-
随着溴系阻燃剂在全球范围内的限制使用,作为其主要替代品之一的有机磷酸酯(organophosphate esters,OPEs)的生产和使用量大幅度增长[1-4]。OPEs主要作为阻燃剂、增塑剂和消泡剂,广泛用于电子产品、建筑材料、家具、纺织、塑料和食品包装等行业中[5]。我国2007年有机磷酸酯类物质的年产量接近7万t,并且以15%的速度逐年增长[6]。2011年,全球OPEs的消耗量为50万吨[7-8],预计到2018年消费量将达到105万t[9]。由于OPEs主要以物理添加而非化学键合方式加入到材料中[10-11],容易在产品的生产、使用、处置、回收过程中因挥发、磨损和浸出等原因,释放到各种环境介质中,并通过饮食摄入、呼吸吸入、皮肤接触等方式进入人体,造成潜在健康风险[12]。
根据取代基的不同,OPEs可以划分为含氯、烷基以及芳香基OPEs三大类化合物,不同OPEs的物理化学性质存在很大差异(表1),如磷酸三甲酯的辛醇-水分配系数(lg Kow)值为-0.65,而磷酸三辛酯的lg Kow值为10.6[13]。化合物的生物富集潜力与其物理化学性质紧密相关[7],研究显示,lg Kow值在7左右的卤代有机污染物更容易发生生物富集[14]。此外,OPEs的环境浓度水平、生物积累和放大能力及代谢能力也是影响OPEs在生物体内富集的主要因素[15]。目前关于OPEs是否存在生物富集和生物放大尚存在一定争议,相关的研究普遍认为OPEs生物富集能力较弱,这可能与其在生物体内容易快速代谢有关[16]。
生物转化是外源化合物进入生物体后的一个重要的代谢转化过程,对于外源化合物在生物体内的富集和清除以及毒性效应均有重要影响。现有研究结果表明,OPEs可以在生物体内发生快速代谢转化[17-18],反应路径主要包括Ⅰ相代谢磷酸酯氧脱烷基(DAPs)[19-20]、氧化羟基化(HO-OPEs)、氧化羧基化、氧化脱卤,以及Ⅱ相代谢谷胱甘肽结合、葡萄糖醛酸结合和硫酸结合等,形成多种代谢产物[12]。尽管目前已有大量的研究报道了不同环境介质中的OPEs浓度水平,并且已经证实OPEs具有内分泌干扰效应以及生殖毒性、发育毒性和神经毒性等,但目前还少有研究关注OPEs的生物富集与生物转化,对于OPEs与其代谢产物在生物体内的环境行为与归趋缺少系统的研究和总结。为此,本文梳理和综述了近年来国内外关于OPEs在环境中的赋存状况以及生物富集与生物转化的研究进展,对目前仍存在的问题及未来的研究关注方向进行了总结和展望。
有机磷酸酯污染现状及其生物富集和生物转化研究进展
Pollution status, bioaccumulation and biotransformation of organophosphate esters: A review
-
摘要:
有机磷酸酯(Organophosphate esters, OPEs)主要作为阻燃剂和塑化剂被广泛生产和使用。随着包括多溴联苯醚在内的溴代阻燃剂逐步受控,作为溴代阻燃剂主要代替品之一的OPEs产量大幅增长,OPEs环境问题日益引起人们的关注。本文从OPEs的理化性质着手,简要梳理了其在环境中的赋存状况。地表水中OPEs浓度大多为几百ng·L−1,磷酸三(2-氯异丙基)酯(TCPP)和磷酸三(2-丁氧基乙基)酯(TBEP)为主要检出物质;沉积物中OPEs浓度大多处于几十ng·g−1 dw(干重)水平,主要检出物质为磷酸三(2-乙基己基)酯(TEHP)和磷酸三苯酯(TPHP);在大气与土壤中OPEs以TCPP和磷酸三(2-氯乙基)酯(TCEP)为主,浓度多为几十ng·m−3和几十ng·g−1 dw。此外,本文重点针对OPEs在生物体内的富集和代谢转化情况进行了综述,水生生物中OPEs浓度大多处于几十ng·g−1 ww(湿重)水平,陆生生物中OPEs浓度大多处于几百ng·g−1 lw(脂重)水平,对于OPEs是否具有生物累积效应,相关的研究结果差异较大,OPEs在生物体内快速的代谢转化很可能是影响其生物富集作用的主要因素。最后,针对目前的研究现状,对存在的问题及后续的研究方向进行了讨论与展望。
Abstract:Organophosphate esters (OPEs) have been widely used as flame retardants and plasticizers. With the restriction on brominated flame retardants including PBDEs, the production and consumption of the main alternatives, OPEs have grown substantially in recent years, which has raised increasing environmental concerns. This review commences on the physic-chemical properties of OPEs, and summarizes the occurrence of OPEs in environment. The concentrations of OPEs in surface water were mostly at the level of several hundred ng·L−1, tris (2-chloroisopropyl) phosphate (TCPP) and tributoxyethyl phosphate (TBEP) were the abundant substance; the concentration of OPEs in sediments were mostly tens of ng·g−1 dw, and the main detected substances were tris (2-ethylhexyl) phosphate (TEHP) and triphenyl phosphate (TPHP). In the atmosphere and soil, the concentrations of OPEs were mostly tens of ng·m−3 and tens of ng·g−1 dw, the main detected substance was TCPP and tris (2-chloroethyl) phosphate (TCEP). The review emphasized on bioaccumulation and biotransformation of OPEs in biota. The concentrations of OPEs in aquatic organisms were mostly at the level of several tens ng·g−1 ww, and in terrestrial organisms the concentrations of OPEs were mostly at the level of several hundred ng·g−1 lw. Inconsistent results were observed in bioaccumulation of OPEs in biota, and rapid metabolic transformation of OPEs in organisms was likely to be the main factor for the variation. Based on the current research progress, the existing problems and prospects for future studies are also discussed.
