有机磷酸酯污染现状及其生物富集和生物转化研究进展

张洛红, 朱钰, 李宗睿, 李良忠, 刘银娥, 陈希超, 于云江. 有机磷酸酯污染现状及其生物富集和生物转化研究进展[J]. 环境化学, 2021, 40(8): 2355-2370. doi: 10.7524/j.issn.0254-6108.2020121701
引用本文: 张洛红, 朱钰, 李宗睿, 李良忠, 刘银娥, 陈希超, 于云江. 有机磷酸酯污染现状及其生物富集和生物转化研究进展[J]. 环境化学, 2021, 40(8): 2355-2370. doi: 10.7524/j.issn.0254-6108.2020121701
ZHANG Luohong, ZHU Yu, LI Zongrui, LI Liangzhong, LIU Yin’e, CHEN Xichao, YU Yunjiang. Pollution status, bioaccumulation and biotransformation of organophosphate esters: A review[J]. Environmental Chemistry, 2021, 40(8): 2355-2370. doi: 10.7524/j.issn.0254-6108.2020121701
Citation: ZHANG Luohong, ZHU Yu, LI Zongrui, LI Liangzhong, LIU Yin’e, CHEN Xichao, YU Yunjiang. Pollution status, bioaccumulation and biotransformation of organophosphate esters: A review[J]. Environmental Chemistry, 2021, 40(8): 2355-2370. doi: 10.7524/j.issn.0254-6108.2020121701

有机磷酸酯污染现状及其生物富集和生物转化研究进展

    通讯作者: Tel:020-29119807,E-mail:yuyunjiang@scies.org
  • 基金项目:
    国家重点研发计划(2019YFC180342),国家自然科学基金(42007347)和中央级公益性科研院所基本科研业务专项(PM-zx703-202002-058)资助

Pollution status, bioaccumulation and biotransformation of organophosphate esters: A review

    Corresponding author: YU Yunjiang, yuyunjiang@scies.org
  • Fund Project: the National Key Research and Development Program of China(2019YFC180342),the National Natural Science Foundation of China(42007347) and the Basic Research Foundation of National Commonwealth Research Institute(PM-zx703-202002-058)
  • 摘要:

    有机磷酸酯(Organophosphate esters, OPEs)主要作为阻燃剂和塑化剂被广泛生产和使用。随着包括多溴联苯醚在内的溴代阻燃剂逐步受控,作为溴代阻燃剂主要代替品之一的OPEs产量大幅增长,OPEs环境问题日益引起人们的关注。本文从OPEs的理化性质着手,简要梳理了其在环境中的赋存状况。地表水中OPEs浓度大多为几百ng·L−1,磷酸三(2-氯异丙基)酯(TCPP)和磷酸三(2-丁氧基乙基)酯(TBEP)为主要检出物质;沉积物中OPEs浓度大多处于几十ng·g−1 dw(干重)水平,主要检出物质为磷酸三(2-乙基己基)酯(TEHP)和磷酸三苯酯(TPHP);在大气与土壤中OPEs以TCPP和磷酸三(2-氯乙基)酯(TCEP)为主,浓度多为几十ng·m−3和几十ng·g−1 dw。此外,本文重点针对OPEs在生物体内的富集和代谢转化情况进行了综述,水生生物中OPEs浓度大多处于几十ng·g−1 ww(湿重)水平,陆生生物中OPEs浓度大多处于几百ng·g−1 lw(脂重)水平,对于OPEs是否具有生物累积效应,相关的研究结果差异较大,OPEs在生物体内快速的代谢转化很可能是影响其生物富集作用的主要因素。最后,针对目前的研究现状,对存在的问题及后续的研究方向进行了讨论与展望。

  • 加载中
  • 表 1  有机磷酸酯名称及理化性质

    Table 1.  Full name, abbreviation, and physic-chemical properties of OPEs

    中文全称
    Chinese name
    缩写
    Abbreviation
    CAS号沸点/℃熔点/℃正辛醇-
    水分配
    系数(lg KOW
    25 ℃时蒸
    气压/mm Hg
    25 ℃时
    亨利常数/
    (atm·m3·mol−1
    25 ℃时水中
    溶解度/
    (mg·L−1
    磷酸三(2-氯乙基)酯TCEP115-96-8351−551.441.1×10−43.3×10−67.0×103
    磷酸三(2-氯异丙基)酯TCPP13674−84-5359722.590.756.0×10−81.6×103
    磷酸三(1,3-二氯-2-丙基)酯TDCPP13674−87-8457883.87.4×10−82.6×10−91.5
    磷酸三(2-丁氧基乙基)酯TBEP78-51-3414−703.752.1×10−61.2×10−111.2×103
    磷酸三丁酯TNBP126-73-8289−804.001.5×10−71.5×10−7280
    磷酸三异丁酯TiBP126-71-6264163.61.3×10−22.8×10−43.72
    磷酸三苯酯TPHP115-86-637044.591.2×10−63.3×10−61.9
    磷酸三(2-乙基己基)酯TEHP78-42-2220879.491.1×10−39.6×10−50.6
    磷酸2-乙基己基二苯酯EHDPHP1241−94-7375−545.733.3×10−51.9
    磷酸三甲酯TMP512-56-1197−10−0.655.6×10−32.5×10−73.0×103
    磷酸三乙酯TEP78-40-0216−560.800.293.5×10−65.0×105
    中文全称
    Chinese name
    缩写
    Abbreviation
    CAS号沸点/℃熔点/℃正辛醇-
    水分配
    系数(lg KOW
    25 ℃时蒸
    气压/mm Hg
    25 ℃时
    亨利常数/
    (atm·m3·mol−1
    25 ℃时水中
    溶解度/
    (mg·L−1
    磷酸三(2-氯乙基)酯TCEP115-96-8351−551.441.1×10−43.3×10−67.0×103
    磷酸三(2-氯异丙基)酯TCPP13674−84-5359722.590.756.0×10−81.6×103
    磷酸三(1,3-二氯-2-丙基)酯TDCPP13674−87-8457883.87.4×10−82.6×10−91.5
    磷酸三(2-丁氧基乙基)酯TBEP78-51-3414−703.752.1×10−61.2×10−111.2×103
    磷酸三丁酯TNBP126-73-8289−804.001.5×10−71.5×10−7280
    磷酸三异丁酯TiBP126-71-6264163.61.3×10−22.8×10−43.72
    磷酸三苯酯TPHP115-86-637044.591.2×10−63.3×10−61.9
    磷酸三(2-乙基己基)酯TEHP78-42-2220879.491.1×10−39.6×10−50.6
    磷酸2-乙基己基二苯酯EHDPHP1241−94-7375−545.733.3×10−51.9
    磷酸三甲酯TMP512-56-1197−10−0.655.6×10−32.5×10−73.0×103
    磷酸三乙酯TEP78-40-0216−560.800.293.5×10−65.0×105
    下载: 导出CSV

    表 2  环境介质中OPEs的浓度

    Table 2.  Concentrations of OPEs in environmental matrix

    地点
    Sites
    TCEPTCPPTDCPPTNBPEHDPHPTEHPTPHPTBEPTiBP∑OPEs浓度范围
    Concentration
    Range
    数据
    来源
    Ref
    地表水
    (平均值)/
    (ng·L−1
    中国海河53.176.60.740.881.1632.2228.723.9—824.7[23]
    中国上海67—865124—523ND—4512—642—4816—10111—69850.2340—1688.7[24]
    中国北京21929146.319.60.380.914.491169543.24—10945[25]
    中国太湖119711.320.67.1NDND—1.84.213.41363313—2700[27]
    中国锦江27—27335—143ND36—8530—29947—164274—101863747689—10623[28]
    中国40条河80.21864.36.30.414.213.43009.1—1549[85]
    中国松花江520130102302515311171[26]
    德国易北河811261552373627[31]
    美国7—30046—290014—4507—430.4—2.30.4—1141—36024—10000.2—3.2170—5100[41]
    美国14.674.621.21.066.919137.2—510[37]
    奥地利23437110ND652ND—500[21]
    沉积物
    (平均值)/
    (ng·g−1 dw)
    中国太湖0.6—3.17ND—2.27ND—5.54ND—2.651.0—5.07.83.4—14.2[44]
    中国东湖2.5714.042.2925.41.5—86.2[45]
    中国河流1.181.590.291.20.41.590.4819.112.2—25.9[46]
    中国近海岸1.623.280.551.040.480.850.5116.4ND—60.0[46]
    奥地利1601300ND15160160438.7[21]
    美国0.03—0.10.3—1.60.7—2.00.3—1.20.1—1.52.3—200.4—7.50.5—4.89.5—33[41]
    荷兰0.53.60.60.21.566.90.1—19.6[48]
    希腊ND—2.3Nq—7.6ND—2.96ND—5.5ND—6.4ND—4.7ND—0.6ND—3.410.40.31—31.0[50]
    意大利0.3—3.60.5—53.7Nq—6.80.1—42.64.3—288Nq—35.1Nq—9.7Nq—1082.611.5—549[50]
    大气
    (中值)/
    (ng·m−3
    室内
    中国北京0.173.8ND0.170.008ND0.0340.0030.154.71.0—20[53]
    中国杭州3.117.760.630.170.350.841.410.2717.245.0—147.7[55]
    挪威3128ND14ND10.598163[56]
    德国ND10.770.362.87NDND7.4440.23.3—751[57]
    澳大利亚2.648ND1.60.270.0130.430.089447.2—760[58]
    室外
    中国广州0.1741.0590.2370.0730.1110.298ND2.854[86]
    中国北京0.2022.3250.0560.1110.1652.999[87]
    加拿大0.6080.5750.0970.0920.72.64[61]
    德国ND1.49ND0.13NDND1.515.13[57]
    美国0.3730.5910.2190.2590.1720.0380.4930.1680.2613.88[66]
    土壤
    (平均值)/
    (ng·g−1 dw)
    中国重庆11.33.353.54.23.64.877.410.1—315[65]
    中国广州ND—110ND—14ND—5012—461—401—392—946025—1730[70]
    中国广州30—1401—165—9110—2106—404—295—46230110—500[70]
    土壤
    (平均值)/
    (ng·g−1 dw)
    中国天津2.038.863.893.071.575.6232.4565.237.7—156[64]
    中国天津11444442.11.141.754.511004.49829122—2100[64]
    中国河北92212211262004739839—1250[69]
    尼泊尔19.812521.218.737.992.412.9183064.7—27500[72]
    越南4.019212462072413—3430[71]
    灰尘
    (中值)/
    (μg·g−1
    室内灰尘
    中国上海1.01.60.70.30.91.40.92.011.58.0—165.5[73]
    中国广州0.410.623.230.111.020.770.610.49.22.06—19.95[74]
    中国大陆0.240.690.120.0530.0370.1470.0890.030.0092.380.292—9.54[78]
    韩国2.490.7220.0790.130.1320.0910.52423.30.02831.33.09—249[75]
    澳大利亚0.666.40.92ND0.88ND0.741040.07.4—880-[58]
    美国2.72.22.10.080.560.2110.0819.24[81]
    希腊0.3350.590.6670.0670.090.0690.5442.870.0417.141.69—90.2[75]
    尼泊尔0.0180.0260.0010.0180.0260.0810.017130.203—240[79]
    挪威0.4355.2411.13ND0.6170.711.2286.79633.1[56]
    室外灰尘
    中国重庆0.2050.070.050.0250.0320.7940.0690.2270.7940.348—1369[65]
    中国北京0.2740.3840.0370.0250.0220.0050.0650.0730.0710.9331.315—2.407[82]
    中国大连0.050.320.0340.0820.060.550.0960.1091.620.3—7.48[84]
      ND., 未检出;—., 无数据;Nq., 未定量。ND., not detected; —., no data; Nq., not quantifiable.
    地点
    Sites
    TCEPTCPPTDCPPTNBPEHDPHPTEHPTPHPTBEPTiBP∑OPEs浓度范围
    Concentration
    Range
    数据
    来源
    Ref
    地表水
    (平均值)/
    (ng·L−1
    中国海河53.176.60.740.881.1632.2228.723.9—824.7[23]
    中国上海67—865124—523ND—4512—642—4816—10111—69850.2340—1688.7[24]
    中国北京21929146.319.60.380.914.491169543.24—10945[25]
    中国太湖119711.320.67.1NDND—1.84.213.41363313—2700[27]
    中国锦江27—27335—143ND36—8530—29947—164274—101863747689—10623[28]
    中国40条河80.21864.36.30.414.213.43009.1—1549[85]
    中国松花江520130102302515311171[26]
    德国易北河811261552373627[31]
    美国7—30046—290014—4507—430.4—2.30.4—1141—36024—10000.2—3.2170—5100[41]
    美国14.674.621.21.066.919137.2—510[37]
    奥地利23437110ND652ND—500[21]
    沉积物
    (平均值)/
    (ng·g−1 dw)
    中国太湖0.6—3.17ND—2.27ND—5.54ND—2.651.0—5.07.83.4—14.2[44]
    中国东湖2.5714.042.2925.41.5—86.2[45]
    中国河流1.181.590.291.20.41.590.4819.112.2—25.9[46]
    中国近海岸1.623.280.551.040.480.850.5116.4ND—60.0[46]
    奥地利1601300ND15160160438.7[21]
    美国0.03—0.10.3—1.60.7—2.00.3—1.20.1—1.52.3—200.4—7.50.5—4.89.5—33[41]
    荷兰0.53.60.60.21.566.90.1—19.6[48]
    希腊ND—2.3Nq—7.6ND—2.96ND—5.5ND—6.4ND—4.7ND—0.6ND—3.410.40.31—31.0[50]
    意大利0.3—3.60.5—53.7Nq—6.80.1—42.64.3—288Nq—35.1Nq—9.7Nq—1082.611.5—549[50]
    大气
    (中值)/
    (ng·m−3
    室内
    中国北京0.173.8ND0.170.008ND0.0340.0030.154.71.0—20[53]
    中国杭州3.117.760.630.170.350.841.410.2717.245.0—147.7[55]
    挪威3128ND14ND10.598163[56]
    德国ND10.770.362.87NDND7.4440.23.3—751[57]
    澳大利亚2.648ND1.60.270.0130.430.089447.2—760[58]
    室外
    中国广州0.1741.0590.2370.0730.1110.298ND2.854[86]
    中国北京0.2022.3250.0560.1110.1652.999[87]
    加拿大0.6080.5750.0970.0920.72.64[61]
    德国ND1.49ND0.13NDND1.515.13[57]
    美国0.3730.5910.2190.2590.1720.0380.4930.1680.2613.88[66]
    土壤
    (平均值)/
    (ng·g−1 dw)
    中国重庆11.33.353.54.23.64.877.410.1—315[65]
    中国广州ND—110ND—14ND—5012—461—401—392—946025—1730[70]
    中国广州30—1401—165—9110—2106—404—295—46230110—500[70]
    土壤
    (平均值)/
    (ng·g−1 dw)
    中国天津2.038.863.893.071.575.6232.4565.237.7—156[64]
    中国天津11444442.11.141.754.511004.49829122—2100[64]
    中国河北92212211262004739839—1250[69]
    尼泊尔19.812521.218.737.992.412.9183064.7—27500[72]
    越南4.019212462072413—3430[71]
    灰尘
    (中值)/
    (μg·g−1
    室内灰尘
    中国上海1.01.60.70.30.91.40.92.011.58.0—165.5[73]
    中国广州0.410.623.230.111.020.770.610.49.22.06—19.95[74]
    中国大陆0.240.690.120.0530.0370.1470.0890.030.0092.380.292—9.54[78]
    韩国2.490.7220.0790.130.1320.0910.52423.30.02831.33.09—249[75]
    澳大利亚0.666.40.92ND0.88ND0.741040.07.4—880-[58]
    美国2.72.22.10.080.560.2110.0819.24[81]
    希腊0.3350.590.6670.0670.090.0690.5442.870.0417.141.69—90.2[75]
    尼泊尔0.0180.0260.0010.0180.0260.0810.017130.203—240[79]
    挪威0.4355.2411.13ND0.6170.711.2286.79633.1[56]
    室外灰尘
    中国重庆0.2050.070.050.0250.0320.7940.0690.2270.7940.348—1369[65]
    中国北京0.2740.3840.0370.0250.0220.0050.0650.0730.0710.9331.315—2.407[82]
    中国大连0.050.320.0340.0820.060.550.0960.1091.620.3—7.48[84]
      ND., 未检出;—., 无数据;Nq., 未定量。ND., not detected; —., no data; Nq., not quantifiable.
    下载: 导出CSV

