泊 船员室 0.04 1.08×10−3 0.19 0.02 1.65×10−4 0.25 停泊 辅机舱 0.13 1.85×10−3 0.09 0.01 3.98×10−4 0.23 停泊 主机舱 0.10 1.59×10−3 0.14 0.02 3.87×10−4 0.26 总和 0.36 0.01 0.43 0.05 1.03×10−3 0.84 注:由于航行期间驾驶台样本数据缺失,苯系物危险商值和风险值评估浓度数据采用停泊期间数据.
Note: Due to the lack of bridge sample data during the navigation, the risk quotient value and risk value assessment concentration data of benzene series were adopted during the berthing period.表 8 船员职业环境苯系物致癌风险值
Table 8. Cancer risk values of BTEX in seafarer occupational environment
职位
Position工况
Working condition监测点
Monitoring sites苯
Benzene乙基苯
Ethylbenzene甲板部船员 航行 驾驶台 4.57×10−7 1.50×10−6 航行 船员室 2.06×10−6 6.06×10−7 停泊 船员室 6.42×10−6 3.60×10−5 轮机部船员 航行 船员室 2.06×10−6 6.06×10−7 航行 辅机舱 1.92×10−6 4.47×10−7 航行 主机舱 2.74×10−6 2.28×10−7 停泊 船员室 3.29×10−6 2.40×10−5 停泊 辅机舱 1.00×10−5 1.13×10−5 停泊 主机舱 7.49×10−6 1.76×10−5 注:加粗体表示超过限值(1.0×10−6). Note: Bold indicates exceeding the guideline (1.0×10−6) -
[1] CHAN M Y. Commuters' exposure to carbon monoxide and carbon dioxide in air-conditioned buses in Hong Kong [J]. Indoor and Built Environment, 2005, 14(5): 397-403. doi: 10.1177/1420326X05057254 [2] CHIEN Y C. Variations in amounts and potential sources of volatile organic chemicals in new cars [J]. Science of the Total Environment, 2007, 382(2-3): 228-239. doi: 10.1016/j.scitotenv.2007.04.022 [3] KWON S B, CHO Y, PARK D, et al. Study on the indoor air quality of seoul metropolitan subway during the rush hour [J]. Indoor and Built Environment, 2008, 17(4): 361-369. doi: 10.1177/1420326X08094683 [4] LEE S C, POON C S, LI X D, et al. Indoor air quality investigation on commercial aircraft [J]. Indoor Air, 1999, 9(3): 180-187. doi: 10.1111/j.1600-0668.1999.t01-1-00004.x [5] KIM S S, LEE Y G. Field measurements of indoor air pollutant concentrations on two new ships [J]. Building and Environment, 2010, 45(10): 2141-2147. doi: 10.1016/j.buildenv.2010.03.013 [6] BLOOR M, THOMAS M, LANE T. Health risks in the global shipping industry: an overview [J]. Health, Risk & Society, 2000, 2(3): 329-340. [7] MANUPUTTY M, FANANI Z, ANDARINI S, et al. PLS model for the influence of work environment and behavior on the health and performance of ship crews[C]. October 23-31, 2019. https://www.researchgate.net/publication/339887741. [8] 方晶晶, 何艳兰, 许林军, 等. 舰艇舱室封闭环境中挥发性化合物分析 [J]. 舰船科学技术, 2013, 35(6): 90-95. doi: 10.3404/j.issn.1672-7649.2013.06.020 FANG J J, HE Y L, XU L J, et al. Analysis of volatile compounds in the closed ship cabins [J]. Ship Science and Technology, 2013, 35(6): 90-95(in Chinese). doi: 10.3404/j.issn.1672-7649.2013.06.020
[9] WEBSTER A, REYNOLDS G. Indoor air quality on passenger ships[M]. Air Quality in Airplane Cabins and Similar Enclosed Spaces. Springer, 2005: 335-349. [10] HAZRATI S, ROSTAMI R, FARJAMINEZHAD M, et al. Preliminary assessment of BTEX concentrations in indoor air of residential buildings and atmospheric ambient air in Ardabil, Iran [J]. Atmospheric Environment, 2016, 132: 91-97. doi: 10.1016/j.atmosenv.2016.02.042 [11] KITWATTANAVONG M, PRUEKSASIT T, MORKNOY D, et al. Health risk assessment of petrol station workers in the inner city of Bangkok, Thailand, to the exposure to BTEX and carbonyl compounds by inhalation [J]. Human and Ecological Risk Assessment: An International Journal, 2013, 19(6): 1424-1439. doi: 10.1080/10807039.2012.685814 [12] 赵若杰, 史健武, 韩斌, 等. 中国北方典型城市空气中苯系物的污染特征 [J]. 环境化学, 2012, 31(6): 777-782. ZHAO R J, SHI J W, HAN B, et al. Pollution characteristics of benzene series in the air of typical cities in northern China [J]. Environmental Chemistry, 2012, 31(6): 777-782(in Chinese).