-
Key words:
- organophosphate esters (OPEs) /
- metabolites /
- bioaccumulation /
- biotransformation
-
表 1 有机磷酸酯名称及理化性质
Table 1. Full name, abbreviation, and physic-chemical properties of OPEs
中文全称
Chinese name缩写
AbbreviationCAS号 沸点/℃ 熔点/℃ 正辛醇-
水分配
系数(lg KOW)25 ℃时蒸
气压/mm Hg25 ℃时
亨利常数/
(atm·m3·mol−1)25 ℃时水中
溶解度/
(mg·L−1)磷酸三(2-氯乙基)酯 TCEP 115-96-8 351 −55 1.44 1.1×10−4 3.3×10−6 7.0×103 磷酸三(2-氯异丙基)酯 TCPP 13674−84-5 359 72 2.59 0.75 6.0×10−8 1.6×103 磷酸三(1,3-二氯-2-丙基)酯 TDCPP 13674−87-8 457 88 3.8 7.4×10−8 2.6×10−9 1.5 磷酸三(2-丁氧基乙基)酯 TBEP 78-51-3 414 −70 3.75 2.1×10−6 1.2×10−11 1.2×103 磷酸三丁酯 TNBP 126-73-8 289 −80 4.00 1.5×10−7 1.5×10−7 280 磷酸三异丁酯 TiBP 126-71-6 264 16 3.6 1.3×10−2 2.8×10−4 3.72 磷酸三苯酯 TPHP 115-86-6 370 4 4.59 1.2×10−6 3.3×10−6 1.9 磷酸三(2-乙基己基)酯 TEHP 78-42-2 220 87 9.49 1.1×10−3 9.6×10−5 0.6 磷酸2-乙基己基二苯酯 EHDPHP 1241−94-7 375 −54 5.73 3.3×10−5 — 1.9 磷酸三甲酯 TMP 512-56-1 197 −10 −0.65 5.6×10−3 2.5×10−7 3.0×103 磷酸三乙酯 TEP 78-40-0 216 −56 0.80 0.29 3.5×10−6 5.0×105 表 2 环境介质中OPEs的浓度
Table 2. Concentrations of OPEs in environmental matrix
地点
SitesTCEP TCPP TDCPP TNBP EHDPHP TEHP TPHP TBEP TiBP ∑OPEs 浓度范围
Concentration
Range数据
来源
Ref地表水
(平均值)/
(ng·L−1)中国海河 53.1 76.6 0.74 — 0.88 — 1.16 32.2 — 228.7 23.9—824.7 [23] 中国上海 67—865 124—523 ND—45 12—64 — — 2—48 16—101 11—69 850.2 340—1688.7 [24] 中国北京 219 291 46.3 19.6 0.38 0.91 4.49 116 — 954 3.24—10945 [25] 中国太湖 1197 11.3 20.6 7.1 — ND ND—1.8 4.2 13.4 1363 313—2700 [27] 中国锦江 27—273 35—143 ND 36—85 — 30—299 47—164 274—10186 — 3747 689—10623 [28] 中国40条河 80.2 186 4.3 6.3 — 0.4 1 4.2 13.4 300 9.1—1549 [85] 中国松花江 520 130 10 230 25 — 15 31 — 1171 — [26] 德国易北河 81 126 155 23 — — — — 73 627 — [31] 美国 7—300 46—2900 14—450 7—43 0.4—2.3 0.4—11 41—360 24—1000 0.2—3.2 — 170—5100 [41] 美国 14.6 74.6 21.2 — — 1.06 6.9 — — 191 37.2—510 [37] 奥地利 23 43 7 110 — ND 6 52 — — ND—500 [21] 沉积物
(平均值)/
(ng·g−1 dw)中国太湖 0.6—3.17 ND—2.27 ND—5.54 — — — ND—2.65 1.0—5.0 — 7.8 3.4—14.2 [44] 中国东湖 2.57 14.04 2.29 — — — — — — 25.4 1.5—86.2 [45] 中国河流 1.18 1.59 0.29 1.2 0.4 1.59 0.48 — — 19.1 12.2—25.9 [46] 中国近海岸 1.62 3.28 0.55 1.04 0.48 0.85 0.51 — — 16.4 ND—60.0 [46] 奥地利 160 1300 ND 15 — 160 160 43 8.7 — — [21] 美国 0.03—0.1 0.3—1.6 0.7—2.0 0.3—1.2 0.1—1.5 2.3—20 0.4—7.5 0.5—4.8 — — 9.5—33 [41] 荷兰 0.5 3.6 0.6 — 0.2 1.5 6 — 6.9 — 0.1—19.6 [48] 希腊 ND—2.3 Nq—7.6 ND—2.96 ND—5.5 ND—6.4 ND—4.7 ND—0.6 — ND—3.4 10.4 0.31—31.0 [50] 意大利 0.3—3.6 0.5—53.7 Nq—6.8 0.1—42.6 4.3—288 Nq—35.1 Nq—9.7 — Nq—10 82.6 11.5—549 [50] 大气
(中值)/
(ng·m−3)室内 中国北京 0.17 3.8 ND 0.17 0.008 ND 0.034 0.003 0.15 4.7 1.0—20 [53] 中国杭州 3.11 7.76 0.63 0.17 0.35 0.84 1.41 0.27 — 17.24 5.0—147.7 [55] 挪威 3 128 ND 14 ND — 1 0.598 — 163 — [56] 德国 ND 10.77 0.36 2.87 — ND — ND 7.44 40.2 3.3—751 [57] 澳大利亚 2.6 48 ND 1.6 0.27 0.013 0.43 0.089 — 44 7.2—760 [58] 室外 中国广州 0.174 1.059 — 0.237 0.073 0.111 0.298 ND — 2.854 — [86] 中国北京 0.202 2.325 0.056 0.111 — — 0.165 — — 2.999 — [87] 加拿大 0.608 0.575 0.097 — 0.092 — 0.7 — — 2.64 — [61] 德国 ND 1.49 ND 0.13 — ND — ND 1.51 5.13 — [57] 美国 0.373 0.591 0.219 0.259 0.172 0.038 0.493 0.168 0.261 3.88 — [66] 土壤
(平均值)/
(ng·g−1 dw)中国重庆 11.3 3.3 5 3.5 4.2 3.6 4.8 — — 77.4 10.1—315 [65] 中国广州 ND—110 ND—14 ND—50 12—46 1—40 1—39 2—9 — — 460 25—1730 [70] 中国广州 30—140 1—16 5—91 10—210 6—40 4—29 5—46 — — 230 110—500 [70] 土壤
(平均值)/
(ng·g−1 dw)中国天津 2.03 8.86 3.89 3.07 1.57 5.62 3 — 2.45 65.2 37.7—156 [64] 中国天津 114 444 42.1 1.14 1.75 4.51 100 — 4.49 829 122—2100 [64] 中国河北 92 21 — 22 11 — 26 200 47 398 39—1250 [69] 尼泊尔 19.8 125 21.2 18.7 37.9 92.4 12.9 — — 1830 64.7—27500 [72] 越南 4.0 19 21 — 24 — 620 — — 724 13—3430 [71] 灰尘
(中值)/
(μg·g−1)室内灰尘 中国上海 1.0 1.6 0.7 0.3 0.9 1.4 0.9 2.0 — 11.5 8.0—165.5 [73] 中国广州 0.41 0.62 3.23 0.11 1.02 0.77 0.61 0.4 — 9.2 2.06—19.95 [74] 中国大陆 0.24 0.69 0.12 0.053 0.037 0.147 0.089 0.03 0.009 2.38 0.292—9.54 [78] 韩国 2.49 0.722 0.079 0.13 0.132 0.091 0.524 23.3 0.028 31.3 3.09—249 [75] 澳大利亚 0.66 6.4 0.92 ND 0.88 ND 0.74 10 — 40.0 7.4—880- [58] 美国 2.7 2.2 2.1 0.08 0.56 0.2 — 11 0.08 19.24 — [81] 希腊 0.335 0.59 0.667 0.067 0.09 0.069 0.544 2.87 0.041 7.14 1.69—90.2 [75] 尼泊尔 0.018 0.026 0.001 0.018 0.026 0.081 0.017 — — 13 0.203—240 [79] 挪威 0.435 5.241 1.13 ND 0.617 0.71 1.228 6.796 — 33.1 — [56] 室外灰尘 中国重庆 0.205 0.07 0.05 0.025 0.032 0.794 0.069 0.227 — 0.794 0.348—1369 [65] 中国北京 0.274 0.384 0.037 0.025 0.022 0.005 0.065 0.073 0.071 0.933 1.315—2.407 [82] 中国大连 0.05 0.32 0.034 0.082 0.06 0.55 0.096 0.109 — 1.62 0.3—7.48 [84] ND., 未检出;—., 无数据;Nq., 未定量。ND., not detected; —., no data; Nq., not quantifiable. 表 3 水生生物体内有机磷酸酯的浓度(平均浓度±标准偏差,ng·g−1)
Table 3. Concentrations of OPEs in Aquatic organisms(mean±sd, ng·g−1)
物种
Species地点
SitesTCEP TCPP TDCPP TNBP EHDPHP TEHP TPHP TBEP 数据来源
Ref脂眼凹肩鲹
S. crumenthalmops菲律宾 — — — 4.7±4.1 1.8±3.2 23±20 1.3±2.2 0.18±0.31 [96] 短钻嘴鱼
Gerres erythrourus菲律宾 — — — 64±39 38±33 160±150 ND 34±29 [96] 沙尖鱼
S. sihama菲律宾 — — — 420±120 180±32 1000±2.1 ND 7.9±4.3 [96] 水蛇
Enhydris chinensis中国 0.046±0.032 0.31±0.17 0.32±0.78 0.79±0.81 ND 0.014±0.011 0.23±0.11 — [90] 鲤鱼
Cyprinus carpio中国 0.21±0.10 3.1±0.48 0.24±0.21 3.0±1.4 0.24±0.32 0.13±0.045 6.2±1.8 — [90] 鲫鱼
Carassius auratus韩国 0.688—1.06 0.25—0.512 ND 0.848—1.52 — ND—0.586 ND — [92] 鲫鱼
Carassius auratus韩国 0.53—1.03 0.262—0.739 ND 1.31—4.32 — ND ND—0.798 — [92] 鲮鱼
Cirrhinus molitorella中国 0.81±0.17 0.72±0.12 ND 0.19±0.02 0.05±0.01 2.1±0.01 0.15±0.06 — [89] 罗非鱼
Tilapia nilotica中国 1.0±0.09 0.66±0.14 ND 0.23±0.11 0.07±0.03 9.0±2.9 0.20±0.16 — [89] 清道夫
Hypostomus plecostomus中国 1.5±0.47 1.6±0.50 0.04±0.03 0.18±0.14 0.05±0.05 4.4±0.55 0.36±0.32 — [89] 胡子鲶、白鲩
Claris fuscus、
Ctenopharyngodon idellus中国 82.7—4692 — — 43.9—46 ND—1.8 ND—3.61 ND—45.7 164—8842 [104] ND., 未检出;—., 无数据.