    表 3  水生生物体内有机磷酸酯的浓度(平均浓度±标准偏差,ng·g−1

    Table 3.  Concentrations of OPEs in Aquatic organisms(mean±sd, ng·g−1

    物种
    Species
    地点
    Sites
    TCEPTCPPTDCPPTNBPEHDPHPTEHPTPHPTBEP数据来源
    Ref
    脂眼凹肩鲹
    S. crumenthalmops
    菲律宾4.7±4.11.8±3.223±201.3±2.20.18±0.31[96]
    短钻嘴鱼
    Gerres erythrourus
    菲律宾64±3938±33160±150ND34±29[96]
    沙尖鱼
    S. sihama
    菲律宾420±120180±321000±2.1ND7.9±4.3[96]
    水蛇
    Enhydris chinensis
    中国0.046±0.0320.31±0.170.32±0.780.79±0.81ND0.014±0.0110.23±0.11[90]
    鲤鱼
    Cyprinus carpio
    中国0.21±0.103.1±0.480.24±0.213.0±1.40.24±0.320.13±0.0456.2±1.8[90]
    鲫鱼
    Carassius auratus
    韩国0.688—1.060.25—0.512ND0.848—1.52ND—0.586ND[92]
    鲫鱼
    Carassius auratus
    韩国0.53—1.030.262—0.739ND1.31—4.32NDND—0.798[92]
    鲮鱼
    Cirrhinus molitorella
    中国0.81±0.170.72±0.12ND0.19±0.020.05±0.012.1±0.010.15±0.06[89]
    罗非鱼
    Tilapia nilotica
    中国1.0±0.090.66±0.14ND0.23±0.110.07±0.039.0±2.90.20±0.16[89]
    清道夫
    Hypostomus plecostomus
    中国1.5±0.471.6±0.500.04±0.030.18±0.140.05±0.054.4±0.550.36±0.32[89]
    胡子鲶、白鲩
    Claris fuscus
    Ctenopharyngodon idellus
    中国82.7—469243.9—46ND—1.8ND—3.61ND—45.7164—8842[104]
      ND., 未检出;—., 无数据.
      ND., not detected;—., no data.
    物种
    Species
    地点
    Sites
    TCEPTCPPTDCPPTNBPEHDPHPTEHPTPHPTBEP数据来源
    Ref
    脂眼凹肩鲹
    S. crumenthalmops
    菲律宾4.7±4.11.8±3.223±201.3±2.20.18±0.31[96]
    短钻嘴鱼
    Gerres erythrourus
    菲律宾64±3938±33160±150ND34±29[96]
    沙尖鱼
    S. sihama
    菲律宾420±120180±321000±2.1ND7.9±4.3[96]
    水蛇
    Enhydris chinensis
    中国0.046±0.0320.31±0.170.32±0.780.79±0.81ND0.014±0.0110.23±0.11[90]
    鲤鱼
    Cyprinus carpio
    中国0.21±0.103.1±0.480.24±0.213.0±1.40.24±0.320.13±0.0456.2±1.8[90]
    鲫鱼
    Carassius auratus
    韩国0.688—1.060.25—0.512ND0.848—1.52ND—0.586ND[92]
    鲫鱼
    Carassius auratus
    韩国0.53—1.030.262—0.739ND1.31—4.32NDND—0.798[92]
    鲮鱼
    Cirrhinus molitorella
    中国0.81±0.170.72±0.12ND0.19±0.020.05±0.012.1±0.010.15±0.06[89]
    罗非鱼
    Tilapia nilotica
    中国1.0±0.090.66±0.14ND0.23±0.110.07±0.039.0±2.90.20±0.16[89]
    清道夫
    Hypostomus plecostomus
    中国1.5±0.471.6±0.500.04±0.030.18±0.140.05±0.054.4±0.550.36±0.32[89]
    胡子鲶、白鲩
    Claris fuscus
    Ctenopharyngodon idellus
    中国82.7—469243.9—46ND—1.8ND—3.61ND—45.7164—8842[104]
      ND., 未检出;—., 无数据.
      ND., not detected;—., no data.
    下载: 导出CSV

    表 4  陆生生物体内有机磷酸酯的浓度(浓度范围,ng·g−1

    Table 4.  Concentrations of OPEs in Terrestrial organisms(Concentration range,ng·g−1

    物种
    Species
    地点
    Sites
    TCEPTCPPTNBPTDCPPEHDPHPTEHPTPHPTBEP数据来源
    Ref
    禽类中国33.7—16.23.89—21.411.7—281ND—21.6ND—13.9ND—20948.1—266[104]
    白尾鹰羽毛Haliaeetus albicilla挪威14—300014—220ND0.95—215.4—255.9—2503.1—22[98]
    北极狐
    Vulpes lagopus
    挪威<0.2—.8<1.3—15<0.1—89<0.3—14.76±2.2<0.—1.3955 ±294[109]
    黑冠夜鹭卵Nycticorax nycticorax中国<5.0—14.5<0.2—25.71.04—39.0<4.0—11.5<0.2<5.0—31.01.32—34.1<0.2—40.3[106]
    小白鹭卵Egretta garzetta中国<5.0—8.920.83—8.393.28—38.2<4.0<0.2<5.0—7.221.69—5.9<0.2—0.4[106]
    中国池鹭卵Ardeola bacchus中国<5.0—6.44<0.2—4.103.14—26.7<4.0<0.2<5.0—7.491.40—2.58<0.2—0.3[106]
    牛白鹭卵
    Bubulcus ibis
    中国5.610.156.55<4.0<0.28.393.12<0.2[106]
    黑斑蛙
    Rana nigromaculata
    中国0.93±0.530.8±0.560.17±0.130.043±0.0660.14±0.130.076±0.0460.073±0.0490.017±0.17[107]
    牛蛙
    Rana catesbeiana
    中国6.6±4.60.41±0.160.13±0.030.11±0.060.34±0.180.07±0.030.39±0.170.03±0.02[107]
      ND., 未检出;—., 无数据.
      ND., not detected;—., no data.
    物种
    Species
    地点
    Sites
    TCEPTCPPTNBPTDCPPEHDPHPTEHPTPHPTBEP数据来源
    Ref
    禽类中国33.7—16.23.89—21.411.7—281ND—21.6ND—13.9ND—20948.1—266[104]
    白尾鹰羽毛Haliaeetus albicilla挪威14—300014—220ND0.95—215.4—255.9—2503.1—22[98]
    北极狐
    Vulpes lagopus
    挪威<0.2—.8<1.3—15<0.1—89<0.3—14.76±2.2<0.—1.3955 ±294[109]
    黑冠夜鹭卵Nycticorax nycticorax中国<5.0—14.5<0.2—25.71.04—39.0<4.0—11.5<0.2<5.0—31.01.32—34.1<0.2—40.3[106]
    小白鹭卵Egretta garzetta中国<5.0—8.920.83—8.393.28—38.2<4.0<0.2<5.0—7.221.69—5.9<0.2—0.4[106]
    中国池鹭卵Ardeola bacchus中国<5.0—6.44<0.2—4.103.14—26.7<4.0<0.2<5.0—7.491.40—2.58<0.2—0.3[106]
    牛白鹭卵
    Bubulcus ibis
    中国5.610.156.55<4.0<0.28.393.12<0.2[106]
    黑斑蛙
    Rana nigromaculata
    中国0.93±0.530.8±0.560.17±0.130.043±0.0660.14±0.130.076±0.0460.073±0.0490.017±0.17[107]
    牛蛙
    Rana catesbeiana
    中国6.6±4.60.41±0.160.13±0.030.11±0.060.34±0.180.07±0.030.39±0.170.03±0.02[107]
      ND., 未检出;—., 无数据.
      ND., not detected;—., no data.
    下载: 导出CSV