[13] STOJIC A, MALETIC D, STANISIC STOJIC S, et al. Forecasting of VOC emissions from traffic and industry using classification and regression multivariate methods [J]. Science of the Total Environment, 2015, 521-522: 19-26. doi: 10.1016/j.scitotenv.2015.03.098 [14] PARRA M A, GONZALEZ L, ELUSTONDO D, et al. Spatial and temporal trends of volatile organic compounds (VOC) in a rural area of northern Spain [J]. Science of the Total Environment, 2006, 370(1): 157-167. doi: 10.1016/j.scitotenv.2006.06.022 [15] ZHANG J G, WANG Y S, WU F K, et al. Nonmethane hydrocarbon measurements at a suburban site in Changsha City, China [J]. Science of the Total Environment, 2009, 408(2): 312-317. doi: 10.1016/j.scitotenv.2009.07.010 [16] 王宇亮, 张玉洁, 刘俊峰, 等. 2009年北京市苯系物污染水平和变化特征 [J]. 环境化学, 2011, 30(2): 412-417. WANG Y L, ZHANG Y J, LIU J F, et al. The pollution level and change characteristics of benzene series in Beijing in 2009 [J]. Environmental Chemistry, 2011, 30(2): 412-417(in Chinese).
[17] BAGHANI A N, ROSTAMI R, ARFAEINIA H, et al. BTEX in indoor air of beauty salons: Risk assessment, levels and factors influencing their concentrations [J]. Ecotoxicology and Environmental Safety, 2018, 159: 102-108. doi: 10.1016/j.ecoenv.2018.04.044 [18] BAKER E L, SMITH T J, LANDRIGAN P J. The neurotoxicity of industrial solvents: a review of the literature [J]. American Journal of Industrial Medicine, 1985, 8(3): 207-217. doi: 10.1002/ajim.4700080306 [19] FISHBEIN L. An overview of environmental and toxicological aspects of aromatic hydrocarbons IV. Ethylbenzene [J]. Science of the Total Environment, 1985, 44(3): 269-287. doi: 10.1016/0048-9697(85)90100-7 [20] SWAEN G M H, SCHEFFERS T, COCK J D, et al. Leukemia risk in caprolactam workers exposed to benzene [J]. Annals of Epidemiology, 2005, 15(1): 21-28. doi: 10.1016/j.annepidem.2004.03.007 [21] AHRENS L, HARNER T, SHOEIB M. Temporal variations of cyclic and linear volatile methylsiloxanes in the atmosphere using passive samplers and high-volume air samplers [J]. Environmental science & technology, 2014, 48(16): 9374-9381. [22] RAUERT C, SHOIEB M, SCHUSTER J K, et al. Atmospheric concentrations and trends of poly-and perfluoroalkyl substances (PFAS) and volatile methyl siloxanes (VMS) over 7 years of sampling in the Global Atmospheric Passive Sampling (GAPS) network [J]. Environmental Pollution, 2018, 238: 94-102. doi: 10.1016/j.envpol.2018.03.017 [23] TRAN T M, LE H T, VU N D, et al. Cyclic and linear siloxanes in indoor air from several northern cities in Vietnam: levels, spatial distribution and human exposure [J]. Chemosphere, 2017, 184: 1117-1124. doi: 10.1016/j.chemosphere.2017.06.092 [24] KROGSETH I S, KIERKEGAARD A, MCLACHLAN M S, et al. Occurrence and seasonality of cyclic volatile methyl siloxanes in Arctic air [J]. Environmental Science & Technology, 2013, 47(1): 502-509. [25] ROCHE A, THEVENET R, JACOB V, et al. Performance of a thermally desorbable type-tube diffusive sampler for very low air concentrations monitoring [J]. Atmospheric Environment, 1999, 33(12): 1905-1912. doi: 10.1016/S1352-2310(98)00206-4 [26] WALGRAEVE C, DEMEESTERE K, DEWULF J, et al. Diffusive sampling of 25 volatile organic compounds in indoor air: Uptake rate determination and application in flemish homes for the elderly [J]. Atmospheric Environment, 2011, 45(32): 5828-5836. doi: 10.1016/j.atmosenv.2011.07.007 [27] LI Q B, WANG X F, WANG X Y, et al. Tube-type passive sampling of cyclic volatile methyl siloxanes (cVMSs) and benzene series simultaneously in indoor air: uptake rate determination and field application [J]. Environmental Science: Processes & Impacts, 2020, 22(4): 973-980. [28] WALGRAEVE C, DEMEESTERE K, DEWULF J, et al. Uptake rate behavior of tube-type passive samplers for volatile organic compounds under controlled atmospheric conditions [J]. Atmospheric Environment, 2011, 45(32): 5872-5879. doi: 10.1016/j.atmosenv.2011.06.069 [29] 张锦岚, 余涛, 姜国宝, 等. 