ND., not detected;—., no data.表 4 陆生生物体内有机磷酸酯的浓度(浓度范围,ng·g−1)
Table 4. Concentrations of OPEs in Terrestrial organisms(Concentration range,ng·g−1)
物种
Species地点
SitesTCEP TCPP TNBP TDCPP EHDPHP TEHP TPHP TBEP 数据来源
Ref禽类 中国 33.7—16.2 3.89—21.4 11.7—281 — ND—21.6 ND—13.9 ND—209 48.1—266 [104] 白尾鹰羽毛Haliaeetus albicilla 挪威 14—3000 14—220 ND 0.95—21 5.4—25 — 5.9—250 3.1—22 [98] 北极狐
Vulpes lagopus挪威 <0.2—.8 <1.3—15 — <0.1—89 <0.3—1 4.76±2.2 <0.—1.3 955 ±294 [109] 黑冠夜鹭卵Nycticorax nycticorax 中国 <5.0—14.5 <0.2—25.7 1.04—39.0 <4.0—11.5 <0.2 <5.0—31.0 1.32—34.1 <0.2—40.3 [106] 小白鹭卵Egretta garzetta 中国 <5.0—8.92 0.83—8.39 3.28—38.2 <4.0 <0.2 <5.0—7.22 1.69—5.9 <0.2—0.4 [106] 中国池鹭卵Ardeola bacchus 中国 <5.0—6.44 <0.2—4.10 3.14—26.7 <4.0 <0.2 <5.0—7.49 1.40—2.58 <0.2—0.3 [106] 牛白鹭卵
Bubulcus ibis中国 5.6 10.15 6.55 <4.0 <0.2 8.39 3.12 <0.2 [106] 黑斑蛙
Rana nigromaculata中国 0.93±0.53 0.8±0.56 0.17±0.13 0.043±0.066 0.14±0.13 0.076±0.046 0.073±0.049 0.017±0.17 [107] 牛蛙
Rana catesbeiana中国 6.6±4.6 0.41±0.16 0.13±0.03 0.11±0.06 0.34±0.18 0.07±0.03 0.39±0.17 0.03±0.02 [107] ND., 未检出;—., 无数据.
ND., not detected;—., no data.表 5 有机磷酸酯及其I相对应代谢产物
Table 5. OPEs and their phrase I respective metabolites
目标化合物缩写
Parent compound abbreviation物种
Species方式
Methods主要代谢产物
Major metabolites参考文献
ReferencesTNBP 鲤鱼 体内代谢 磷酸二正丁酯(DNBP) [137] 老鼠肝脏 体外代谢 2-羟基磷酸三丁酯(di-OH-TNBP) [18] TPHP 鲤鱼 体内代谢 4-羟基磷酸二苯酯(4-HO-DPHP)、磷酸二苯酯(DPHP)、磷酸二苯酯(DPHP)、4-羟基磷酸二苯酯(4-HO-TPHP) [137] 鸡胚胎肝细胞 体外代谢 DPHP、羟基磷酸二苯酯(OH-TPHP)、2-羟基磷酸二苯酯基(di-OH-TPHP) [18] TCEP 鲤鱼 体内代谢 双(2-氯乙基)磷酸酯(BCEP) [137] 人肝微粒体 体外代谢 BCEP、羟基磷酸三(2-氯乙基)酯 (OH-TCEP) [124] 人肝微粒体 体外代谢 BCIPP、羟基磷酸三(2-氯异丙基)酯(OH-TCIPP)、烃基磷酸三(2-氯异丙基)酯(COOH-TCIPP),、羟基双(1-氯-2-丙基)磷酸酯(OH-BCIPP) [124] TDCPP 鲤鱼 体内代谢 双(1,3-二氯-2-丙基)磷酸酯(BDCIPP) [137] 人肝微粒体 体外代谢 BDCIPP、羟基磷酸三(1,3-二氯-2-丙基)酯(OH-TDCIPP)、羟基双(1,3-二氯-2-丙基)磷酸酯(OH-BDCIPP) [124] TBEP 鲤鱼 体内代谢 双(丁氧乙基)磷酸酯(BBOEP)、2-羟乙基双(2-丁氧基乙基)磷酸酯(BBOEHEP)、3-羟基-2-丁氧基乙基酯(3-HO-TBOEP) [137] 人肝微粒体 体外代谢 BBOEP、BBOEHEP、羟基磷酸三(2-丁氧基乙基)酯TBOEP(1-HO-
TBEP)、2-羟基磷酸三(2-丁氧基乙基)酯(2-HO-TBEP)、3-磷酸三
(2-丁氧基乙基)酯(3-HO-TBEP)[124] TEHP 鲤鱼 体内代谢 磷酸双(2-乙基己基)酯(DEHP) [137] EHDPHP 鲤鱼 体内代谢 2-乙基己基苯基磷酸酯(EHDPP)、2-乙基-5-羟基己基磷酸二苯酯(5-HO-EHDPHP) [137] TMP 鲤鱼 体内代谢 磷酸二(甲基苯基)酯(BMPP) [137] -
[1] 高立红, 厉文辉, 史亚利, 等. 有机磷酸酯阻燃剂分析方法及其污染现状研究进展 [J]. 环境化学, 2014, 33(10): 1750-1761. doi: 10.7524/j.issn.0254-6108.2014.10.004 GAO L H, LI W H, SHI Y L, et al. Analytical methods and pollution status of organophosphate flame retardants [J]. Environmental Chemistry, 2014, 33(10): 1750-1761(in Chinese). doi: 10.7524/j.issn.0254-6108.2014.10.004
[2] GAO Z Q, DENG Y H, HU X B, et al. Determination of organophosphate esters in water samples using an ionic liquid-based Sol-gel fiber for headspace solid-phase microextraction coupled to gas chromatography-flame photometric detector [J]. Journal of Chromatography. A, 2013, 1300: 141-150. doi: 10.1016/j.chroma.2013.02.089 [3] BRANDSMA S H, DE BOER J, LEONARDS P E G, et al. Organophosphorus flame-retardant and plasticizer analysis, including recommendations from the first worldwide interlaboratory study [J]. Trac-Trends in Analytical Chemistry, 2013, 43: 217-228. doi: 10.1016/j.trac.2012.12.004 [4] WEI G L, LI D Q, ZHUO M N, et al. Organophosphorus flame retardants and plasticizers: Sources, occurrence, toxicity and human exposure [J]. Environmental Pollution, 2015, 196: 29-46. doi: 10.1016/j.envpol.2014.09.012 [5] LUO Y L, GUO W S, NGO H H, et al. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment [J]. The Science of the Total Environment, 2014, 473/474: 619-641. doi: 10.1016/j.scitotenv.2013.12.065 [6] 齐迹. 污水处理厂中磷系阻燃剂浓度分布及归趋研究[D]. 哈尔滨: 哈尔滨工业大学, 2015. QI J. Occurrence and fate of phosphorus flame retardants in wastewater treatment plant[D]. Harbin: Harbin Institute of Technology, 2015(in Chinese).