    表 5  有机磷酸酯及其I相对应代谢产物

    Table 5.  OPEs and their phrase I respective metabolites

    目标化合物缩写
    Parent compound abbreviation
    物种
    Species
    方式
    Methods
    主要代谢产物
    Major metabolites
    参考文献
    References
    TNBP鲤鱼体内代谢磷酸二正丁酯(DNBP)[137]
    老鼠肝脏体外代谢2-羟基磷酸三丁酯(di-OH-TNBP)[18]
    TPHP鲤鱼体内代谢4-羟基磷酸二苯酯(4-HO-DPHP)、磷酸二苯酯(DPHP)、磷酸二苯酯(DPHP)、4-羟基磷酸二苯酯(4-HO-TPHP)[137]
    鸡胚胎肝细胞体外代谢DPHP、羟基磷酸二苯酯(OH-TPHP)、2-羟基磷酸二苯酯基(di-OH-TPHP)[18]
    TCEP鲤鱼体内代谢双(2-氯乙基)磷酸酯(BCEP)[137]
    人肝微粒体体外代谢BCEP、羟基磷酸三(2-氯乙基)酯 (OH-TCEP)[124]
    人肝微粒体体外代谢BCIPP、羟基磷酸三(2-氯异丙基)酯(OH-TCIPP)、烃基磷酸三(2-氯异丙基)酯(COOH-TCIPP),、羟基双(1-氯-2-丙基)磷酸酯(OH-BCIPP)[124]
    TDCPP鲤鱼体内代谢双(1,3-二氯-2-丙基)磷酸酯(BDCIPP)[137]
    人肝微粒体体外代谢BDCIPP、羟基磷酸三(1,3-二氯-2-丙基)酯(OH-TDCIPP)、羟基双(1,3-二氯-2-丙基)磷酸酯(OH-BDCIPP)[124]
    TBEP鲤鱼体内代谢双(丁氧乙基)磷酸酯(BBOEP)、2-羟乙基双(2-丁氧基乙基)磷酸酯(BBOEHEP)、3-羟基-2-丁氧基乙基酯(3-HO-TBOEP)[137]
    人肝微粒体体外代谢BBOEP、BBOEHEP、羟基磷酸三(2-丁氧基乙基)酯TBOEP(1-HO-
    TBEP)、2-羟基磷酸三(2-丁氧基乙基)酯(2-HO-TBEP)、3-磷酸三
    (2-丁氧基乙基)酯(3-HO-TBEP)
    [124]
    TEHP鲤鱼体内代谢磷酸双(2-乙基己基)酯(DEHP)[137]
    EHDPHP鲤鱼体内代谢2-乙基己基苯基磷酸酯(EHDPP)、2-乙基-5-羟基己基磷酸二苯酯(5-HO-EHDPHP)[137]
    TMP鲤鱼体内代谢磷酸二(甲基苯基)酯(BMPP)[137]
    目标化合物缩写
    Parent compound abbreviation
    物种
    Species
    方式
    Methods
    主要代谢产物
    Major metabolites
    参考文献
    References
    TNBP鲤鱼体内代谢磷酸二正丁酯(DNBP)[137]
    老鼠肝脏体外代谢2-羟基磷酸三丁酯(di-OH-TNBP)[18]
    TPHP鲤鱼体内代谢4-羟基磷酸二苯酯(4-HO-DPHP)、磷酸二苯酯(DPHP)、磷酸二苯酯(DPHP)、4-羟基磷酸二苯酯(4-HO-TPHP)[137]
    鸡胚胎肝细胞体外代谢DPHP、羟基磷酸二苯酯(OH-TPHP)、2-羟基磷酸二苯酯基(di-OH-TPHP)[18]
    TCEP鲤鱼体内代谢双(2-氯乙基)磷酸酯(BCEP)[137]
    人肝微粒体体外代谢BCEP、羟基磷酸三(2-氯乙基)酯 (OH-TCEP)[124]
    人肝微粒体体外代谢BCIPP、羟基磷酸三(2-氯异丙基)酯(OH-TCIPP)、烃基磷酸三(2-氯异丙基)酯(COOH-TCIPP),、羟基双(1-氯-2-丙基)磷酸酯(OH-BCIPP)[124]
    TDCPP鲤鱼体内代谢双(1,3-二氯-2-丙基)磷酸酯(BDCIPP)[137]
    人肝微粒体体外代谢BDCIPP、羟基磷酸三(1,3-二氯-2-丙基)酯(OH-TDCIPP)、羟基双(1,3-二氯-2-丙基)磷酸酯(OH-BDCIPP)[124]
    TBEP鲤鱼体内代谢双(丁氧乙基)磷酸酯(BBOEP)、2-羟乙基双(2-丁氧基乙基)磷酸酯(BBOEHEP)、3-羟基-2-丁氧基乙基酯(3-HO-TBOEP)[137]
    人肝微粒体体外代谢BBOEP、BBOEHEP、羟基磷酸三(2-丁氧基乙基)酯TBOEP(1-HO-
    TBEP)、2-羟基磷酸三(2-丁氧基乙基)酯(2-HO-TBEP)、3-磷酸三
    (2-丁氧基乙基)酯(3-HO-TBEP)
    [124]
    TEHP鲤鱼体内代谢磷酸双(2-乙基己基)酯(DEHP)[137]
    EHDPHP鲤鱼体内代谢2-乙基己基苯基磷酸酯(EHDPP)、2-乙基-5-羟基己基磷酸二苯酯(5-HO-EHDPHP)[137]
    TMP鲤鱼体内代谢磷酸二(甲基苯基)酯(BMPP)[137]
    下载: 导出CSV
  • [1] 高立红, 厉文辉, 史亚利, 等. 有机磷酸酯阻燃剂分析方法及其污染现状研究进展 [J]. 环境化学, 2014, 33(10): 1750-1761. doi: 10.7524/j.issn.0254-6108.2014.10.004

    GAO L H, LI W H, SHI Y L, et al. Analytical methods and pollution status of organophosphate flame retardants [J]. Environmental Chemistry, 2014, 33(10): 1750-1761(in Chinese). doi: 10.7524/j.issn.0254-6108.2014.10.004

    [2] GAO Z Q, DENG Y H, HU X B, et al. Determination of organophosphate esters in water samples using an ionic liquid-based Sol-gel fiber for headspace solid-phase microextraction coupled to gas chromatography-flame photometric detector [J]. Journal of Chromatography. A, 2013, 1300: 141-150. doi: 10.1016/j.chroma.2013.02.089
    [3] BRANDSMA S H, DE BOER J, LEONARDS P E G, et al. Organophosphorus flame-retardant and plasticizer analysis, including recommendations from the first worldwide interlaboratory study [J]. Trac-Trends in Analytical Chemistry, 2013, 43: 217-228. doi: 10.1016/j.trac.2012.12.004
    [4] WEI G L, LI D Q, ZHUO M N, et al. Organophosphorus flame retardants and plasticizers: Sources, occurrence, toxicity and human exposure [J]. Environmental Pollution, 2015, 196: 29-46. doi: 10.1016/j.envpol.2014.09.012
    [5] LUO Y L, GUO W S, NGO H H, et al. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment [J]. The Science of the Total Environment, 2014, 473/474: 619-641. doi: 10.1016/j.scitotenv.2013.12.065
    [6] 齐迹. 污水处理厂中磷系阻燃剂浓度分布及归趋研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.

    QI J. Occurrence and fate of phosphorus flame retardants in wastewater treatment plant[D]. Harbin: Harbin Institute of Technology, 2015(in Chinese).

    [7] VAN DER VEEN I, DE BOER J. Phosphorus flame retardants: properties, production, environmental occurrence, toxicity and analysis [J]. Chemosphere, 2012, 88(10): 1119-1153. doi: 10.1016/j.chemosphere.2012.03.067
    [8] WANG Q, LAM J C, MAN Y C, et al. Bioconcentration, metabolism and neurotoxicity of the organophorous flame retardant 1, 3-dichloro 2-propyl phosphate (TDCPP) to zebrafish [J]. Aquatic Toxicology, 2015, 158: 108-115. doi: 10.1016/j.aquatox.2014.11.001
    [9] 中国产业信息网. 2014 - 2018年中国阻燃剂市场深度调研与投资前景分析报告[EB/OL]. [2018-11-11]. http://www.chyxx.com/industry/201405/241521.html.

    China Industry Information Network. In- depth investigation and investment prospect analysis report of China's flame retardant market in 2014 - 2018. [EB/OL]. [2018-11-11]. http://www.chyxx.com/industry/201405/241521.html (in Chinese).

    [10] ZHENG J, GAO Z, YUAN W, et al. Development of pressurized liquid extraction and solid-phase microextraction combined with gas chromatography and flame photometric detection for the determination of organophosphate esters in sediments [J]. Journal of Separation Science, 2014, 37(17): 2424-2430. doi: 10.1002/jssc.201301274
    [11] 王晓伟, 刘景富, 阴永光. 有机磷酸酯阻燃剂污染现状与研究进展 [J]. 化学进展, 2010, 22(10): 1983-1992.

    WANG X W, LIU J F, YIN Y G. The pollution status and research progress on organophosphate ester flame retardants [J]. Progress in Chemistry, 2010, 22(10): 1983-1992(in Chinese).

    [12] HOU R, XU Y P, WANG Z J. Review of OPFRs in animals and humans: Absorption, bioaccumulation, metabolism, and internal exposure research [J]. Chemosphere, 2016, 153: 78-90. doi: 10.1016/j.chemosphere.2016.03.003
    [13] 李素珍, 付卫强, 冯承莲. 有机磷酸酯阻燃剂的环境暴露、环境行为和毒性效应研究进展 [J]. 环境工程, 2018, 36(9): 180-184, 35.

    LI S Z, FU W Q, FENG C L. Research progress in environmenatal exposure, behaviour and toxic effect of organophosphorus flame retardants [J]. Environmental Engineering, 2018, 36(9): 180-184, 35(in Chinese).

    [14] WU J P, LUO X J, ZHANG Y, et al. Biomagnification of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls in a highly contaminated freshwater food web from South China [J]. Environmental Pollution, 2009, 157(3): 904-909. doi: 10.1016/j.envpol.2008.11.001
    [15] 魏莱, 黄清辉, 许宜平, 等. 崇明岛小白鹭鸟卵中有机磷阻燃剂污染特征 [J]. 环境科学学报, 2019, 39(5): 1691-1697.

    WEI L, HUANG Q H, XU Y P, et al. Occurrence of organophosphorus flame retardants in little egret eggs from Chongming Island [J]. Acta Scientiae Circumstantiae, 2019, 39(5): 1691-1697(in Chinese).

    [16] HOU R, LIU C, GAO X Z, et al. Accumulation and distribution of organophosphate flame retardants (PFRs) and their di-alkyl phosphates (DAPs) metabolites in different freshwater fish from locations around Beijing, China [J]. Environmental Pollution, 2017, 229: 548-556. doi: 10.1016/j.envpol.2017.06.097
    [17] LYNN R K, WONG K, GARVIEGOULD C, et al. Disposition of the flame-retardant, tris(1, 3-dichloro-2-propyl)phosphate, in the rat [J]. Drug Metabolism and Disposition, 1981, 9(5): 434-441.
    [18] SASAKI K, SUZUKI T, TAKEDA M, et al. Metabolism of phosphoric acid triesters by rat liver homogenate [J]. Bulletin of Environmental Contamination and Toxicology, 1984, 33(1): 281-288. doi: 10.1007/BF01625544
    [19] REEMTSMA T, LINGOTT J, ROEGLER S. Determination of 14 monoalkyl phosphates, dialkyl phosphates and dialkyl thiophosphates by LC-MS/MS in human urinary samples [J]. Science of the Total Environment, 2011, 409(10): 1990-1993. doi: 10.1016/j.scitotenv.2011.01.032
    [20] DODSON R E, van den EEDE N, COVACI A, et al. Urinary biomonitoring of phosphate flame retardants: Levels in California adults and recommendations for future studies [J]. Environmental Science & Technology, 2014, 48(23): 13625-13633.
    [21] MARTÍNEZ-CARBALLO E, GONZÁLEZ-BARREIRO C, SITKA A, et al. Determination of selected organophosphate esters in the aquatic environment of Austria [J]. The Science of the Total Environment, 2007, 388(1/2/3): 290-299.
    [22] QUINTANA J B, RODIL R, REEMTSMA T, et al. Organophosphorus flame retardants and plasticizers in water and air II. Analytical methodology [J]. TrAC - Trends in Analytical Chemistry, 2008, 27(10): 904-915. doi: 10.1016/j.trac.2008.08.004
    [23] NIU Z G, ZHANG Z Z, LI J F, et al. Threats of organophosphate esters (OPEs) in surface water to ecological system in Haihe River of China based on species sensitivity distribution model and assessment factor model [J]. Environmental Science and Pollution Research, 2019, 26(11): 10854-10866. doi: 10.1007/s11356-019-04461-2
    [24] ZHANG Z Y, SHAO H Y, WU M H, et al. Occurrence, distribution, and potential sources of organophosphate esters in urban and rural surface water in Shanghai, China [J]. Archives of Environmental Contamination and Toxicology, 2019, 77(1): 115-126. doi: 10.1007/s00244-019-00633-w
    [25] SHI Y L, GAO L H, LI W H, et al. Occurrence, distribution and seasonal variation of organophosphate flame retardants and plasticizers in urban surface water in Beijing, China [J]. Environmental Pollution, 2016, 209: 1-10. doi: 10.1016/j.envpol.2015.11.008
    [26] WANG X W, LIU J F, YIN Y G. Development of an ultra-high-performance liquid chromatography-tandem mass spectrometry method for high throughput determination of organophosphorus flame retardants in Environmental water [J]. Journal Of Chromatography A, 2011, 1218(38): 6705-6711. doi: 10.1016/j.chroma.2011.07.067
    [27] 严小菊, 何欢, 彭英, 等. 固相萃取-气相色谱质谱法检测水体中典型有机磷酸酯阻燃剂 [J]. 分析化学, 2012(11): 1693-1697.