舰船舱室挥发性有机化合物的释放速率研究 [J]. 中国舰船研究, 2018, 13(1): 93-98. doi: 10.3969/j.issn.1673-3185.2018.01.014 ZHANG J L, YU T, JIANG G B, et al. Research on release rate of volatile organic compounds in typical vessel cabin [J]. Chinese Journal of Ship Research, 2018, 13(1): 93-98(in Chinese). doi: 10.3969/j.issn.1673-3185.2018.01.014
[30] 栾晓新. 室内外空气cVMS和BTEX被动监测方法研究与应用[D]. 大连: 大连海事大学, 2017. LUAN X X. Research and application of a passive sampling method for cVMS and BTEX in the indoor and outdoor air[D]. Dalian, China: Dalian Maritime University, 2017(in Chinese).
[31] BEGEROW J, JERMANN E, KELES T, et al. Performance of two different types of passive samplers for the GC/ECD-FID determination of environmental VOC levels in air [J]. Fresenius Journal of Analytical Chemistry, 1999, 363(4): 399-403. doi: 10.1007/s002160051209 [32] U. S. Environmental Protection Agency. Risk Assessment Guidance for Superfund (RAGS): Part F [EB /OL]. [2019-08-25]. https://www.epa.gov/sites/production/files/2015-09/documents/partf_200901_final.pdf. [33] Integrated risk information system[EB/OL]. [2021-03-05]. https://www.epa.gov/iris. [34] World Health Organization. Guidelines for air quality[R]. World Health Organization, 2000. [35] Office of Environmental Health Hazard Assessment[EB/OL]. [2019-06-19]. http://oehha.ca.gov/risk/ChemicalDB/index.asp. [36] SHABBAJ I I, ALGHAMDI M A, SHAMY M, et al. Risk assessment and implication of human exposure to road dust heavy metals in Jeddah, Saudi Arabia [J]. International Journal Of Environmental Research And Public Health, 2018, 15(1): 36. [37] MEANS B. Risk-assessment guidance for superfund. Volume 1. Human health evaluation manual. Part A. Interim report (Final)[R]. Environmental Protection Agency, Washington, DC (USA). Office of Solid Waste and Emergency Response, 1989. [38] International Programme on chemical safety. Environmental Health criteria 214: Human Exposure Assessment. World Health Organization, Geneve[EB/OL]. [2019-06-19]. http://www.inchem.org/documents/ehc/ehc/ehc214.html. [39] MILLER G, FORTNEY P, LANTOS T, et al. Exposure to hazardous air pollutantsin the San Francisco Bay area. A [J]. Atmospheric Environment, 1999, 19: 425-432. [40] COLMAN LERNER J E, SANCHEZ E Y, SAMBETH J E, et al. Characterization and health risk assessment of VOCs in occupational environments in Buenos Aires, Argentina [J]. Atmospheric Environment, 2012, 55: 440-447. doi: 10.1016/j.atmosenv.2012.03.041 [41] 徐德辉, 余涛, 陈亮, 等. 舰船用非金属材料污染散发特性及检测评价研究进展 [J]. 中国舰船研究, 2015, 10(3): 113-120. doi: 10.3969/j.issn.1673-3185.2015.03.019 XU D H, YU T, CHEN L, et al. Advances on the evaluation methods of ship nonmetallic material emission property and measurement [J]. Chinese Journal of Ship Research, 2015, 10(3): 113-120(in Chinese). doi: 10.3969/j.issn.1673-3185.2015.03.019
[42] 邢辉. 船舶废气排放量化问题研究[D]. 大连: 大连海事大学, 2017. XING H. Study on quantification of exhaust emissions fromships[D]. Dalian, China: Dalian Maritime University, 2017(in Chinese).