[7] VAN DER VEEN I, DE BOER J. Phosphorus flame retardants: properties, production, environmental occurrence, toxicity and analysis [J]. Chemosphere, 2012, 88(10): 1119-1153. doi: 10.1016/j.chemosphere.2012.03.067 [8] WANG Q, LAM J C, MAN Y C, et al. Bioconcentration, metabolism and neurotoxicity of the organophorous flame retardant 1, 3-dichloro 2-propyl phosphate (TDCPP) to zebrafish [J]. Aquatic Toxicology, 2015, 158: 108-115. doi: 10.1016/j.aquatox.2014.11.001 [9] 中国产业信息网. 2014 - 2018年中国阻燃剂市场深度调研与投资前景分析报告[EB/OL]. [2018-11-11]. http://www.chyxx.com/industry/201405/241521.html. China Industry Information Network. In- depth investigation and investment prospect analysis report of China's flame retardant market in 2014 - 2018. [EB/OL]. [2018-11-11]. http://www.chyxx.com/industry/201405/241521.html (in Chinese).
[10] ZHENG J, GAO Z, YUAN W, et al. Development of pressurized liquid extraction and solid-phase microextraction combined with gas chromatography and flame photometric detection for the determination of organophosphate esters in sediments [J]. Journal of Separation Science, 2014, 37(17): 2424-2430. doi: 10.1002/jssc.201301274 [11] 王晓伟, 刘景富, 阴永光. 有机磷酸酯阻燃剂污染现状与研究进展 [J]. 化学进展, 2010, 22(10): 1983-1992. WANG X W, LIU J F, YIN Y G. The pollution status and research progress on organophosphate ester flame retardants [J]. Progress in Chemistry, 2010, 22(10): 1983-1992(in Chinese).
[12] HOU R, XU Y P, WANG Z J. Review of OPFRs in animals and humans: Absorption, bioaccumulation, metabolism, and internal exposure research [J]. Chemosphere, 2016, 153: 78-90. doi: 10.1016/j.chemosphere.2016.03.003 [13] 李素珍, 付卫强, 冯承莲. 有机磷酸酯阻燃剂的环境暴露、环境行为和毒性效应研究进展 [J]. 环境工程, 2018, 36(9): 180-184, 35. LI S Z, FU W Q, FENG C L. Research progress in environmenatal exposure, behaviour and toxic effect of organophosphorus flame retardants [J]. Environmental Engineering, 2018, 36(9): 180-184, 35(in Chinese).
[14] WU J P, LUO X J, ZHANG Y, et al. Biomagnification of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls in a highly contaminated freshwater food web from South China [J]. Environmental Pollution, 2009, 157(3): 904-909. doi: 10.1016/j.envpol.2008.11.001 [15] 魏莱, 黄清辉, 许宜平, 等. 崇明岛小白鹭鸟卵中有机磷阻燃剂污染特征 [J]. 环境科学学报, 2019, 39(5): 1691-1697. WEI L, HUANG Q H, XU Y P, et al. Occurrence of organophosphorus flame retardants in little egret eggs from Chongming Island [J]. Acta Scientiae Circumstantiae, 2019, 39(5): 1691-1697(in Chinese).
[16] HOU R, LIU C, GAO X Z, et al. Accumulation and distribution of organophosphate flame retardants (PFRs) and their di-alkyl phosphates (DAPs) metabolites in different freshwater fish from locations around Beijing, China [J]. Environmental Pollution, 2017, 229: 548-556. doi: 10.1016/j.envpol.2017.06.097 [17] LYNN R K, WONG K, GARVIEGOULD C, et al. Disposition of the flame-retardant, tris(1, 3-dichloro-2-propyl)phosphate, in the rat [J]. Drug Metabolism and Disposition, 1981, 9(5): 434-441. [18] SASAKI K, SUZUKI T, TAKEDA M, et al. Metabolism of phosphoric acid triesters by rat liver homogenate [J]. Bulletin of Environmental Contamination and Toxicology, 1984, 33(1): 281-288. doi: 10.1007/BF01625544 [19] REEMTSMA T, LINGOTT J, ROEGLER S. Determination of 14 monoalkyl phosphates, dialkyl phosphates and dialkyl thiophosphates by LC-MS/MS in human urinary samples [J]. Science of the Total Environment, 2011, 409(10): 1990-1993. doi: 10.1016/j.scitotenv.2011.01.032 [20] DODSON R E, van den EEDE N, COVACI A, et al. Urinary biomonitoring of phosphate flame retardants: Levels in California adults and recommendations for future studies [J]. Environmental Science & Technology, 2014, 48(23): 13625-13633. [21] MARTÍNEZ-CARBALLO E, GONZÁLEZ-BARREIRO C, SITKA A, et al. Determination of selected organophosphate esters in the aquatic environment of Austria [J]. The Science of the Total Environment, 2007, 388(1/2/3): 290-299. [22] QUINTANA J B, RODIL R, REEMTSMA T, et al. Organophosphorus flame retardants and plasticizers in water and air II. Analytical methodology [J]. TrAC - Trends in Analytical Chemistry, 2008, 27(10): 904-915. doi: 10.1016/j.trac.2008.08.004 [23] NIU Z G, ZHANG Z Z, LI J F, et al. Threats of organophosphate esters (OPEs) in surface water to ecological system in Haihe River of China based on species sensitivity distribution model and assessment factor model [J]. Environmental Science and Pollution Research, 2019, 26(11): 10854-10866. doi: 10.1007/s11356-019-04461-2 [24] ZHANG Z Y, SHAO H Y, WU M H, et al. Occurrence, distribution, and potential sources of organophosphate esters in urban and rural surface water in Shanghai, China [J]. Archives of Environmental Contamination and Toxicology, 2019, 77(1): 115-126. doi: 10.1007/s00244-019-00633-w [25] SHI Y L, GAO L H, LI W H, et al. Occurrence, distribution and seasonal variation of organophosphate flame retardants and plasticizers in urban surface water in Beijing, China [J]. Environmental Pollution, 2016, 209: 1-10. doi: 10.1016/j.envpol.2015.11.008 [26] WANG X W, LIU J F, YIN Y G. Development of an ultra-high-performance liquid chromatography-tandem mass spectrometry method for high throughput determination of organophosphorus flame retardants in Environmental water [J]. Journal Of Chromatography A, 2011, 1218(38): 6705-6711. doi: 10.1016/j.chroma.2011.07.067 [27] 严小菊, 何欢, 彭英, 等. 固相萃取-气相色谱质谱法检测水体中典型有机磷酸酯阻燃剂 [J]. 分析化学, 2012(11): 1693-1697. YAN X J, HE H, PENG Y, et al. Determination of organophosphorus flame retardants in surface water by solid phase extraction coupled with gas chromatography-mass spectrometry [J]. Chinese Journal of Analytical Chemistry, 2012(11): 1693-1697(in Chinese).
[28] 吴迪, 印红玲, 李世平, 等. 成都市锦江表层水和沉积物中有机磷酸酯的污染特征 [J]. 环境科学, 2019, 40(3): 1245-1251. WU D, YIN H L, LI S P, et al. Pollution characteristics of OPEs in the surface water and sediment of the Jinjiang river in Chengdu city [J]. Environmental Science, 2019, 40(3): 1245-1251(in Chinese).
[29] 田乃琴. 府南河沉积物-水界面磷的赋存状态及其分布[D]. 成都: 成都理工大学, 2008. TIAN N Q. Phophorus speciation and distribution at the sediment-water interface of Funan River[D]. Chengdu: Chengdu University of Technology, 2008(in Chinese).