    YAN X J, HE H, PENG Y, et al. Determination of organophosphorus flame retardants in surface water by solid phase extraction coupled with gas chromatography-mass spectrometry [J]. Chinese Journal of Analytical Chemistry, 2012(11): 1693-1697(in Chinese).

    [28] 吴迪, 印红玲, 李世平, 等. 成都市锦江表层水和沉积物中有机磷酸酯的污染特征 [J]. 环境科学, 2019, 40(3): 1245-1251.

    WU D, YIN H L, LI S P, et al. Pollution characteristics of OPEs in the surface water and sediment of the Jinjiang river in Chengdu city [J]. Environmental Science, 2019, 40(3): 1245-1251(in Chinese).

    [29] 田乃琴. 府南河沉积物-水界面磷的赋存状态及其分布[D]. 成都: 成都理工大学, 2008.

    TIAN N Q. Phophorus speciation and distribution at the sediment-water interface of Funan River[D]. Chengdu: Chengdu University of Technology, 2008(in Chinese).

    [30] SCHMIDT N, CASTRO-JIMÉNEZ J, FAUVELLE V, et al. Occurrence of organic plastic additives in surface waters of the Rh&#244; ne River (France) [J]. Environmental Pollution, 2020, 257: 113637. doi: 10.1016/j.envpol.2019.113637
    [31] WOLSCHKE H, SÜHRING R, XIE Z Y, et al. Organophosphorus flame retardants and plasticizers in the aquatic environment: A case study of the Elbe River, Germany [J]. Environmental Pollution, 2015, 206: 488-493. doi: 10.1016/j.envpol.2015.08.002
    [32] BACALONI A, CAVALIERE C, FOGLIA P, et al. Liquid chromatography/tandem mass spectrometry determination of organophosphorus flame retardants and plasticizers in drinking and surface waters [J]. Rapid Communication in Mass Spectrometry, 2007, 21(7): 1123-1130. doi: 10.1002/rcm.2937
    [33] REGNERY J, PÜTTMANN W. Occurrence and fate of organophosphorus flame retardants and plasticizers in urban and remote surface waters in Germany [J]. Water Research, 2010, 44(14): 4097-4104. doi: 10.1016/j.watres.2010.05.024
    [34] CRISTALE J, GARCÍA VÁZQUEZ A, BARATA C, et al. Priority and emerging flame retardants in rivers: Occurrence in water and sediment, Daphnia magna toxicity and risk assessment [J]. Environment International, 2013, 59: 232-243. doi: 10.1016/j.envint.2013.06.011
    [35] CRISTALE J, KATSOYIANNIS A, SWEETMAN A J, et al. Occurrence and risk assessment of organophosphorus and brominated flame retardants in the River Aire (UK) [J]. Environmental Pollution, 2013, 179: 194-200. doi: 10.1016/j.envpol.2013.04.001
    [36] L ZHANG L, WANG Y, TAN F, et al. Tidal variability of polycyclic aromatic hydrocarbons and organophosphate esters in the coastal seawater of Dalian, China [J]. the Science of the Total Environment, 2020, 708(Mara15): 134441.1-134441.8.
    [37] KIM U J, KANNAN K. Occurrence and distribution of organophosphate flame retardants/plasticizers in surface waters, tap water, and rainwater: Implications for human exposure [J]. Environmental Science & Technology, 2018, 52(10): 5625-5633.
    [38] LAI N L S, KWOK K Y, WANG X H, et al. Assessment of organophosphorus flame retardants and plasticizers in aquatic environments of China (pearl river delta, south China sea, yellow river estuary) and Japan (tokyo bay) [J]. Journal of Hazardous Materials, 2019, 371: 288-294. doi: 10.1016/j.jhazmat.2019.03.029
    [39] GAO X, HUANG C, RAO K, et al. Occurrences, sources, and transport of hydrophobic organic contaminants in the waters of Fildes Peninsula, Antarctica [J]. Environmental Pollution, 2018, 241: 950-958. doi: 10.1016/j.envpol.2018.06.025
    [40] TEO T L L, MCDONALD J A, COLEMAN H M, et al. Analysis of organophosphate flame retardants and plasticisers in water by isotope dilution gas chromatography-electron ionisation tandem mass spectrometry [J]. Talanta, 2015, 143: 114-120. doi: 10.1016/j.talanta.2015.04.091
    [41] SUTTON R, CHEN D, SUN J, et al. Characterization of brominated, chlorinated, and phosphate flame retardants in San Francisco Bay, an urban estuary [J]. The Science of the Total Environment, 2019, 652: 212-223. doi: 10.1016/j.scitotenv.2018.10.096
    [42] STUPAVSKI M, VOJINOVI M, RADONI J. Occurrence and analytical determination of the concentration level of phosphorus flame retardants [J]. 6th PSU-UNS International Conference on Engineering and Technology (ICET-2013), 2013: 1-5.
    [43] ISHIKAWA S, TAKETOMI M, SHINOHARA R. Determination of trialkyl and triaryl phosphates in environmental samples [J]. Water Research, 1985, 19(1): 119-125. doi: 10.1016/0043-1354(85)90332-X
    [44] CAO S X, ZENG X Y, SONG H, et al. Levels and distributions of organophosphate flame retardants and plasticizers in sediment from Taihu Lake, China [J]. Environmental Toxicology and Chemistry, 2012, 31(7): 1478-1484. doi: 10.1002/etc.1872
    [45] 阮伟, 谭晓欣, 罗孝俊, 等. 东江表层沉积物中的有机磷系阻燃剂 [J]. 中国环境科学, 2014, 34(9): 2394-2400.

    RUAN W, TAN X X, LUO X J, et al. Organophosphorus flame retardants in surface sediments from Dongjiang River [J]. China Environmental Science, 2014, 34(9): 2394-2400(in Chinese).

    [46] MO L, ZHENG J, WANG T, et al. Legacy and emerging contaminants in coastal surface sediments around Hainan Island in South China [J]. Chemosphere, 2019, 215: 133-141. doi: 10.1016/j.chemosphere.2018.10.022
    [47] ZHONG M Y, WU H F, MI W Y, et al. Occurrences and distribution characteristics of organophosphate ester flame retardants and plasticizers in the sediments of the Bohai and Yellow Seas, China [J]. The Science of the Total Environment, 2018, 615: 1305-1311. doi: 10.1016/j.scitotenv.2017.09.272
    [48] BRANDSMA S H, LEONARDS P E G, LESLIE H A, et al. Tracing organophosphorus and brominated flame retardants and plasticizers in an estuarine food web [J]. The Science of the Total Environment, 2015, 505: 22-31. doi: 10.1016/j.scitotenv.2014.08.072
    [49] CAO D D, GUO J H, WANG Y W, et al. Organophosphate esters in sediment of the great lakes [J]. Environmental Science & Technology, 2017, 51(3): 1441-1449.
    [50] GIULIVO M, CAPRI E, KALOGIANNI E, et al. Occurrence of halogenated and organophosphate flame retardants in sediment and fish samples from three European river basins [J]. The Science of the Total Environment, 2017, 586: 782-791. doi: 10.1016/j.scitotenv.2017.02.056
    [51] MA Y X, XIE Z Y, LOHMANN R, et al. Organophosphate ester flame retardants and plasticizers in ocean sediments from the north Pacific to the Arctic Ocean [J]. Environmental Science & Technology, 2017, 51(7): 3809-3815.
    [52] CLARK A E, YOON S, SHEESLEY R J, et al. Spatial and temporal distributions of organophosphate ester concentrations from atmospheric particulate matter samples collected across Houston, TX [J]. Environmental Science & Technology, 2017, 51(8): 4239-4247.
    [53] CAO D D, LV K, GAO W, et al. Presence and human exposure assessment of organophosphate flame retardants (OPEs) in indoor dust and air in Beijing, China [J]. Ecotoxicology and Environmental Safety, 2019, 169: 383-391. doi: 10.1016/j.ecoenv.2018.11.038
    [54] HU Y J, BAO L J, HUANG C L, et al. A comprehensive risk assessment of human inhalation exposure to atmospheric halogenated flame retardants and organophosphate esters in an urban zone [J]. Environmental Pollution, 2019, 252(2): 1902-1909.
    [55] YANG F X, DING J J, HUANG W, et al. Particle size-specific distributions and preliminary exposure assessments of organophosphate flame retardants in office air particulate matter [J]. Environmental Science & Technology, 2014, 48(1): 63-70.
    [56] CEQUIER E, IONAS A C, COVACI A, et al. Occurrence of a broad range of legacy and emerging flame retardants in indoor environments in Norway [J]. Environmental Science & Technology, 2014, 48(12): 6827-6835.
    [57] ZHOU L L, HILTSCHER M, GRUBER D, et al. Organophosphate flame retardants (OPFRs) in indoor and outdoor air in the Rhine/Main area, Germany: Comparison of concentrations and distribution profiles in different microenvironments [J]. Environmental Science and Pollution Research, 2017, 24(12): 10992-11005. doi: 10.1007/s11356-016-6902-z
    [58] HE C, WANG X Y, THAI P, et al. Organophosphate and brominated flame retardants in Australian indoor environments: Levels, sources, and preliminary assessment of human exposure [J]. Environmental Pollution, 2018, 235: 670-679. doi: 10.1016/j.envpol.2017.12.017
    [59] ZHANG W W, WANG P, LI Y M, et al. Spatial and temporal distribution of organophosphate esters in the atmosphere of the Beijing-Tianjin-Hebei region, China [J]. Environmental Pollution, 2019, 244: 182-189. doi: 10.1016/j.envpol.2018.09.131
    [60] REN G, CHEN Z, FENG J, et al. Organophosphate esters in total suspended particulates of an urban city in East China [J]. Chemosphere, 2016, 164: 75-83. doi: 10.1016/j.chemosphere.2016.08.090
    [61] SAINI A, CLARKE J, JARIYASOPIT N, et al. Flame retardants in urban air: A case study in Toronto targeting distinct source sectors [J]. Environmental Pollution, 2019, 247: 89-97. doi: 10.1016/j.envpol.2019.01.027
    [62] CASTRO-JIMÉNEZ J, BERROJALBIZ N, PIZARRO M, et al. Organophosphate ester (OPE) flame retardants and plasticizers in the open Mediterranean and black seas atmosphere [J]. Environmental Science & Technology, 2014, 48(6): 3203-3209.
    [63] WANG Y, YAO Y M, LI W H, et al. A nationwide survey of 19 organophosphate esters in soils from China: Spatial distribution and hazard assessment [J]. The Science of the Total Environment, 2019, 671: 528-535. doi: 10.1016/j.scitotenv.2019.03.335
    [64] WANG Y, SUN H W, ZHU H K, et al. Occurrence and distribution of organophosphate flame retardants (OPFRs) in soil and outdoor settled dust from a multi-waste recycling area in China [J]. The Science of the Total Environment, 2018, 625: 1056-1064. doi: 10.1016/j.scitotenv.2018.01.013
    [65] HE M J, LU J F, WEI S Q. Occurrence and distribution of organophosphate esters in surface soil and street dust from Chongqing, China: Implications for human exposure [J]. Archives of Environmental Contamination and Toxicology, 2017, 74: 349-361.
    [66] LI W H, WANG Y, KANNAN K. Occurrence, distribution and human exposure to 20 organophosphate esters in air, soil, pine needles, river water, and dust samples collected around an airport in New York state, United States [J]. Environment International, 2019, 131: 105054. doi: 10.1016/j.envint.2019.105054
    [67] MIHAJLOVIĆ I, MILORADOV M V, FRIES E. Application of twisselmann extraction, SPME, and GC-MS to assess input sources for organophosphate esters into soil [J]. Environmental Science & Technology, 2011, 45(6): 2264-2269.
    [68] CRISTALE J, ARAGÃO BELÉ T G, LACORTE S, et al. Occurrence of flame retardants in landfills: A case study in Brazil [J]. Environmental Research, 2019, 168: 420-427. doi: 10.1016/j.envres.2018.10.010
    [69] WAN W, ZHANG S, HUANG H, et al. Occurrence and distribution of organophosphorus esters in soils and wheat plants in a plastic waste treatment area in China [J]. Environmental Pollution, 2016, 214: 349-353. doi: 10.1016/j.envpol.2016.04.038
    [70] CUI K Y, WEN J X, ZENG F, et al. Occurrence and distribution of organophosphate esters in urban soils of the subtropical city, Guangzhou, China [J]. Chemosphere, 2017, 175: 514-520. doi: 10.1016/j.chemosphere.2017.02.070
    [71] MATSUKAMI H, TUE N M, SUZUKI G, et al. Flame retardant emission from e-waste recycling operation in northern Vietnam: Environmental occurrence of emerging organophosphorus esters used as alternatives for PBDEs [J]. Science of the Total Environment, 2015, 514: 492-499. doi: 10.1016/j.scitotenv.2015.02.008
    [72] YADAV I C, DEVI N L, Li J, et al. Concentration and spatial distribution of organophosphate esters in the soil-sediment profile of Kathmandu Valley, Nepal: Implication for risk assessment [J]. Science of the Total Environment, 2018, 613-614: 502-512.
    [73] PENG C, TAN H, GUO Y, et al. Emerging and legacy flame retardants in indoor dust from East China [J]. Chemosphere, 2017, 186: 635-643. doi: 10.1016/j.chemosphere.2017.08.038
    [74] TAN H L, PENG C F, GUO Y, et al. Organophosphate flame retardants in house dust from South China and related human exposure risks [J]. Bulletin of Environmental Contamination and Toxicology, 2017, 99(3): 344-349. doi: 10.1007/s00128-017-2120-8
    [75] LI W, WANG Y, ASIMAKOPOULOS A G, et al. Organophosphate esters in indoor dust from 12 countries: Concentrations, composition profiles, and human exposure [J]. Environmental International, 2019, 133: 105178. doi: 10.1016/j.envint.2019.105178
    [76] van den EEDE N, DIRTU A C, NEELS H, et al. Analytical developments and preliminary assessment of human exposure to organophosphate flame retardants from indoor dust [J]. Environment International, 2011, 37(2): 454-461. doi: 10.1016/j.envint.2010.11.010
    [77] BJORNSDOTTER M K, ROMERA-GARCIA E, BORRULL J, et al. Presence of diphenyl phosphate and aryl-phosphate flame retardants in indoor dust from different microEnvironments in Spain and the Netherlands and estimation of human exposure [J]. Environmental International, 2018, 112: 59-67. doi: 10.1016/j.envint.2017.11.028
    [78] WANG Y, YAO Y M, HAN X X, et al. Organophosphate di- and tri-esters in indoor and outdoor dust from China and its implications for human exposure [J]. The Science of the Total Environment, 2020, 700: 134502. doi: 10.1016/j.scitotenv.2019.134502
    [79] YADAV I C, DEVI N L, SINGH V K,et al. Measurement of legacy and emerging flame retardants in indoor dust from a rural village (Kopawa) in Nepal: Implication for source apportionment and health risk assessment [J]. Ecotoxicology and Environmental Safety, 2019, 168: 304-314.
    [80] KIM J W, ISOBE T, SUDARYANTO A, et al. Organophosphorus flame retardants in house dust from the Philippines: Occurrence and assessment of human exposure [J]. Environmental Science and Pollution Research, 2013, 20(2): 812-822. doi: 10.1007/s11356-012-1237-x
    [81] DODSON R E, PEROVICH L J, COVACI A, et al. After the PBDE phase-out: A broad suite of flame retardants in repeat house dust samples from California [J]. Environmental Science & Technology, 2012, 46(24): 13056-13066.
    [82] LI W H, SHI Y L, GAO L H, et al. Occurrence, distribution and risk of organophosphate esters in urban road dust in Beijing, China [J]. Environmental Pollution, 2018, 241: 566-575. doi: 10.1016/j.envpol.2018.05.092
    [83] 李静, 王俊霞, 许婉婷, 等. 道路灰尘中有机磷阻燃剂污染特征及人体暴露 [J]. 环境科学, 2017, 38(10): 4220-4227.

