-
塑料在世界范围内被广泛使用,由于其产量大,耐腐蚀等特点,已带来了一系列的环境问题。在这些塑料残体当中,尺寸小于5 mm的塑料被定义为微塑料,目前已作为一种新型污染物广受关注[1-5]。微塑料的来源非常广泛,一部分的初级微塑料来自于个人护理用品,而次级微塑料的主要来源则是光照、热解、机械磨损以及生物作用引起的大块塑料的老化降解[6-11]。
由于独特的物理化学性质,聚氯乙烯(PVC)塑料被广泛用于各种工业产品和生活日用品。自2006年以来,中国的PVC产量已经超越美国,成为世界上最大的PVC生产国[12]。然而,大部分PVC塑料被随意丢弃,在环境中可以广泛检出不同尺寸的PVC塑料残体[13-14]。据报道,PVC是沙滩微塑料的主要组成部分,大约占总量的25%[13-15]。由于PVC微塑料(PVC微塑料)的密度(1.20—1.45 g·cm−3)大于淡水和海水,天然水体中PVC微塑料的含量往往被低估。最近的研究发现,珠江流域每立方水体中PVC微塑料的含量可以高达400个[16]。此外,毒性评估结果发现,PVC微塑料一旦被摄取,会引起海蚯蚓Arenicola marina摄食活力的降低,斑马鱼Danio rerio的肠道损伤,以及线虫Caenorhabditis elegans死亡率的增加[15, 17]。除了自身的毒性之外,微塑料还可以作为无机和有机污染物的载体。一旦被动物摄取,微塑料上吸附的污染物会发生快速的解吸,从而提高污染物的生物毒性[18- 19]。最近的研究发现,微塑料可以被植物根系所摄取,从而在植物体内迁移,分布在不同的器官和组织中[20]。当微塑料与重金属共存时,吸附了重金属的微塑料被植物根系摄取很有可能提高重金属的生物毒性效应。Wang等探究了原始PVC微塑料与镉(Cd)对苦草Vallisneria natans的联合毒性,发现PVC微塑料可以提高镉对苦草的生长抑制[21]。原始和老化的微塑料对重金属的吸附能力存在显著性差异,且老化微塑料表面的含氧官能团可以提高重金属的吸附量[22],从而影响微塑料与重金属的联合毒性效应。然而,目前有关老化PVC微塑料与重金属对植物的联合毒性很少报道。
由于Cd具有较强的毒性、迁移性和蓄积能力,Cd成为农业生产中对人类健康危害最大的重金属之一。2014年,我国生态环境部和国土资源部调查公报表明,全国无机污染土壤中Cd的超标率高达7.0%。本研究评估了Cd、原始PVC微塑料以及老化PVC微塑料对小麦生物量的单独和联合毒性,分析了Cd与PVC微塑料之间的吸附机理以及对小麦的联合毒性效应,从而为进一步研究重金属-微塑料对生物的联合作用提供理论依据。
老化聚氯乙烯微塑料与镉对小麦的联合毒性
Joint toxicity of aged polyvinyl chloride microplastics and cadmium to the wheat plant
-
摘要: 微塑料是一种广受关注的新型污染物。本研究探讨了老化前后的聚氯乙烯(PVC)微塑料(PVC微塑料)与镉(Cd)对小麦的联合毒性。自然光解老化后的PVC微塑料表面发生C—Cl键断裂并伴随C=O的生成,而C=O的出现提高了PVC微塑料表面的亲水性,进一步提高了老化PVC微塑料对Cd的吸附量。根据小麦生长发育期间叶和根生物量的差异,评估PVC微塑料对Cd毒性作用,研究结果发现,原始和老化的PVC微塑料不影响Cd对小麦叶的毒性,但是老化后的PVC微塑料可以提高低浓度Cd对小麦根的生长抑制作用。老化PVC微塑料与Cd的协同效应可能归因于老化微塑料可以提高Cd在小麦体内的生物富集量。Abstract: Microplastic is a new type of pollutant that has received wide attention. This study explored the combined toxicity of polyvinyl chloride (PVC) microplastics and cadmium (Cd) to wheat before and after natural aging treatment. The surface of PVC microplastic after natural photo-aging under C—Cl bond breakage accompanied by the generation of C=O, and the appearance of C=O improves the hydrophilicity of the surface of PVC microplastic, which subsequently enhances the adsorption capacity of Cd. According to the difference in leaf and root biomass during wheat growth and development, the joint toxicity of PVC microplastic and Cd was evaluated: virgin and aged PVC microplastic exhibit negligible effects on the toxicity of Cd to wheat leaves, while aged PVC microplastic exhibit great potential to increase the inhibitory effect on the growth of wheat roots for low concentrations of Cd. The synergistic effect of altered PVC microplastic and Cd may be attributed to the fact that aged microplastics can increase the bioaccumulation of Cd in wheat.