[30] SCHMIDT N, CASTRO-JIMÉNEZ J, FAUVELLE V, et al. Occurrence of organic plastic additives in surface waters of the Rhô ne River (France) [J]. Environmental Pollution, 2020, 257: 113637. doi: 10.1016/j.envpol.2019.113637 [31] WOLSCHKE H, SÜHRING R, XIE Z Y, et al. Organophosphorus flame retardants and plasticizers in the aquatic environment: A case study of the Elbe River, Germany [J]. Environmental Pollution, 2015, 206: 488-493. doi: 10.1016/j.envpol.2015.08.002 [32] BACALONI A, CAVALIERE C, FOGLIA P, et al. Liquid chromatography/tandem mass spectrometry determination of organophosphorus flame retardants and plasticizers in drinking and surface waters [J]. Rapid Communication in Mass Spectrometry, 2007, 21(7): 1123-1130. doi: 10.1002/rcm.2937 [33] REGNERY J, PÜTTMANN W. Occurrence and fate of organophosphorus flame retardants and plasticizers in urban and remote surface waters in Germany [J]. Water Research, 2010, 44(14): 4097-4104. doi: 10.1016/j.watres.2010.05.024 [34] CRISTALE J, GARCÍA VÁZQUEZ A, BARATA C, et al. Priority and emerging flame retardants in rivers: Occurrence in water and sediment, Daphnia magna toxicity and risk assessment [J]. Environment International, 2013, 59: 232-243. doi: 10.1016/j.envint.2013.06.011 [35] CRISTALE J, KATSOYIANNIS A, SWEETMAN A J, et al. Occurrence and risk assessment of organophosphorus and brominated flame retardants in the River Aire (UK) [J]. Environmental Pollution, 2013, 179: 194-200. doi: 10.1016/j.envpol.2013.04.001 [36] L ZHANG L, WANG Y, TAN F, et al. Tidal variability of polycyclic aromatic hydrocarbons and organophosphate esters in the coastal seawater of Dalian, China [J]. the Science of the Total Environment, 2020, 708(Mara15): 134441.1-134441.8. [37] KIM U J, KANNAN K. Occurrence and distribution of organophosphate flame retardants/plasticizers in surface waters, tap water, and rainwater: Implications for human exposure [J]. Environmental Science & Technology, 2018, 52(10): 5625-5633. [38] LAI N L S, KWOK K Y, WANG X H, et al. Assessment of organophosphorus flame retardants and plasticizers in aquatic environments of China (pearl river delta, south China sea, yellow river estuary) and Japan (tokyo bay) [J]. Journal of Hazardous Materials, 2019, 371: 288-294. doi: 10.1016/j.jhazmat.2019.03.029 [39] GAO X, HUANG C, RAO K, et al. Occurrences, sources, and transport of hydrophobic organic contaminants in the waters of Fildes Peninsula, Antarctica [J]. Environmental Pollution, 2018, 241: 950-958. doi: 10.1016/j.envpol.2018.06.025 [40] TEO T L L, MCDONALD J A, COLEMAN H M, et al. Analysis of organophosphate flame retardants and plasticisers in water by isotope dilution gas chromatography-electron ionisation tandem mass spectrometry [J]. Talanta, 2015, 143: 114-120. doi: 10.1016/j.talanta.2015.04.091 [41] SUTTON R, CHEN D, SUN J, et al. Characterization of brominated, chlorinated, and phosphate flame retardants in San Francisco Bay, an urban estuary [J]. The Science of the Total Environment, 2019, 652: 212-223. doi: 10.1016/j.scitotenv.2018.10.096 [42] STUPAVSKI M, VOJINOVI M, RADONI J. Occurrence and analytical determination of the concentration level of phosphorus flame retardants [J]. 6th PSU-UNS International Conference on Engineering and Technology (ICET-2013), 2013: 1-5. [43] ISHIKAWA S, TAKETOMI M, SHINOHARA R. Determination of trialkyl and triaryl phosphates in environmental samples [J]. Water Research, 1985, 19(1): 119-125. doi: 10.1016/0043-1354(85)90332-X [44] CAO S X, ZENG X Y, SONG H, et al. Levels and distributions of organophosphate flame retardants and plasticizers in sediment from Taihu Lake, China [J]. Environmental Toxicology and Chemistry, 2012, 31(7): 1478-1484. doi: 10.1002/etc.1872 [45] 阮伟, 谭晓欣, 罗孝俊, 等. 东江表层沉积物中的有机磷系阻燃剂 [J]. 中国环境科学, 2014, 34(9): 2394-2400. RUAN W, TAN X X, LUO X J, et al. Organophosphorus flame retardants in surface sediments from Dongjiang River [J]. China Environmental Science, 2014, 34(9): 2394-2400(in Chinese).
[46] MO L, ZHENG J, WANG T, et al. Legacy and emerging contaminants in coastal surface sediments around Hainan Island in South China [J]. Chemosphere, 2019, 215: 133-141. doi: 10.1016/j.chemosphere.2018.10.022 [47] ZHONG M Y, WU H F, MI W Y, et al. Occurrences and distribution characteristics of organophosphate ester flame retardants and plasticizers in the sediments of the Bohai and Yellow Seas, China [J]. The Science of the Total Environment, 2018, 615: 1305-1311. doi: 10.1016/j.scitotenv.2017.09.272 [48] BRANDSMA S H, LEONARDS P E G, LESLIE H A, et al. Tracing organophosphorus and brominated flame retardants and plasticizers in an estuarine food web [J]. The Science of the Total Environment, 2015, 505: 22-31. doi: 10.1016/j.scitotenv.2014.08.072 [49] CAO D D, GUO J H, WANG Y W, et al. Organophosphate esters in sediment of the great lakes [J]. Environmental Science & Technology, 2017, 51(3): 1441-1449. [50] GIULIVO M, CAPRI E, KALOGIANNI E, et al. Occurrence of halogenated and organophosphate flame retardants in sediment and fish samples from three European river basins [J]. The Science of the Total Environment, 2017, 586: 782-791. doi: 10.1016/j.scitotenv.2017.02.056 [51] MA Y X, XIE Z Y, LOHMANN R, et al. Organophosphate ester flame retardants and plasticizers in ocean sediments from the north Pacific to the Arctic Ocean [J]. Environmental Science & Technology, 2017, 51(7): 3809-3815. [52] CLARK A E, YOON S, SHEESLEY R J, et al. Spatial and temporal distributions of organophosphate ester concentrations from atmospheric particulate matter samples collected across Houston, TX [J]. Environmental Science & Technology, 2017, 51(8): 4239-4247. [53] CAO D D, LV K, GAO W, et al. Presence and human exposure assessment of organophosphate flame retardants (OPEs) in indoor dust and air in Beijing, China [J]. Ecotoxicology and Environmental Safety, 2019, 169: 383-391. doi: 10.1016/j.ecoenv.2018.11.038 [54] HU Y J, BAO L J, HUANG C L, et al. A comprehensive risk assessment of human inhalation exposure to atmospheric halogenated flame retardants and organophosphate esters in an urban zone [J]. Environmental Pollution, 2019, 252(2): 1902-1909. [55] YANG F X, DING J J, HUANG W, et al. Particle size-specific distributions and preliminary exposure assessments of organophosphate flame retardants in office air particulate matter [J]. Environmental Science & Technology, 2014, 48(1): 63-70. [56] CEQUIER E, IONAS A C, COVACI A, et al. Occurrence of a broad range of legacy and emerging flame retardants in indoor environments in Norway [J]. Environmental Science & Technology, 2014, 48(12): 6827-6835. [57] ZHOU L L, HILTSCHER M, GRUBER D, et al. Organophosphate flame retardants (OPFRs) in indoor and outdoor air in