    LI J, WANG J X, XU W T, et al. Contamination characteristics and human exposure to organophosphate flame retardants in road dust from Suzhou city [J]. Environmental Science, 2017, 38(10): 4220-4227(in Chinese).

    [84] ZHANG Z H, WANG Y, TAN F, et al. Characteristics and risk assessment of organophosphorus flame retardants in urban road dust of Dalian, Northeast China [J]. The Science of the Total Environment, 2020, 705: 135995. doi: 10.1016/j.scitotenv.2019.135995
    [85] WANG R M, TANG J H, XIE Z Y, et al. Occurrence and spatial distribution of organophosphate ester flame retardants and plasticizers in 40 rivers draining into the Bohai Sea, North China [J]. Environmental Pollution, 2015, 198: 172-178. doi: 10.1016/j.envpol.2014.12.037
    [86] WANG T, DING N, WANG T, et al. Organophosphorus esters (OPEs) in PM2.5 in urban and e-waste recycling regions in southern China: concentrations, sources, and emissions [J]. Environmental Research, 2018, 167: 437-444. doi: 10.1016/j.envres.2018.08.015
    [87] LIU D, LIN T, SHEN K J, et al. Occurrence and concentrations of halogenated flame retardants in the atmospheric fine particles in Chinese cities [J]. Environmental Science & Technology, 2016, 50(18): 9846-9854.
    [88] UENO D, KAJIWARA N, TANAKA H, et al. Global pollution monitoring of polybrominated diphenyl ethers using skipjack tuna as a bioindicator [J]. Environmental Science & Technology, 2004, 38(8): 2312-2316.
    [89] LIU Y E, LUO X J, HUANG L Q, et al. Organophosphorus flame retardants in fish from Rivers in the Pearl River Delta, South China [J]. The Science of the Total Environment, 2019, 663: 125-132. doi: 10.1016/j.scitotenv.2019.01.344
    [90] LIU Y E, TANG B, LIU Y, et al. Occurrence, biomagnification and maternal transfer of legacy and emerging organophosphorus flame retardants and plasticizers in water snake from an e-waste site [J]. Environment International, 2019, 133(Pt B): 105240.
    [91] ZHAO H, ZHAO F, LIU J, et al. Trophic transfer of organophosphorus flame retardants in a lake food web [J]. Environmental Pollution, 2018, 242: 1887-1893. doi: 10.1016/j.envpol.2018.07.077
    [92] CHOO G, CHO H S, PARK K, et al. Tissue-specific distribution and bioaccumulation potential of organophosphate flame retardants in crucian carp [J]. Environmental Pollution, 2018, 239: 161-168. doi: 10.1016/j.envpol.2018.03.104
    [93] MCGOLDRICK D J, LETCHER R J, BARRESI E, et al. Organophosphate flame retardants and organosiloxanes in predatory freshwater fish from locations across Canada [J]. Environmental Pollution, 2014, 193: 254-261. doi: 10.1016/j.envpol.2014.06.024
    [94] BEKELE T G, ZHAO H, WANG Q. Tissue distribution and bioaccumulation of organophosphate esters in wild marine fish from Laizhou Bay, North China: Implications of human exposure via fish consumption [J]. Journal of Hazardous Materials, 2020, 401: 123410.
    [95] WANG X L, ZHONG W J, XIAO B W, et al. Bioavailability and biomagnification of organophosphate esters in the food web of Taihu Lake, China: Impacts of chemical properties and metabolism [J]. Environment International, 2019, 125: 25-32. doi: 10.1016/j.envint.2019.01.018
    [96] KIM J W, ISOBE T, CHANG K H, et al. Levels and distribution of organophosphorus flame retardants and plasticizers in fishes from Manila Bay, the Philippines [J]. Environmental Pollution, 2011, 159(12): 3653-3659. doi: 10.1016/j.envpol.2011.07.020
    [97] LIU Y E, LUO X J, ZAPATA CORELLA P, et al. Organophosphorus flame retardants in a typical freshwater food web: Bioaccumulation factors, tissue distribution, and trophic transfer [J]. Environmental Pollution, 2019, 255: 113286. doi: 10.1016/j.envpol.2019.113286
    [98] EULAERS I, JASPERS V L B, HALLEY D J, et al. Brominated and phosphorus flame retardants in White-tailed Eagle Haliaeetus albicilla nestlings: Bioaccumulation and associations with dietary proxies (δ&#185; &#179; C, δ&#185; 5N and δ&#179; 4S) [J]. The Science of the Total Environment, 2014, 478: 48-57. doi: 10.1016/j.scitotenv.2014.01.051
    [99] FERNIE K J, CHABOT D, CHAMPOUX L, et al. Spatiotemporal patterns and relationships among the diet, biochemistry, and exposure to flame retardants in an apex avian predator, the peregrine falcon [J]. Environmental Research, 2017, 158: 43-53. doi: 10.1016/j.envres.2017.05.035
    [100] HE C, WANG X Y, TANG S Y, et al. Concentrations of organophosphate esters and their specific metabolites in food in southeast Queensland, Australia: Is dietary exposure an important pathway of organophosphate esters and their metabolites? [J]. Environmental Science & Technology, 2018, 52(21): 12765-12773.
    [101] CHEN D, LETCHER R J, CHU S. Determination of non-halogenated, chlorinated and brominated organophosphate flame retardants in herring gull eggs based on liquid chromatography-tandem quadrupole mass spectrometry [J]. J Chromatogr A, 2012, 1220: 169-174. doi: 10.1016/j.chroma.2011.11.046
    [102] SU G Y, LETCHER R J, MOORE J N, et al. Spatial and temporal comparisons of legacy and emerging flame retardants in herring gull eggs from colonies spanning the Laurentian Great Lakes of Canada and United States [J]. Environmental Research, 2015, 142: 720-730. doi: 10.1016/j.envres.2015.08.018
    [103] SU G, LETCHER R J, MOORE J N, et al. Contaminants of emerging concern in caspian tern compared to herring gull eggs from Michigan colonies in the Great Lakes of North America [J]. Environmental Pollution, 2017, 222: 154-164. doi: 10.1016/j.envpol.2016.12.061
    [104] MA Y Q, CUI K Y, ZENG F, et al. Microwave-assisted extraction combined with gel permeation chromatography and silica gel cleanup followed by gas chromatography-mass spectrometry for the determination of organophosphorus flame retardants and plasticizers in biological samples [J]. Analytica Chimica Acta, 2013, 786: 47-53. doi: 10.1016/j.aca.2013.04.062
    [105] ZHENG X B, XU F C, LUO X J, et al. Phosphate flame retardants and novel brominated flame retardants in home-produced eggs from an e-waste recycling region in China [J]. Chemosphere, 2016, 150: 545-550. doi: 10.1016/j.chemosphere.2015.09.098
    [106] HUANG Q H, WEI L, BIGNERT A, et al. Organophosphate flame retardants in heron eggs from Upper Yangtze River basin, southwest China [J]. Chemosphere, 2019, 236: 124327. doi: 10.1016/j.chemosphere.2019.07.058
    [107] LIU Y E, LUO X J, GUANAB K L, et al. Legacy and emerging organophosphorus flame retardants and plasticizers in frogs: Sex difference and parental transfer [J]. Environmental Pollution, 2020, 266: 115336. doi: 10.1016/j.envpol.2020.115336
    [108] POMA G, LIU Y, CUYKX M, et al. Occurrence of organophosphorus flame retardants and plasticizers in wild insects from a former e-waste recycling site in the Guangdong Province, South China [J]. The Science of the Total Environment, 2019, 650(Pt 1): 709-712.
    [109] HALLANGER I G, SAGERUP K, EVENSET A, et al. Organophosphorous flame retardants in biota from Svalbard, Norway [J]. Marine Pollution Bulletin, 2015, 101(1): 442-447. doi: 10.1016/j.marpolbul.2015.09.049
    [110] GREAVES A K, LETCHER R J. Comparative body compartment composition and in ovo transfer of organophosphate flame retardants in North American great lakes herring gulls [J]. Environmental Science & Technology, 2014, 48(14): 7942-7950.
    [111] 宋德浩, 陈智锋, 祁增华, 等. 典型有机磷酸酯在小鼠组织内的特异性分布 [J]. 环境化学, 2020, 39(10): 2627-2636. doi: 10.7524/j.issn.0254-6108.2019123101

    CHEN M, LIAO X L, YANG C, et al. The tissue accumulation and distribution of typical organophosphate flame retardants (OPFRs) in mice [J]. Environmental Chemistry, 2020, 39(10): 2627-2636(in Chinese). doi: 10.7524/j.issn.0254-6108.2019123101