-
Key words:
- polyvinyl chloride /
- aged microplastics /
- heavy metals /
- wheat /
- joint toxicity
-
表 1 PVC微塑料老化前后的元素含量(%)
Table 1. Percentages of elements in pristine and aged PVC microplastics.
C1s O1s Cl2p PVCpristine 77.79 3.45 18.77 PVCaged 78.12 8.77 13.11 -
[1] von MOOS N, BURKHARDT-HOLM P, KÖHLER A. Uptake and effects of microplastics on cells and tissue of the blue mussel Mytilus edulis L. after an experimental exposure [J]. Environmental Science & Technology, 2012, 46(20): 11327-11335. [2] SUSSARELLU R, SUQUET M, THOMAS Y, et al. Oyster reproduction is affected by exposure to polystyrene microplastics [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(9): 2430-2435. doi: 10.1073/pnas.1519019113 [3] 林陆健, 汤帅, 王学松, 等. 聚乙烯微塑料对水溶液中孔雀石绿的吸附机理 [J]. 环境化学, 2020, 39(9): 2559-2566. doi: 10.7524/j.issn.0254-6108.2019070305 LIN L J, TANG S, WANG X S, et al. Adsorption mechanism of malachite green from aqueous solution by polyethylene microplastics [J]. Environmental Chemistry, 2020, 39(9): 2559-2566(in Chinese). doi: 10.7524/j.issn.0254-6108.2019070305
[4] 白璐, 刘宪华, 陈燕珍, 等. 天津近岸海域微塑料污染现状分析 [J]. 环境化学, 2020, 39(5): 1161-1168. doi: 10.7524/j.issn.0254-6108.2019062901 BAI L, LIU X H, CHEN Y J, et al. Current status of microplastics pollution in tianjin coastal waters [J]. Environmental Chemistry, 2020, 39(5): 1161-1168(in Chinese). doi: 10.7524/j.issn.0254-6108.2019062901
[5] 张晓菲, 汪磊. 环境中纳米塑料的分离与检测 [J]. 环境化学, 2020, 39(1): 8-11. doi: 10.7524/j.issn.0254-6108.2019102701 ZHANG X F, WANG L. The separation and detection methods of nanoplastics in the environment [J]. Environmental Chemistry, 2020, 39(1): 8-11(in Chinese). doi: 10.7524/j.issn.0254-6108.2019102701
[6] COLE M, LINDEQUE P, HALSBAND C, et al. Microplastics as contaminants in the marine environment: A review [J]. Marine Pollution Bulletin, 2011, 62(12): 2588-2597. doi: 10.1016/j.marpolbul.2011.09.025 [7] ANDRADY A L. Microplastics in the marine environment [J]. Marine Pollution Bulletin, 2011, 62(8): 1596-1605. doi: 10.1016/j.marpolbul.2011.05.030 [8] BROWNE M A, GALLOWAY T, THOMPSON R. Microplastic: an emerging contaminant of potential concern? [J]. Integrated Environmental Assessment and Management, 2007, 3(4): 559-561. [9] FENDALL L S, SEWELL M A. Contributing to marine pollution by washing your face: microplastics in facial cleansers [J]. Marine Pollution Bulletin, 2009, 58(8): 1225-1228. doi: 10.1016/j.marpolbul.2009.04.025 [10] ZITKO V, HANLON M. Another source of pollution by plastics: Skin cleaners with plastic scrubbers [J]. Marine Pollution Bulletin, 1991, 22(1): 41-42. doi: 10.1016/0025-326X(91)90444-W [11] 李昇昇, 李良忠, 李敏, 等. 环境样品中微塑料及其结合污染物鉴别分析研究进展 [J]. 环境化学, 2020, 39(4): 960-974. doi: 10.7524/j.issn.0254-6108.2019102304 LI S S, LI L Z, LI M, et al. Study on identification of microplastics and the combined pollutants in environmental samples [J]. Environmental Chemistry, 2020, 39(4): 960-974(in Chinese). doi: 10.7524/j.issn.0254-6108.2019102304