the Rhine/Main area, Germany: Comparison of concentrations and distribution profiles in different microenvironments [J]. Environmental Science and Pollution Research, 2017, 24(12): 10992-11005. doi: 10.1007/s11356-016-6902-z [58] HE C, WANG X Y, THAI P, et al. Organophosphate and brominated flame retardants in Australian indoor environments: Levels, sources, and preliminary assessment of human exposure [J]. Environmental Pollution, 2018, 235: 670-679. doi: 10.1016/j.envpol.2017.12.017 [59] ZHANG W W, WANG P, LI Y M, et al. Spatial and temporal distribution of organophosphate esters in the atmosphere of the Beijing-Tianjin-Hebei region, China [J]. Environmental Pollution, 2019, 244: 182-189. doi: 10.1016/j.envpol.2018.09.131 [60] REN G, CHEN Z, FENG J, et al. Organophosphate esters in total suspended particulates of an urban city in East China [J]. Chemosphere, 2016, 164: 75-83. doi: 10.1016/j.chemosphere.2016.08.090 [61] SAINI A, CLARKE J, JARIYASOPIT N, et al. Flame retardants in urban air: A case study in Toronto targeting distinct source sectors [J]. Environmental Pollution, 2019, 247: 89-97. doi: 10.1016/j.envpol.2019.01.027 [62] CASTRO-JIMÉNEZ J, BERROJALBIZ N, PIZARRO M, et al. Organophosphate ester (OPE) flame retardants and plasticizers in the open Mediterranean and black seas atmosphere [J]. Environmental Science & Technology, 2014, 48(6): 3203-3209. [63] WANG Y, YAO Y M, LI W H, et al. A nationwide survey of 19 organophosphate esters in soils from China: Spatial distribution and hazard assessment [J]. The Science of the Total Environment, 2019, 671: 528-535. doi: 10.1016/j.scitotenv.2019.03.335 [64] WANG Y, SUN H W, ZHU H K, et al. Occurrence and distribution of organophosphate flame retardants (OPFRs) in soil and outdoor settled dust from a multi-waste recycling area in China [J]. The Science of the Total Environment, 2018, 625: 1056-1064. doi: 10.1016/j.scitotenv.2018.01.013 [65] HE M J, LU J F, WEI S Q. Occurrence and distribution of organophosphate esters in surface soil and street dust from Chongqing, China: Implications for human exposure [J]. Archives of Environmental Contamination and Toxicology, 2017, 74: 349-361. [66] LI W H, WANG Y, KANNAN K. Occurrence, distribution and human exposure to 20 organophosphate esters in air, soil, pine needles, river water, and dust samples collected around an airport in New York state, United States [J]. Environment International, 2019, 131: 105054. doi: 10.1016/j.envint.2019.105054 [67] MIHAJLOVIĆ I, MILORADOV M V, FRIES E. Application of twisselmann extraction, SPME, and GC-MS to assess input sources for organophosphate esters into soil [J]. Environmental Science & Technology, 2011, 45(6): 2264-2269. [68] CRISTALE J, ARAGÃO BELÉ T G, LACORTE S, et al. Occurrence of flame retardants in landfills: A case study in Brazil [J]. Environmental Research, 2019, 168: 420-427. doi: 10.1016/j.envres.2018.10.010 [69] WAN W, ZHANG S, HUANG H, et al. Occurrence and distribution of organophosphorus esters in soils and wheat plants in a plastic waste treatment area in China [J]. Environmental Pollution, 2016, 214: 349-353. doi: 10.1016/j.envpol.2016.04.038 [70] CUI K Y, WEN J X, ZENG F, et al. Occurrence and distribution of organophosphate esters in urban soils of the subtropical city, Guangzhou, China [J]. Chemosphere, 2017, 175: 514-520. doi: 10.1016/j.chemosphere.2017.02.070 [71] MATSUKAMI H, TUE N M, SUZUKI G, et al. Flame retardant emission from e-waste recycling operation in northern Vietnam: Environmental occurrence of emerging organophosphorus esters used as alternatives for PBDEs [J]. Science of the Total Environment, 2015, 514: 492-499. doi: 10.1016/j.scitotenv.2015.02.008 [72] YADAV I C, DEVI N L, Li J, et al. Concentration and spatial distribution of organophosphate esters in the soil-sediment profile of Kathmandu Valley, Nepal: Implication for risk assessment [J]. Science of the Total Environment, 2018, 613-614: 502-512. [73] PENG C, TAN H, GUO Y, et al. Emerging and legacy flame retardants in indoor dust from East China [J]. Chemosphere, 2017, 186: 635-643. doi: 10.1016/j.chemosphere.2017.08.038 [74] TAN H L, PENG C F, GUO Y, et al. Organophosphate flame retardants in house dust from South China and related human exposure risks [J]. Bulletin of Environmental Contamination and Toxicology, 2017, 99(3): 344-349. doi: 10.1007/s00128-017-2120-8 [75] LI W, WANG Y, ASIMAKOPOULOS A G, et al. Organophosphate esters in indoor dust from 12 countries: Concentrations, composition profiles, and human exposure [J]. Environmental International, 2019, 133: 105178. doi: 10.1016/j.envint.2019.105178 [76] van den EEDE N, DIRTU A C, NEELS H, et al. Analytical developments and preliminary assessment of human exposure to organophosphate flame retardants from indoor dust [J]. Environment International, 2011, 37(2): 454-461. doi: 10.1016/j.envint.2010.11.010 [77] BJORNSDOTTER M K, ROMERA-GARCIA E, BORRULL J, et al. Presence of diphenyl phosphate and aryl-phosphate flame retardants in indoor dust from different microEnvironments in Spain and the Netherlands and estimation of human exposure [J]. Environmental International, 2018, 112: 59-67. doi: 10.1016/j.envint.2017.11.028 [78] WANG Y, YAO Y M, HAN X X, et al. Organophosphate di- and tri-esters in indoor and outdoor dust from China and its implications for human exposure [J]. The Science of the Total Environment, 2020, 700: 134502. doi: 10.1016/j.scitotenv.2019.134502 [79] YADAV I C, DEVI N L, SINGH V K,et al. Measurement of legacy and emerging flame retardants in indoor dust from a rural village (Kopawa) in Nepal: Implication for source apportionment and health risk assessment [J]. Ecotoxicology and Environmental Safety, 2019, 168: 304-314. [80] KIM J W, ISOBE T, SUDARYANTO A, et al. Organophosphorus flame retardants in house dust from the Philippines: Occurrence and assessment of human exposure [J]. Environmental Science and Pollution Research, 2013, 20(2): 812-822. doi: 10.1007/s11356-012-1237-x [81] DODSON R E, PEROVICH L J, COVACI A, et al. After the PBDE phase-out: A broad suite of flame retardants in repeat house dust samples from California [J]. Environmental Science & Technology, 2012, 46(24): 13056-13066. [82] LI W H, SHI Y L, GAO L H, et al. Occurrence, distribution and risk of organophosphate esters in urban road dust in Beijing, China [J]. Environmental Pollution, 2018, 241: 566-575. doi: 10.1016/j.envpol.2018.05.092 [83] 李静, 王俊霞, 许婉婷, 等. 道路灰尘中有机磷阻燃剂污染特征及人体暴露 [J]. 环境科学, 2017, 38(10): 4220-4227. LI J, WANG J X, XU W T, et al. Contamination characteristics and human exposure to organophosphate flame retardants in road dust from Suzhou city [J]. Environmental Science, 2017, 38(10): 4220-4227(in Chinese).