    [112] MÄKINEN M S E, MÄKINEN M R A, KOISTINEN J T B, et al. Respiratory and dermal exposure to organophosphorus flame retardants and tetrabromobisphenol A at five work environments [J]. Environmental Science & Technology, 2009, 43(3): 941-947.
    [113] HE R W, LI Y Z, XIANG P, et al. Organophosphorus flame retardants and phthalate esters in indoor dust from different microenvironments: Bioaccessibility and risk assessment [J]. Chemosphere, 2016, 150: 528-535. doi: 10.1016/j.chemosphere.2015.10.087
    [114] HE C, TOMS L M L, THAI P, et al. Urinary metabolites of organophosphate esters: Concentrations and age trends in Australian children [J]. Environment International, 2018, 111: 124-130. doi: 10.1016/j.envint.2017.11.019
    [115] HOFFMAN K D J L, STAPLETON H M. Urinary metabolites of organphosphate flame retardants and thier variability in pregnant women [J]. Environmental International, 2014, 63: 169-172. doi: 10.1016/j.envint.2013.11.013
    [116] ZHAO F R, WAN Y, ZHAO H Q, et al. Levels of blood organophosphorus flame retardants and association with changes in human sphingolipid homeostasis [J]. Environmental Science & Technology, 2016, 50(16): 8896-8903.
    [117] MA J, ZHU H K, KANNAN K. Organophosphorus flame retardants and plasticizers in breast milk from the United States [J]. Environmental Science & Technology Letters, 2019, 6(9): 525-531.
    [118] KIM J W, ISOBE T, MUTO M, et al. Organophosphorus flame retardants (PFRs) in human breast milk from several Asian countries [J]. Chemosphere, 2014, 116: 91-97. doi: 10.1016/j.chemosphere.2014.02.033
    [119] SUNDKVIST A M, OLOFSSON U, HAGLUND P. Organophosphorus flame retardants and plasticizers in marine and fresh water biota and in human milk [J]. Journal of Environmental Monitoring, 2010, 12(4): 943-951. doi: 10.1039/b921910b
    [120] DING J J, XU Z M, HUANG W, et al. Organophosphate ester flame retardants and plasticizers in human placenta in Eastern China [J]. The Science of the Total Environment, 2016, 554/555: 211-217. doi: 10.1016/j.scitotenv.2016.02.171
    [121] KUCHARSKA A, CEQUIER E, THOMSEN C, et al. Assessment of human hair as an indicator of exposure to organophosphate flame retardants. Case study on a Norwegian mother-child cohort [J]. Environment International, 2015, 83: 50-57. doi: 10.1016/j.envint.2015.05.015
    [122] XU F C, EULAERS I, ALVES A, et al. Human exposure pathways to organophosphate flame retardants: Associations between human biomonitoring and external exposure [J]. Environment International, 2019, 127: 462-472. doi: 10.1016/j.envint.2019.03.053
    [123] STUBBINGS W, GUO J H, SIMON K, et al. Flame retardant metabolites in addled bald eagle eggs from the great lakes region [J]. Environmental Science & Technology Letters, 2018, 5(6): 354-359.
    [124] van den EEDE N, MAHO W, ERRATICO C, et al. First insights in the metabolism of phosphate flame retardants and plasticizers using human liver fractions [J]. Toxicology Letters, 2013, 223(1): 9-15. doi: 10.1016/j.toxlet.2013.08.012
    [125] LI Z R, HE C, THAI P, et al. Organophosphate esters and their specific metabolites in chicken eggs from across Australia: Occurrence, profile, and distribution between yolk and ablumin fraction [J]. Environmental Pollution, 2020, 262: 114260. doi: 10.1016/j.envpol.2020.114260
    [126] BUTT C M, CONGLETON J, HOFFMAN K, et al. Metabolites of organophosphate flame retardants and 2-ethylhexyl tetrabromobenzoate in urine from paired mothers and toddlers [J]. Environmental Science & Technology, 2014, 48(17): 10432-10438.
    [127] CEQUIER E, MARCE R M, BECHER G, et al. A high-throughput method for determination of metabolites of organophosphate flame retardants in urine by ultra performance liquid chromatography-high resolution mass spectrometry [J]. Analytica Chimica Acta, 2014, 845: 98-104. doi: 10.1016/j.aca.2014.06.026
    [128] MEEKER J D, COOPER E M, STAPLETON H M, et al. Urinary metabolites of organophosphate flame retardants: temporal variability and correlations with house dust concentrations [J]. Environmental Health Perspectives, 2013, 121(5): 580-585. doi: 10.1289/ehp.1205907
    [129] COOPER E M, COVACI A, NUIJS A L N, et al. Analysis of the flame retardant metabolites bis(1, 3-dichloro-2-propyl) phosphate (BDCPP) and diphenyl phosphate (DPP) in urine using liquid chromatography-tandem mass spectrometry [J]. Analytical and Bioanalytical Chemistry, 2011, 401(7): 2123-2132. doi: 10.1007/s00216-011-5294-7
    [130] BAI X Y, LU S Y, XIE L, et al. A pilot study of metabolites of organophosphorus flame retardants in paired maternal urine and amniotic fluid samples: Potential exposure risks of tributyl phosphate to pregnant women [J]. Environmental Science. Processes & Impacts, 2019, 21(1): 124-132.
    [131] YA M, YU N, ZHANG Y, et al. Biomonitoring of organophosphate triesters and diesters in human blood in Jiangsu Province, eastern China: Occurrences, associations, and suspect screening of novel metabolites [J]. Environmental International, 2019, 131: 105056. doi: 10.1016/j.envint.2019.105056
    [132] SU G Y, CRUMP D, LETCHER R J, et al. Rapid in vitro metabolism of the flame retardant triphenyl phosphate and effects on cytotoxicity and mRNA expression in chicken embryonic hepatocytes [J]. Environmental Science & Technology, 2014, 48(22): 13511-13519.
    [133] GREAVES A K, SU G Y, LETCHER R J. Environmentally relevant organophosphate triesters in herring gulls: In vitro biotransformation and kinetics and diester metabolite formation using a hepatic microsomal assay [J]. Toxicology and Applied Pharmacology, 2016, 308: 59-65. doi: 10.1016/j.taap.2016.08.007
    [134] FARHAT A, CRUMP D, CHIU S, et al. In ovo effects of two organophosphate flame retardants—TCPP and TDCPP—on pipping success, development, mRNA expression, and thyroid hormone levels in chicken embryos [J]. Toxicological Sciences, 2013, 134(1): 92-102. doi: 10.1093/toxsci/kft100
    [135] WANG G W, DU Z K, CHEN H Y, et al. Tissue-specific accumulation, depuration, and transformation of triphenyl phosphate (TPHP) in adult zebrafish (Danio rerio) [J]. Environmental Science & Technology, 2016, 50(24): 13555-13564.
    [136] WANG G W, SHI H H, DU Z K, et al. Bioaccumulation mechanism of organophosphate esters in adult zebrafish (Danio rerio) [J]. Environmental Pollution, 2017, 229: 177-187. doi: 10.1016/j.envpol.2017.05.075
    [137] TANG B, POMA G, BASTIAENSEN M, et al. Bioconcentration and biotransformation of organophosphorus flame retardants (PFRs) in common carp (Cyprinus carpio) [J]. Environment International, 2019, 126: 512-522. doi: 10.1016/j.envint.2019.02.063
    [138] WANG G W, CHEN H Y, DU Z K, et al. In vivo metabolism of organophosphate flame retardants and distribution of their main metabolites in adult zebrafish [J]. The Science of the Total Environment, 2017, 590/591: 50-59. doi: 10.1016/j.scitotenv.2017.03.038
    [139] ASHAUER R, HINTERMEISTER A, O’CONNOR I, et al. Significance of xenobiotic metabolism for bioaccumulation kinetics of organic chemicals in Gammarus pulex [J]. Environmental Science & Technology, 2012, 46(6): 3498-3508.
  • 加载中
表( 5)
计量
  • 文章访问数:  8361
  • HTML全文浏览数:  8361
  • PDF下载数:  228
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-12-17
  • 刊出日期:  2021-08-27

有机磷酸酯污染现状及其生物富集和生物转化研究进展

    通讯作者: Tel:020-29119807,E-mail:yuyunjiang@scies.org
  • 1. 西安工程大学环境与化学工程学院,西安,710048
  • 2. 生态环境部华南环境科学研究所,国家环境保护环境污染健康风险评价重点实验室,广州,510655
  • 3. 中国科学院广州地球化学研究所,广州,510640
基金项目:
国家重点研发计划(2019YFC180342),国家自然科学基金(42007347)和中央级公益性科研院所基本科研业务专项(PM-zx703-202002-058)资助

摘要: 

有机磷酸酯(Organophosphate esters, OPEs)主要作为阻燃剂和塑化剂被广泛生产和使用。随着包括多溴联苯醚在内的溴代阻燃剂逐步受控,作为溴代阻燃剂主要代替品之一的OPEs产量大幅增长,OPEs环境问题日益引起人们的关注。本文从OPEs的理化性质着手,简要梳理了其在环境中的赋存状况。地表水中OPEs浓度大多为几百ng·L−1,磷酸三(2-氯异丙基)酯(TCPP)和磷酸三(2-丁氧基乙基)酯(TBEP)为主要检出物质;沉积物中OPEs浓度大多处于几十ng·g−1 dw(干重)水平,主要检出物质为磷酸三(2-乙基己基)酯(TEHP)和磷酸三苯酯(TPHP);在大气与土壤中OPEs以TCPP和磷酸三(2-氯乙基)酯(TCEP)为主,浓度多为几十ng·m−3和几十ng·g−1 dw。此外,本文重点针对OPEs在生物体内的富集和代谢转化情况进行了综述,水生生物中OPEs浓度大多处于几十ng·g−1 ww(湿重)水平,陆生生物中OPEs浓度大多处于几百ng·g−1 lw(脂重)水平,对于OPEs是否具有生物累积效应,相关的研究结果差异较大,OPEs在生物体内快速的代谢转化很可能是影响其生物富集作用的主要因素。最后,针对目前的研究现状,对存在的问题及后续的研究方向进行了讨论与展望。

English Abstract

  • 随着溴系阻燃剂在全球范围内的限制使用,作为其主要替代品之一的有机磷酸酯(organophosphate esters,OPEs)的生产和使用量大幅度增长[1-4]。OPEs主要作为阻燃剂、增塑剂和消泡剂,广泛用于电子产品、建筑材料、家具、纺织、塑料和食品包装等行业中[5]。我国2007年有机磷酸酯类物质的年产量接近7万t,并且以15%的速度逐年增长[6]。2011年,全球OPEs的消耗量为50万吨[7-8],预计到2018年消费量将达到105万t[9]。由于OPEs主要以物理添加而非化学键合方式加入到材料中[10-11],容易在产品的生产、使用、处置、回收过程中因挥发、磨损和浸出等原因,释放到各种环境介质中,并通过饮食摄入、呼吸吸入、皮肤接触等方式进入人体,造成潜在健康风险[12]

    根据取代基的不同,OPEs可以划分为含氯、烷基以及芳香基OPEs三大类化合物,不同OPEs的物理化学性质存在很大差异(表1),如磷酸三甲酯的辛醇-水分配系数(lg Kow)值为-0.65,而磷酸三辛酯的lg Kow值为10.6[13]。化合物的生物富集潜力与其物理化学性质紧密相关[7],研究显示,lg Kow值在7左右的卤代有机污染物更容易发生生物富集[14]。此外,OPEs的环境浓度水平、生物积累和放大能力及代谢能力也是影响OPEs在生物体内富集的主要因素[15]。目前关于OPEs是否存在生物富集和生物放大尚存在一定争议,相关的研究普遍认为OPEs生物富集能力较弱,这可能与其在生物体内容易快速代谢有关[16]

    生物转化是外源化合物进入生物体后的一个重要的代谢转化过程,对于外源化合物在生物体内的富集和清除以及毒性效应均有重要影响。现有研究结果表明,OPEs可以在生物体内发生快速代谢转化[17-18],反应路径主要包括Ⅰ相代谢磷酸酯氧脱烷基(DAPs)[19-20]、氧化羟基化(HO-OPEs)、氧化羧基化、氧化脱卤,以及Ⅱ相代谢谷胱甘肽结合、葡萄糖醛酸结合和硫酸结合等,形成多种代谢产物[12]。尽管目前已有大量的研究报道了不同环境介质中的OPEs浓度水平,并且已经证实OPEs具有内分泌干扰效应以及生殖毒性、发育毒性和神经毒性等,但目前还少有研究关注OPEs的生物富集与生物转化,对于OPEs与其代谢产物在生物体内的环境行为与归趋缺少系统的研究和总结。为此,本文梳理和综述了近年来国内外关于OPEs在环境中的赋存状况以及生物富集与生物转化的研究进展,对目前仍存在的问题及未来的研究关注方向进行了总结和展望。