[12] WANG C, XIAN Z Y, JIN X, et al. Photo-aging of polyvinyl chloride microplastic in the presence of natural organic acids [J]. Water Research, 2020, 183: 116082. doi: 10.1016/j.watres.2020.116082 [13] BROWNE M A, GALLOWAY T S, THOMPSON R C. Spatial patterns of plastic debris along estuarine shorelines [J]. Environmental Science & Technology, 2010, 44(9): 3404-3409. [14] THOMPSON R C, OLSEN Y, MITCHELL R P, et al. Lost at sea: Where is all the plastic? [J]. Science, 2004, 304(5672): 838. doi: 10.1126/science.1094559 [15] GREEN D S, BOOTS B, SIGWART J, et al. Effects of conventional and biodegradable microplastics on a marine ecosystem engineer (Arenicola marina) and sediment nutrient cycling [J]. Environmental Pollution, 2016, 208(Pt B): 426-434. [16] YAN M T, NIE H Y, XU K H, et al. Microplastic abundance, distribution and composition in the Pearl River along Guangzhou city and Pearl River estuary, China [J]. Chemosphere, 2019, 217: 879-886. doi: 10.1016/j.chemosphere.2018.11.093 [17] LEI L, WU S, LU S, et al. Microplastic particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans [J]. Science of The Total Environment, 2018, 619-620: 1-8. doi: 10.1016/j.scitotenv.2017.11.103 [18] BAIRD R W, HOOKER S K. Ingestion of plastic and unusual prey by a juvenile harbour porpoise [J]. Marine Pollution Bulletin, 2000, 40: 719-720. doi: 10.1016/S0025-326X(00)00051-5 [19] VELZEBOER I, KWADIJK C J A F, KOELMANS A A. Strong sorption of PCBs to nanoplastics, microplastics, carbon nanotubes, and fullerenes [J]. Environmental Science & Technology, 2014, 48(9): 4869-4876. [20] LI L, LUO Y, LI R, et al. Effective uptake of submicrometre plastics by crop plants via a crack-entry mode [J]. Nature Sustainability, 2020. [21] WANG L, GAO Y, JIANG W, et al. Microplastics with cadmium inhibit the growth of Vallisneria natans (Lour.) Hara rather than reduce cadmium toxicity [J]. Chemosphere, 2021, 266: 128979. doi: 10.1016/j.chemosphere.2020.128979 [22] FU Q, TAN X, YE S, et al. Mechanism analysis of heavy metal lead captured by natural-aged microplastics [J]. Chemosphere, 2020, 270: 128624. [23] USEPA, Ecological effects test guidelines 850.4230: Earlyseedling growth toxicity test[R], Washington DC: UnitedStates Environmental Protection Agency, 2012. [24] QUENUM B M, BERTICAT P, VALLET G. Chlorinated Polyethylene. I. Infrared Study [J]. Polymer Journal, 1975, 7(3): 277-286. doi: 10.1295/polymj.7.277 [25] RAMESH S, LEEN K H, KUMUTHA K, et al. FTIR studies of PVC/PMMA blend based polymer electrolytes [J]. Spectrochim Acta A Mol Biomol Spectrosc, 2007, 66(4-5): 1237-1242. doi: 10.1016/j.saa.2006.06.012 [26] RAJENDRAN S, UMA T. FTIR and conductivity studies of PVC based polymer electrolyte systems [J]. Ionics, 2001, 7(1/2): 122-125. [27] DECKER C, BALANDIER M. Laser-induced degradation of polyvinyl chloride II: Oxygen bleaching of polyenes [J]. Journal of Photochemistry, 1981, 15(3): 221-228. doi: 10.1016/0047-2670(81)87006-2 [28] LIU G Z, ZHU Z L, YANG Y X, et al. Sorption behavior and mechanism of hydrophilic organic chemicals to virgin and aged microplastics in freshwater and seawater [J]. Environmental Pollution, 2019, 246: 26-33. doi: 10.1016/j.envpol.2018.11.100 [29] BRENNECKE D, DUARTE B, F PAIVA, et al. Microplastics as vector for heavy metal contamination from the marine environment [J]. Estuarine Coastal and Shelf Science, 2016, 178: 189-195. doi: 10.1016/j.ecss.2015.12.003 [30] SUN X D, YUAN X Z, JIA Y B, et al. Differentially charged nanoplastics demonstrate distinct accumulation in Arabidopsis thaliana [J]. Nature Nanotechnology, 2020, 15(9): 755-760. doi: 10.1038/s41565-020-0707-4