[84] ZHANG Z H, WANG Y, TAN F, et al. Characteristics and risk assessment of organophosphorus flame retardants in urban road dust of Dalian, Northeast China [J]. The Science of the Total Environment, 2020, 705: 135995. doi: 10.1016/j.scitotenv.2019.135995 [85] WANG R M, TANG J H, XIE Z Y, et al. Occurrence and spatial distribution of organophosphate ester flame retardants and plasticizers in 40 rivers draining into the Bohai Sea, North China [J]. Environmental Pollution, 2015, 198: 172-178. doi: 10.1016/j.envpol.2014.12.037 [86] WANG T, DING N, WANG T, et al. Organophosphorus esters (OPEs) in PM2.5 in urban and e-waste recycling regions in southern China: concentrations, sources, and emissions [J]. Environmental Research, 2018, 167: 437-444. doi: 10.1016/j.envres.2018.08.015 [87] LIU D, LIN T, SHEN K J, et al. Occurrence and concentrations of halogenated flame retardants in the atmospheric fine particles in Chinese cities [J]. Environmental Science & Technology, 2016, 50(18): 9846-9854. [88] UENO D, KAJIWARA N, TANAKA H, et al. Global pollution monitoring of polybrominated diphenyl ethers using skipjack tuna as a bioindicator [J]. Environmental Science & Technology, 2004, 38(8): 2312-2316. [89] LIU Y E, LUO X J, HUANG L Q, et al. Organophosphorus flame retardants in fish from Rivers in the Pearl River Delta, South China [J]. The Science of the Total Environment, 2019, 663: 125-132. doi: 10.1016/j.scitotenv.2019.01.344 [90] LIU Y E, TANG B, LIU Y, et al. Occurrence, biomagnification and maternal transfer of legacy and emerging organophosphorus flame retardants and plasticizers in water snake from an e-waste site [J]. Environment International, 2019, 133(Pt B): 105240. [91] ZHAO H, ZHAO F, LIU J, et al. Trophic transfer of organophosphorus flame retardants in a lake food web [J]. Environmental Pollution, 2018, 242: 1887-1893. doi: 10.1016/j.envpol.2018.07.077 [92] CHOO G, CHO H S, PARK K, et al. Tissue-specific distribution and bioaccumulation potential of organophosphate flame retardants in crucian carp [J]. Environmental Pollution, 2018, 239: 161-168. doi: 10.1016/j.envpol.2018.03.104 [93] MCGOLDRICK D J, LETCHER R J, BARRESI E, et al. Organophosphate flame retardants and organosiloxanes in predatory freshwater fish from locations across Canada [J]. Environmental Pollution, 2014, 193: 254-261. doi: 10.1016/j.envpol.2014.06.024 [94] BEKELE T G, ZHAO H, WANG Q. Tissue distribution and bioaccumulation of organophosphate esters in wild marine fish from Laizhou Bay, North China: Implications of human exposure via fish consumption [J]. Journal of Hazardous Materials, 2020, 401: 123410. [95] WANG X L, ZHONG W J, XIAO B W, et al. Bioavailability and biomagnification of organophosphate esters in the food web of Taihu Lake, China: Impacts of chemical properties and metabolism [J]. Environment International, 2019, 125: 25-32. doi: 10.1016/j.envint.2019.01.018 [96] KIM J W, ISOBE T, CHANG K H, et al. Levels and distribution of organophosphorus flame retardants and plasticizers in fishes from Manila Bay, the Philippines [J]. Environmental Pollution, 2011, 159(12): 3653-3659. doi: 10.1016/j.envpol.2011.07.020 [97] LIU Y E, LUO X J, ZAPATA CORELLA P, et al. Organophosphorus flame retardants in a typical freshwater food web: Bioaccumulation factors, tissue distribution, and trophic transfer [J]. Environmental Pollution, 2019, 255: 113286. doi: 10.1016/j.envpol.2019.113286 [98] EULAERS I, JASPERS V L B, HALLEY D J, et al. Brominated and phosphorus flame retardants in White-tailed Eagle Haliaeetus albicilla nestlings: Bioaccumulation and associations with dietary proxies (δ¹ ³ C, δ¹ 5N and δ³ 4S) [J]. The Science of the Total Environment, 2014, 478: 48-57. doi: 10.1016/j.scitotenv.2014.01.051 [99] FERNIE K J, CHABOT D, CHAMPOUX L, et al. Spatiotemporal patterns and relationships among the diet, biochemistry, and exposure to flame retardants in an apex avian predator, the peregrine falcon [J]. Environmental Research, 2017, 158: 43-53. doi: 10.1016/j.envres.2017.05.035 [100] HE C, WANG X Y, TANG S Y, et al. Concentrations of organophosphate esters and their specific metabolites in food in southeast Queensland, Australia: Is dietary exposure an important pathway of organophosphate esters and their metabolites? [J]. Environmental Science & Technology, 2018, 52(21): 12765-12773. [101] CHEN D, LETCHER R J, CHU S. Determination of non-halogenated, chlorinated and brominated organophosphate flame retardants in herring gull eggs based on liquid chromatography-tandem quadrupole mass spectrometry [J]. J Chromatogr A, 2012, 1220: 169-174. doi: 10.1016/j.chroma.2011.11.046 [102] SU G Y, LETCHER R J, MOORE J N, et al. Spatial and temporal comparisons of legacy and emerging flame retardants in herring gull eggs from colonies spanning the Laurentian Great Lakes of Canada and United States [J]. Environmental Research, 2015, 142: 720-730. doi: 10.1016/j.envres.2015.08.018 [103] SU G, LETCHER R J, MOORE J N, et al. Contaminants of emerging concern in caspian tern compared to herring gull eggs from Michigan colonies in the Great Lakes of North America [J]. Environmental Pollution, 2017, 222: 154-164. doi: 10.1016/j.envpol.2016.12.061 [104] MA Y Q, CUI K Y, ZENG F, et al. Microwave-assisted extraction combined with gel permeation chromatography and silica gel cleanup followed by gas chromatography-mass spectrometry for the determination of organophosphorus flame retardants and plasticizers in biological samples [J]. Analytica Chimica Acta, 2013, 786: 47-53. doi: 10.1016/j.aca.2013.04.062 [105] ZHENG X B, XU F C, LUO X J, et al. Phosphate flame retardants and novel brominated flame retardants in home-produced eggs from an e-waste recycling region in China [J]. Chemosphere, 2016, 150: 545-550. doi: 10.1016/j.chemosphere.2015.09.098 [106] HUANG Q H, WEI L, BIGNERT A, et al. Organophosphate flame retardants in heron eggs from Upper Yangtze River basin, southwest China [J]. Chemosphere, 2019, 236: 124327. doi: 10.1016/j.chemosphere.2019.07.058 [107] LIU Y E, LUO X J, GUANAB K L, et al. Legacy and emerging organophosphorus flame retardants and plasticizers in frogs: Sex difference and parental transfer [J]. Environmental Pollution, 2020, 266: 115336. doi: 10.1016/j.envpol.2020.115336 [108] POMA G, LIU Y, CUYKX M, et al. Occurrence of organophosphorus flame retardants and plasticizers in wild insects from a former e-waste recycling site in the Guangdong Province, South China [J]. The Science of the Total Environment, 2019, 650(Pt 1): 709-712. [109] HALLANGER I G, SAGERUP K, EVENSET A, et al. Organophosphorous flame retardants in biota from Svalbard, Norway [J]. Marine Pollution Bulletin, 2015, 101(1): 442-447. doi: 10.1016/j.marpolbul.2015.09.049 [110] GREAVES A K, LETCHER R J. Comparative body compartment composition and in ovo transfer of organophosphate flame retardants in North American great lakes herring gulls [J]. Environmental Science & Technology, 2014, 48(14): 7942-7950. [111] 宋德浩, 陈智锋, 祁增华, 等. 典型有机磷酸酯在小鼠组织内的特异性分布 [J]. 环境化学, 2020, 39(10): 2627-2636. doi: 10.7524/j.issn.0254-6108.2019123101 CHEN M, LIAO X L, YANG C, et al. The tissue accumulation and distribution of typical organophosphate flame retardants (OPFRs) in mice [J]. Environmental Chemistry, 2020, 39(10): 2627-2636(in Chinese). doi: 10.7524/j.issn.0254-6108.2019123101