  • 受城市化和工业化的影响,OPEs目前已在全球范围内的水体中广泛检出[21-22]。国内部分地表水中OPEs的浓度,如天津[23]、上海[24]和北京[25]地表水中OPEs的平均浓度分别为228.7、850、954 ng·L−1,大多处于几百ng·L−1的水平。而受人为影响较大的松花江[26],太湖[27]中OPEs平均浓度达到1171 ng·L−1和1363 ng·L−1。成都锦江[28]中OPEs的平均浓度为3747.6 ng·L−1,大幅高于国内其他地区河流,主要原因是其沿岸有数百排污口,日均污水排放量达数十万吨[29]。国外的相关研究也呈现类似的结果,欧洲多国地表水如法国[30]、德国[31]、意大利[32]、奥地利[21]地表水中OPEs大多处于几百ng·L−1的水平。在受人为活动影响较小的乡村地区的水体中OPEs的浓度相对较低,如对德国乡村地区[33]水体中浓度最高的OPEs是磷酸三(2-氯异丙基)酯(TCPP),其浓度范围为85—126 ng·L−1。而在高度城市化地区OPEs浓度相对较高,如西班牙纳隆河、阿尔加和贝索斯河[34]的3条河中OPEs浓度范围为7.6—7200 ng·L−1。目前报道的OPEs最高浓度在英国的亚尔河[35],浓度最高的污染物是TCPP,该污染物的平均浓度超过6000 ng·L−1,最大浓度可达26050 ng·L−1,亚尔河沿岸大量污水处理厂的排放很可能是OPEs的重要来源。

    由于海水的稀释作用,海水中的OPEs浓度大多低于河流。我国大连黄海沿岸[36]水体中OPEs的浓度范围为21.6—61.5 ng·L−1,与美国纽约州海滨海水[37]中的OPEs浓度(40.0—60.8 ng·L−1)处于同一水平。中国南海、日本东京湾[38]中OPEs的浓度范围为1.25—284 ng·L−1,这两个海域受周边工业化影响程度较高。值得注意的是,研究人员已在南极费尔德斯半岛[39]附近的海水中检出了OPEs,浓度范围从低于检出限(ND)到44.37 ng·L−1。随着全球变暖、气候变化和各地人为影响的加剧,有机磷酸酯释放并分布于全球各地[39]

    总体而言,不同地区水体中OPEs的组成存在一定差异,可能是由于城市化程度有所不同造成的。具体见表2,但大多以TCPP、磷酸三(2-丁氧基乙基)酯(TBEP)和磷酸三(2-氯乙基)酯(TCEP)的3种化合物为主。在欧洲[21]、澳大利亚[40]和美国[37, 41]的地表水中TCPP和TBEP的浓度相对较高,而在我国[23, 27]的地表水体中,除TCPP以外,TCEP的浓度也大多处于相对较高的水平。此外,对南极周边海域的研究发现OPEs的主要组分为磷酸三(2-乙基己基)酯(TEHP)和磷酸2-乙基己基二苯酯(EHDPHP)[39],与人口稠密地区的结果存在较大差异,这可能是研究站人为活动中OPEs的使用不同导致的结果。

  • 沉积物是环境中OPEs的主要蓄积库之一(表2)。日本早在1977—1979年就检测出沉积物中的磷酸三丁酯(TNBP)[42],20世纪80年代进一步发现沉积物中含TCEP[43]。我国近年来也逐步开展了沉积物中OPEs研究工作,太湖[44]、东江[45]、海南[46]近海岸沉积物中OPEs浓度范围均处在几十ng·g−1 dw(干重)的水平。渤海与黄海[47]表层沉积物中OPEs浓度范围为0.083—4.552 ng·g−1 dw。渤海和黄海的采样点距离海岸线较远,检出值较近岸降低1—2个数量级。国外,如荷兰西谢尔特河口[48]、奥地利[21]河流和北美五大湖[49]沉积物中OPEs平均浓度为几十ng·g−1 dw,与国内浓度水平相似。而欧洲萨瓦河、埃夫罗塔斯河和阿迪奇河[50]3条河沉积物中OPEs浓度范围为0.31—549 ng·g−1 dw,这3处主要受到农业废物和工业污染影响,检出值较高。Ma[51]评估了白令海至北冰洋中部的海洋沉积物中的OPEs浓度水平,发现∑OPEs随着纬度的增加而增加,表明OPEs通过大气转移到地表水,更进一步转移到深水和偏远海洋环境的沉积物中,从而被输送到北冰洋。沉积物中的OPEs组成与水体中不同,主要以TEHP和磷酸三苯酯(TPHP)为主,如在美国旧金山和我国太湖沉积物中以TEHP为主,我国珠三角地区以TPHP为主。这两种OPEs化合物的水溶性相对较低,更加倾向于吸附在有机质颗粒上,而非溶解于水中[21],表明OPEs的物理化学性质对其环境分布具有重要影响。

  • 现有的研究表明,OPEs主要分布在颗粒相而非气相中,因此近来的研究大多将颗粒相中的OPEs浓度作为其在空气中的总浓度[52]表2)。北京[53]室内空气中OPEs平均值浓度为5.2 ng·m−3。广州[54]室内空气和杭州[55]室内空气OPEs平均值浓度均在45 ng·m−3左右。北京检出值相较于国内其他两城市,低了1个数量级,是由于在监测点室内有使用空气净化器。挪威奥斯陆[56]、德国[57]及澳大利亚[58]室内空气OPEs平均浓度在44 ng·m−3左右。国内外室内空气中OPEs的浓度差异较小。

    无论是国内城市如北京、天津、石家庄[59]和上海[60],还是国外城市如加拿大多伦多[61],城市室外空气中OPEs浓度范围均在几ng·m−3水平。海洋上空大气中,对OPEs同样有检出。在地中海大气[62]中OPEs浓度范围为0.4—5.0 ng·m−3,西南黑海中测得OPEs浓度范围为2.0—6.0 ng·m−3。与城市空气中OPEs检出浓度处于同一数量级。

    现有的研究结果显示,室内空气中OPEs浓度普遍比室外空气浓度高1—3个数量级,表明OPEs主要从室内环境向室外环境释放。不论是在国内、国外,室内室外空气中TCPP检出率和浓度都较高,出现这种检出结果,可能是由于TCPP相对于TCEP毒性低,而在欧洲被作为工业代替;且TCPP产量占欧洲氯化有机磷酸酯的80%[7]

  • 关于土壤中OPEs浓度和分布的研究较为有限。国内[63]西部地区、中部地区和东南地区土壤中OPEs的中值浓度分别为29.7、35.8、57.4 ng·g−1 dw,OPEs的浓度与天津[64]、重庆[65]检出结果相似。美国[66]、德国[67]和巴西[68]土壤中OPEs的平均浓度分为14.3、18.9、67 ng·g−1 dw,其中美国与德国土壤OPEs检出较低,可能是由于土壤取自相较于城市中污染较小的校园。

    电子拆解区附近土壤中的OPEs浓度相较于城市土壤,升高1—3个数量级。河北[69]、广州[70]和天津[64]电子拆解区附近土壤OPEs的总浓度分别为398、460、829 ng·g−1 dw。越南[71]电子拆解区OPEs平均浓度为724 ng·g−1 dw。而高度污染的尼泊尔[72]加德满都土壤中OPEs平均浓度1830 ng·g−1 dw,主要受到交通、大型工业区和商业区影响,土壤中不同目标物检出值不同(表2),表明城市化地区和工业程度较高地区对这些化学品的使用模式不同。TCPP这类含氯OPEs在国内土壤中普遍检出率较高[63],这与地表水结果相似。尼泊尔[72]磷酸三甲酯(TMP)检出浓度最高,这受当地的交通环境、消费品中OPEs的使用量及工业区分布影响。国内电子拆解区主要污染物为TCEP和TBEP,而越南电子拆解区[71]TPHP检出浓度最高。可能是由于不同国家电子废弃物中OPEs使用种类之间的差异造成[65]

  • 关于灰尘中OPEs的研究主要集中在室内,室内灰尘被认为是人体OPEs暴露的主要来源。目前已在不同国家如中国[73-74]、韩国[75]、比利时[76]和西班牙[77]的室内灰尘中检测到多种OPEs(表2),检出浓度通常在几μg·g−1到几十μg·g−1之间。北京[78]、上海[73]和广州[74]室内灰尘中OPEs的中值浓度是2.38、11.5、9.2 μg·g−1。澳大利亚[58]、韩国[75]室内灰尘中OPEs的中值浓度为33.0 μg·g−1和31.3 μg·g−1。但尼泊尔[79]、菲律宾[80]检出浓度为13、0.53 μg·g−1

    工业化程度较高的国家(如美国[81]、韩国[75]、澳大利亚[58]、挪威[56]、希腊[75]等)OPEs检出浓度高于工业化程度较低的国家(如菲律宾[80]等)。与其他国家相比,我国室内灰尘OPEs的浓度处在中间水平。室内灰尘中TBEP和TCPP的检出率高、浓度高,其中TBEP主要添加于涂漆、橡胶产品以及地板抛光剂中,这可能是其释放于室内环境中,使得检出浓度高的原因。

    室外灰尘中OPEs研究较少,中国重庆[65]、北京[82]、苏州[83]和大连[84]的室外灰尘的平均浓度分别为0.794、1.861、0.915、2.02 μg·g−1,与室内灰尘相比,室外灰尘中OPEs检出浓度较低。TCPP在不同地区的检出率较高。室外灰尘中OPEs的组成会受当地的生产、使用阻燃剂的种类和复杂的环境条件影响[83]

  • 尽管已有大量研究报道了各类环境介质中的OPEs,但对生物体中OPEs的研究仍相对较少,且大多集中在水生生物。近来有研究指出,部分生物体内OPEs的浓度高于其环境背景值[13],表明OPEs可能具有一定的生物累积效应。同时也有研究结果显示,OPEs在生物体内不存在明显的生物放大作用,甚至存在生物稀释现象,这可能与研究物种以及不同OPEs之间结构和性质的差异有关。

  • 鱼类等水生生物能够通过水、沉积物以及食物的摄入富集环境中的污染物,是研究污染物生物蓄积的有效指示物[88]。部分水生生物体内有机磷酸酯的浓度见(表3)。珠江三角洲[89]主要河流中3种鱼,鲮鱼(Cirrhinus molitorella)、罗非鱼(Tilapia nilotica)和清道夫(Hypostomus plecostomus)体内OPEs浓度范围为2.3—30 ng·g−1 ww(湿重)。广东[90]清远电子拆解厂附近的鲤鱼(Cyprinus carpio)和水蛇(water snake Enhydris chinensis)中OPEs浓度为(14±2.4) ng·g−1 ww和(1.9±1.2) ng·g−1 ww。太湖[91]中多种鱼OPEs浓度范围为(9.8±6.2)ng·g−1 ww。韩国洛东河[92]鲫鱼(Carassius auratus)肌肉中9种OPEs浓度范围为4.27—7.75 ng·g−1 ww。加拿大[93]湖泊鱼体中OPEs浓度范围为0.07—9.8 ng·g−1 ww。对鲫鱼和泥鳅((Misgurnus anguillicaudatus[16]的不同组织,如肌肉、肝脏、卵巢、肠道和肾脏进行OPEs检测,肝脏中OPEs相较于肠道和肾脏检出较高,鲫鱼和泥鳅肝脏中OPEs浓度分别为576 ng·g−1 lw和861 ng·g−1 lw。珠江三角洲水生生物中OPEs检出浓度较高,可能受到城市化及周边地区的工业化程度高影响。

    我国莱州湾[94]沿岸鱼体中OPEs的浓度范围为6.6—107 ng·g−1 dw,肝脏和肌肉的生物累积因子(BAF)分别为2.8—4.4和2.3—3.8,表明OPEs具有生物富集潜力。太湖[95]竹山湾水生食物网中,EHDPHP的营养放大因子(TMF)为3.61,具有放大作用,其他目标物TCEP、TCPP、TDCPP、TPHP、磷酸三异丁酯(TiBP)和磷酸三甲酯(TMP)没有得到有效的TMF,不具有放大作用。菲律宾马尼拉湾[96]鱼类样品中TPHP的浓度为1100 ng·g−1 lw(脂重),通过对稳定氮同位素的分析发现,不同鱼类的δ15N值与TPHP浓度之间存在显著相关,表明TPHP具有营养级放大效应。在荷兰西部谢尔德河口[48]的食物网中,底栖动物如杜父鱼(sculpin)、虾虎鱼(goby)和沙蚕(lugworm)中浓度较高的两种OPEs为TBEP和TCPP,浓度分别为17 ng·g−1 ww和4.6 ng·g−1 ww,高于浮游植物及以浮游植物为食的鱼类中的浓度。TBEP和TCPP生物放大因子(BMF)分别为3.5和2.2,表明这两种OPEs在底栖食物网中具有生物放大作用。

    广东清远[90]电子拆解区附近水塘中水蛇和鲤鱼的OPEs浓度分别为12 ng·g−1 ww和14 ng·g−1 ww,检测发现TCEP、TCIPP、TNBP、TDCIPP、TPHP、EHDPHP、TEHP、磷酸三乙酯(TEP)和磷酸三甲酚酯(TPTP),这9种OPEs的BMF均小于1,表明OPEs在该食物链中表现出生物稀释作用。同样广东[97]清远虾中检测到的OPEs浓度范围为1.7—47 ng·g−1 ww,其中TNBP和TPHP的TMF均小于1,分别为0.57和0.62,表现出营养级稀释现象。对于OPEs是否具有生物蓄积效应,现有研究结果仍没有一致性结论。不同OPEs的物理化学性质、生物可利用度的差异,以及不同物种代谢能力的差异都可能对生物累积的结果产生影响。

  • 相比于水生生物,OPEs在陆生生物体内富集的研究就更为缺乏,目前主要集中于鸟类和哺乳动物。陆生生物体内有机磷酸酯的浓度见表4

    鸟类多处于食物链的较高位置,容易富集环境中的污染物,因而成为研究区域环境污染状况的重要生物监测工具之一。研究人员在挪威[98]白尾鹰雏鸟(Haliaeetus albicilla)的羽毛中检出了OPEs,其中TCEP和TCPP的检出浓度较高,分别为110 ng·g−1dw和91 ng·g−1 dw。加拿大[99]东部极地地区游隼(Falco peregrinus)体内,TBEP和TCPP的比例较高,浓度分别为0—7.5 ng·g−1 ww和0.1—5.5 ng·g−1 ww。鸟蛋中的OPEs也表现出类似的结果,如澳大利亚昆士兰州[100]鸡蛋中OPEs浓度为1.0 ng·g−1 ww.

    休伦湖[101]银鸥蛋(Larus argentatus)中TCPP、TCEP和TBEP检出率较高。美国劳伦斯湖[99, 102]的银鸥卵中被检测到的目标物浓度范围为0.31—2.14 ng·g−1 ww,TNBP和TCEP的检出频率最高。美国五大湖[103]密歇根聚集地中银鸥卵中OPEs的浓度范围,从ND—2.89 ng·g−1 ww,其中TBEP检出率最高。广东清远[104]藏香鸡(Gallus gallus domesticus)和金定鸭(Anas platyrhynchos domesticus)体内TNBP、TBEP和TPHP为主要组分,其浓度分别为11.7—281、48.1—266、ND—209 ng·g−1 lw。重庆某农业区[65]鸡体内的OPEs,浓度为676 ng·g−1 lw。广东清远[105]电子废弃物回收区域鸡蛋中OPEs浓度范围分别为0.48—15.8 ng·g−1 ww,其中TCEP浓度最高。对中国西南长江上游[106]地区的黑冠夜鹭卵(Nycticorax nycticorax)、小白鹭卵(Egretta garzetta)、中国池鹭卵((Ardeola bacchus)和牛白鹭卵(Bubulcus ibis)中OPEs进行检测,平均浓度分别为51、38、34、47 ng·g−1 ww。与国内外其他地区OPEs检出相比,检出浓度较高,可能归因于长江周围的工业程度高,鸟类摄取的食物种类多样化。

    广州清远电子废物拆解区[107]中黑斑蛙(Rana nigromaculata)和牛蛙(Rana catesbeiana)肌肉中,OPEs浓度范围分别为0.62—4.9 ng·g−1 ww和1.7—15 ng·g−1 ww,且同一采样区域中几种野生昆虫物种[108]中的OPEs浓度范围为 54—773 ng·g−1 ww。挪威斯瓦尔巴特群岛[109]北极狐(Vulpes lagopus)体内OPEs进行检测,发现OPEs的检出率较低,仅为17%。北极狐肝脏中TBEP浓度最高,浓度为(955±294)ng·g−1 lw,可能受到海洋垃圾暴露影响。可以看出,OPEs在环境介质中的浓度较高,但在生物体中检出浓度却大多处于比较低的水平,这可能是由于OPEs在生物体内快速代谢转化[110]

    目前关于OPEs在陆生生物中的研究仍十分匮乏,目前大多数的研究结果显示,OPEs在陆生生物中的浓度也处于相对较低的水平,这与对水生生物的研究结果相似。表明OPEs在不同类型的生物体内均能够发生快速的代谢转化。北美五大湖[110]银鸥的脂肪中OPEs浓度为(32.3±9.8)ng·g−1 ww,而在肝脏中的检出低于检出限。暴露实验里小鼠[111]中OPEs主要富集在肾脏上。OPEs在不同物种的组织分布之间也存在着差异。鸟类[111]体内OPEs可能存在一定的亲脂性,而水生生物[16]中的结果却有所不同。这可能是由于OPEs的物理化学性质差异较大,导致OPEs在水生和陆生生物中不同的暴露、富集和清除模式,进而导致OPEs在水生和陆生生物中不同的迁移转化规律,这一点目前尚未见有相关的研究报道。

  • 环境中的OPEs可以通过饮食、呼吸、皮肤接触及灰尘摄入等方式进入人体[112-113],目前国内外已有较多关于人体暴露的文献报道,在人体尿液[114-115]、血液[116]、母乳[117-119]、胎盘[120]、头发[121-122]等样品中均检测到OPEs。澳大利亚[114]昆士兰州0—5 岁儿童的尿液中检出部分OPEs,主要包括磷酸三(1,3-二氯-2-丙基)酯(TDCPP)、TCEP、TEHP、TMP和EHDPHP等目标化合物,最高浓度分别为0.069、0.90、0.61、0.020、1.4 ng·mL−1。瑞典[119]城镇居民母乳中OPEs的浓度范围为46—108 ng·g−1 lw。美国[117]母乳中OPEs的浓度范围为0.67—7.83 ng·mL−1。不同地区居民体内OPEs的浓度存在一定差异,可能与OPEs在当地的使用量有关。这个结果同样体现于一项日本、菲律宾和越南居民母乳的研究中,菲律宾居民母乳样品中OPEs的浓度(70 ng·g−1 lw)显著高于日本(22 ng·g−1 lw)和越南[118](10 ng·g−1 lw),同时菲律宾含有OPEs的产品的使用量也高于日本和越南。现有的研究结果显示,OPEs在不同地区人群体内的组成情况也存在较大差异。瑞典[119]居民母乳中TCPP和TNBP的比例相对较高;美国[117]居民母乳中OPEs以TBEP为主,其次是TiBP和TNBP;而亚洲地区TCEP的占比则相对较高,如日本、菲律宾和越南[118]居民母乳中TCEP和TPHP两种化合物的浓度相对较高,在这3个国家60%以上的母乳中均能够检出。而我国东部地区[120]电子拆解区人群胎盘中TCEP的浓度同样最高,浓度中值数达到142 ng·g−1 lw,其次是TBEP和TPHP。不同地区居民体内OPEs浓度和组成的差异可能是由于不同国家或地区使用不同类型的OPEs工业品所导致。

  • 由于OPEs能够在生物体内发生快速代谢转化[16],近年来研究人员开始更多关注生物体内OPEs的代谢物,并取得了一系列研究进展。目前鉴定出的OPEs代谢物(mOPEs)主要为DAPs和HO-OPEs[124]。Van den Eede等[124]采用人体肝微粒体对TBEP、TPHP、TCEP、TCPP和TDCPP进行体外代谢研究,通过液相色谱-飞行时间质谱筛查和鉴定可能的Ⅰ相和Ⅱ相代谢物,并根据分子式,同位素模式和质谱图的质量准确度初步鉴定得到TBEP的O-脱烷基化和羟基化代谢产物;TPHP的O-脱芳基转化二酯和羟基化代谢物;TCPP的氧化脱卤产物;以及TDCPP的二酯代谢产物。同时发现TCEP很难代谢转化为二酯和氧化脱卤产物。对于Ⅱ相代谢,Ⅰ相代谢物是葡萄糖醛酸化和硫酸化的底物。其中醚裂解和碳羟基化的产物,如TBEP8和TPRP4、TNBP4、TBEP7,可进一步与葡萄糖醛酸联合,得到Ⅱ相代谢物TBEP5和TPRP3、TNBP3、TBEP6。部分OPEs与其Ⅰ相代谢产物的对应关系见表5

    近年来部分研究结果显示,生物体内mOPEs的含量高于其母体化合物。如Stubbings等[123]在白头海雕蛋中检出了高浓度的mOPEs,Li等[125]对鸡蛋的研究同样发现mOPEs浓度大多高于其母体化合物。DAPs目前已被认为是评估OPEs暴露的重要生物标志物[126-127]。美国[128]和澳大利亚[114]的人体尿液样品中均检出较高浓度mOPEs,并且尿液中mOPEs浓度与室内灰尘中的OPEs浓度具有较强相关性,表明暴露于人体中的OPEs经代谢转化后,由尿液排出体外。总体而言,mOPEs的亲水性高于OPEs,更易于被排出体外[129]。我国人群研究结果显示,广东[130]电子拆解区域怀孕女性尿液中mOPEs浓度的几何平均值为6.1 ng·mL−1,磷酸二正丁酯(DNBP)浓度最高,浓度为2.9 ng·mL−1,其次是磷酸二苯酯(DPHP)(0.94 ng·mL−1)和双(1,3-二氯-2-丙基)磷酸酯(BDCIPP)(0.27 ng·mL−1),表明TNBP的暴露水平较高;Ya等[131]对江苏省成人尿液的研究发现,磷酸双(2-乙基己基)酯(DEHP)、DPHP和DNBP这3种mOPEs的检出率大于60%,其中DEHP浓度最高,中值浓度为1.2 ng·mL−1。从多元回归分析中观察到,DPHP与TPHP以及DPHP与EHDPHP之间的相关性增加,表明DPHP可能源自TPHP和EHDPHP的代谢。

    OPEs生物转化研究主要包括体外代谢和体内代谢两个方面。Su等[132]发现TPHP在鸡胚肝细胞中被快速代谢,36 h后仅剩余原始剂量的0.2%;Greaves等[133]使用鲱鸥肝微粒体研究OPEs体外代谢,结果显示在100 min孵育期内,TNBP代谢速度最快,耗尽率为(73±4)pmol·(min·mg)−1蛋白质,其次是TBEP、TCPP、TPHP和TDCPP;Sasaki等[18]采用大鼠肝微粒体对OPEs进行体外代谢研究,结果同样显示TNBP代谢效率最快,其次是TPHP和TDCPP,表明不同OPEs生物转化效率存在一定差异。仅有的几项体内代谢研究表明,OPEs在生物体内快速代谢转化为对应的二酯和羟基化代谢产物。Farhat等[134]将TCPP和TDCPP注射到鸡蛋中并进行孵化实验,结果发现在孵化第5 d仍可检出超出92%的暴露剂量,但在孵化第19 d蛋内目标物浓度以不足暴露量的1%。

    Wang等[135]对斑马鱼进行TPHP暴露研究,在暴露期内肠道和肝脏均能检出TPHP,而其主要代谢产物DPHP浓度达到母体化合物的3—3.5倍。经过3 d净化期后,鱼体内TPHP和DPHP浓度均大幅下降,同时水中DPHP浓度明显升高,表明TPHP被快速的代谢清除出体外。Wang等[136]进一步将成年斑马鱼暴露于多种OPEs中,发现DNBP、双(1,3-二氯-2-丙基)磷酸酯(BDCIPP)、DPHP为主要代谢产物。在肝脏和肠道中均有检出,在暴露期内代谢产物浓度为其母体化合物的1.2—2倍。但在3 d净化期结束后,鱼体内代谢产物和母体化合物检出降低。Tang等[137]对鲤鱼暴露环境相关浓度的多种OPEs,在暴露期内的肠道和肝脏中检出了BDCIPP、DPHP等代谢产物。经3 d净化期后,鱼体组织中未检测到代谢产物,表明OPEs被鱼体快递的代谢清除。上述研究结果均表明鱼类肝胆系统对OPEs的代谢和排泄具有重要作用[138]。生物转化过程会影响鱼类体内疏水亲水性有机化学物质的积累程度[139],代谢产物可能也更具亲水性,因此比母体化合物更快地从组织中代谢。

  • 作为一类新型的有机磷阻燃剂,环境中OPEs的浓度随着生产量和使用量的增加而逐年增大。OPEs的生物体研究主要集中于人体和水生生物的暴露水平检测,对水生生物的生物富集和生物代谢有较为系统的研究,但是陆生生物的研究在各方面还较为匮乏。总结相关研究进展,建议未来OPEs研究重点考虑以下几个方面:(1)通过体内或体外实验研究OPEs在生物体内的代谢转化途径和潜在代谢产物;(2)研究OPEs在陆生生物中的生物富集及其与水生生物的异同;(3)OPEs代谢产物的生物毒性研究。

参考文献 (139)

目录

/

返回文章
返回