[112] MÄKINEN M S E, MÄKINEN M R A, KOISTINEN J T B, et al. Respiratory and dermal exposure to organophosphorus flame retardants and tetrabromobisphenol A at five work environments [J]. Environmental Science & Technology, 2009, 43(3): 941-947. [113] HE R W, LI Y Z, XIANG P, et al. Organophosphorus flame retardants and phthalate esters in indoor dust from different microenvironments: Bioaccessibility and risk assessment [J]. Chemosphere, 2016, 150: 528-535. doi: 10.1016/j.chemosphere.2015.10.087 [114] HE C, TOMS L M L, THAI P, et al. Urinary metabolites of organophosphate esters: Concentrations and age trends in Australian children [J]. Environment International, 2018, 111: 124-130. doi: 10.1016/j.envint.2017.11.019 [115] HOFFMAN K D J L, STAPLETON H M. Urinary metabolites of organphosphate flame retardants and thier variability in pregnant women [J]. Environmental International, 2014, 63: 169-172. doi: 10.1016/j.envint.2013.11.013 [116] ZHAO F R, WAN Y, ZHAO H Q, et al. Levels of blood organophosphorus flame retardants and association with changes in human sphingolipid homeostasis [J]. Environmental Science & Technology, 2016, 50(16): 8896-8903. [117] MA J, ZHU H K, KANNAN K. Organophosphorus flame retardants and plasticizers in breast milk from the United States [J]. Environmental Science & Technology Letters, 2019, 6(9): 525-531. [118] KIM J W, ISOBE T, MUTO M, et al. Organophosphorus flame retardants (PFRs) in human breast milk from several Asian countries [J]. Chemosphere, 2014, 116: 91-97. doi: 10.1016/j.chemosphere.2014.02.033 [119] SUNDKVIST A M, OLOFSSON U, HAGLUND P. Organophosphorus flame retardants and plasticizers in marine and fresh water biota and in human milk [J]. Journal of Environmental Monitoring, 2010, 12(4): 943-951. doi: 10.1039/b921910b [120] DING J J, XU Z M, HUANG W, et al. Organophosphate ester flame retardants and plasticizers in human placenta in Eastern China [J]. The Science of the Total Environment, 2016, 554/555: 211-217. doi: 10.1016/j.scitotenv.2016.02.171 [121] KUCHARSKA A, CEQUIER E, THOMSEN C, et al. Assessment of human hair as an indicator of exposure to organophosphate flame retardants. Case study on a Norwegian mother-child cohort [J]. Environment International, 2015, 83: 50-57. doi: 10.1016/j.envint.2015.05.015 [122] XU F C, EULAERS I, ALVES A, et al. Human exposure pathways to organophosphate flame retardants: Associations between human biomonitoring and external exposure [J]. Environment International, 2019, 127: 462-472. doi: 10.1016/j.envint.2019.03.053 [123] STUBBINGS W, GUO J H, SIMON K, et al. Flame retardant metabolites in addled bald eagle eggs from the great lakes region [J]. Environmental Science & Technology Letters, 2018, 5(6): 354-359. [124] van den EEDE N, MAHO W, ERRATICO C, et al. First insights in the metabolism of phosphate flame retardants and plasticizers using human liver fractions [J]. Toxicology Letters, 2013, 223(1): 9-15. doi: 10.1016/j.toxlet.2013.08.012 [125] LI Z R, HE C, THAI P, et al. Organophosphate esters and their specific metabolites in chicken eggs from across Australia: Occurrence, profile, and distribution between yolk and ablumin fraction [J]. Environmental Pollution, 2020, 262: 114260. doi: 10.1016/j.envpol.2020.114260 [126] BUTT C M, CONGLETON J, HOFFMAN K, et al. Metabolites of organophosphate flame retardants and 2-ethylhexyl tetrabromobenzoate in urine from paired mothers and toddlers [J]. Environmental Science & Technology, 2014, 48(17): 10432-10438. [127] CEQUIER E, MARCE R M, BECHER G, et al. A high-throughput method for determination of metabolites of organophosphate flame retardants in urine by ultra performance liquid chromatography-high resolution mass spectrometry [J]. Analytica Chimica Acta, 2014, 845: 98-104. doi: 10.1016/j.aca.2014.06.026 [128] MEEKER J D, COOPER E M, STAPLETON H M, et al. Urinary metabolites of organophosphate flame retardants: temporal variability and correlations with house dust concentrations [J]. Environmental Health Perspectives, 2013, 121(5): 580-585. doi: 10.1289/ehp.1205907 [129] COOPER E M, COVACI A, NUIJS A L N, et al. Analysis of the flame retardant metabolites bis(1, 3-dichloro-2-propyl) phosphate (BDCPP) and diphenyl phosphate (DPP) in urine using liquid chromatography-tandem mass spectrometry [J]. Analytical and Bioanalytical Chemistry, 2011, 401(7): 2123-2132. doi: 10.1007/s00216-011-5294-7 [130] BAI X Y, LU S Y, XIE L, et al. A pilot study of metabolites of organophosphorus flame retardants in paired maternal urine and amniotic fluid samples: Potential exposure risks of tributyl phosphate to pregnant women [J]. Environmental Science. Processes & Impacts, 2019, 21(1): 124-132. [131] YA M, YU N, ZHANG Y, et al. Biomonitoring of organophosphate triesters and diesters in human blood in Jiangsu Province, eastern China: Occurrences, associations, and suspect screening of novel metabolites [J]. Environmental International, 2019, 131: 105056. doi: 10.1016/j.envint.2019.105056 [132] SU G Y, CRUMP D, LETCHER R J, et al. Rapid in vitro metabolism of the flame retardant triphenyl phosphate and effects on cytotoxicity and mRNA expression in chicken embryonic hepatocytes [J]. Environmental Science & Technology, 2014, 48(22): 13511-13519. [133] GREAVES A K, SU G Y, LETCHER R J. Environmentally relevant organophosphate triesters in herring gulls: In vitro biotransformation and kinetics and diester metabolite formation using a hepatic microsomal assay [J]. Toxicology and Applied Pharmacology, 2016, 308: 59-65. doi: 10.1016/j.taap.2016.08.007 [134] FARHAT A, CRUMP D, CHIU S, et al. In ovo effects of two organophosphate flame retardants—TCPP and TDCPP—on pipping success, development, mRNA expression, and thyroid hormone levels in chicken embryos [J]. Toxicological Sciences, 2013, 134(1): 92-102. doi: 10.1093/toxsci/kft100 [135] WANG G W, DU Z K, CHEN H Y, et al. Tissue-specific accumulation, depuration, and transformation of triphenyl phosphate (TPHP) in adult zebrafish (Danio rerio) [J]. Environmental Science & Technology, 2016, 50(24): 13555-13564. [136] WANG G W, SHI H H, DU Z K, et al. Bioaccumulation mechanism of organophosphate esters in adult zebrafish (Danio rerio) [J]. Environmental Pollution, 2017, 229: 177-187. doi: 10.1016/j.envpol.2017.05.075 [137] TANG B, POMA G, BASTIAENSEN M, et al. Bioconcentration and biotransformation of organophosphorus flame retardants (PFRs) in common carp (Cyprinus carpio) [J]. Environment International, 2019, 126: 512-522. doi: 10.1016/j.envint.2019.02.063 [138] WANG G W, CHEN H Y, DU Z K, et al. In vivo metabolism of organophosphate flame retardants and distribution of their main metabolites in adult zebrafish [J]. The Science of the Total Environment, 2017, 590/591: 50-59. doi: 10.1016/j.scitotenv.2017.03.038 [139] ASHAUER R, HINTERMEISTER A, O’CONNOR I, et al. Significance of xenobiotic metabolism for bioaccumulation kinetics of organic chemicals in Gammarus pulex [J]. Environmental Science & Technology, 2012, 46(6): 3498-3508.