-
冰封是高纬度地区的常见且重要的水文特征,全球每年有超过5000万个湖泊会定期冻结[1]。水体结冰过程中的部分污染物会在冰体中临时存储,然后在春季温度回升时融化并释放到水中[2-5]。近年来,气候变暖引起了海洋与湖泊的异常变化[6-7],水体的冰封期缩短,甚至冰川也开始融化。冰融化过程中,若冰中的污染物集中释放就可能对生态环境产生破坏,因此有必要弄清冰消融过程中污染物的迁移规律。
近年来,冰封期的湖泊已不是“静止”的观点已经被湖沼专家所公认,因此开展了许多有关湖泊冰封期的研究[8-13],但这些研究主要集中在湖泊结冰的过程中。由于湖泊融冰过程中冰体强度骤降,难以开展现场实验,因此湖泊融冰过程中的污染物的迁移规律的研究大都采用室内模拟实验。李志军等[2]研究发现,融化过程中,冰内硝基苯“原位不动”,冰内的硝基苯只随冰的融化排出到水体中;薛爽等[14-15]通过室内模拟实验,发现了冰融化过程中溶解性有机物(DOM)有初期优先洗脱现象;Brimblecombe等[16-17]通过研究人工制冰融化过程中离子的洗脱现象,发现富含离子的溶液优先从最初的20%—30%的冰融水中获得。但有关湖泊冰封期农药迁移规律的研究尚未见报道。
本研究以化学性质稳定、水溶性强、难生物降解且易随降水、淋溶、径流、渗透等作用由土壤迁移至水体中的阿特拉津农药为研究对象[18],通过开展室内模拟实验,探索其在湖泊融冰过程的迁移规律,以期为湖泊融冰过程中的水环境管理提供参考。
模拟湖泊融冰过程中阿特拉津的迁移规律
The migration law of atrazine in the process of melting simulated lake ice
-
摘要: 为探究阿特拉津在湖泊冰融化过程中的迁移规律,配制2组不同初始浓度的阿特拉津水样,并通过模拟湖泊的自然结冰和融冰的过程,分析阿特拉津在冰水体系和冰体内部的分布及其在冰体融化过程中的融出浓度。研究结果表明,不同初始浓度的阿特拉津溶液在冰水两相中的分布规律均为冰融水浓度<结冰前水浓度<冰下水浓度,在冰中的分布表现均为上层浓度<中层浓度<下层浓度;阿特拉津在初期冰融水(融1)中含量最高,即融冰过程中阿特拉津存在初期洗脱现象;随着融冰过程的进行,阿特拉津会呈少量、有递减趋势的融出;融冰进程前段冰融水(融1、融2、融3)中阿特拉津含量大于原冰体含量的77%,阿特拉津在融冰初期向冰融水中的迁移能力大于融冰后期。Abstract: In order to explore the migration law of atrazine in the melting of lake ice, two groups of atrazine water samples with different initial concentrations were prepared, and the distribution of atrazine in the ice system and ice body and its melting concentration in the melting process were analyzed by simulating the natural freezing and melting process of the lake. The results showed that the distribution of atrazine in ice water two-phase is as follows: concentration of ice < initial concentration of water before freezing < concentration of under-ice water; the distribution in ice phase is in the order of the upper layer concentration < the middle layer concentration < the lower layer concentration. During the process of ice melting, the content of atrazine in the initial melt water (melt 1) was the highest. Atrazine was eluted at the initial stage, which was characterized by high concentration. With the process of ice melting, atrazine would melt out in a small amount with a decreasing trend. The content of atrazine in melt water (melt 1, melt 2, melt 3) in the initial stage of ice melting process was more than 77% of the original ice content, which means that more than 77% of atrazine in the ice body could be melted out of the first three melting water (melt 1, melt 2, melt 3), the migration of atrazine into ice melt water in the initial stage is stronger than that in the later stage.
-
Key words:
- lake /
- simulate icing /
- atrazine /
- ice melting process /
- migration law
-
表 1 质谱参数
Table 1. Mass spectrometry parameters
化合物
Compounds质荷比(mz) 碰撞能量/eV
Collision energy母离子
Parention子离子
Daughter ion阿特拉津
Atrazine215 95.8 25 103.73 28 173.9 17 -
[1] VERPOORTER C, KUTSER T, SEEKELL D A, et al. A global inventory of lakes based on high-resolution satellite imagery [J]. Geophysical Research Letters, 2014, 41(18): 6396-6402. doi: 10.1002/2014GL060641 [2] 李志军, 王昕, 李青山, 等. 不同条件下硝基苯在水-冰体系中的分配研究 [J]. 中国科学(E辑:技术科学), 2008, 38(7): 1131-1138. LI Z J, WANG X, LI Q S, et al. Distribution of nitrobenzene in water-ice system under different conditions [J]. Science in China (Series E:Technological Sciences), 2008, 38(7): 1131-1138(in Chinese).
[3] 张岩, 李畅游, SHEN Hung Tao, 等. 乌梁素海湖泊冰生长过程中总氮的迁移规律 [J]. 水科学进展, 2013, 24(5): 728-735. ZHANG Y, LI C Y, SHEN H T, et al. Total nitrogen migration in Wuliangsuhai Lake during ice growth process [J]. Advances in Water Science, 2013, 24(5): 728-735(in Chinese).
[4] JONES K C, de VOOGT P. Persistent organic pollutants (POPs): State of the science [J]. Environmental Pollution, 1999, 100(1/2/3): 209-221. [5] CABRERIZO A, GALBÁN-MALAGÓN C, del VENTO S, et al. Sources and fate of polycyclic aromatic hydrocarbons in the Antarctic and Southern Ocean atmosphere [J]. Global Biogeochemical Cycles, 2014, 28(12): 1424-1436. doi: 10.1002/2014GB004910 [6] 祁第, 陈立奇, 蔡卫君, 等. 北冰洋海洋酸化和碳循环的研究进展 [J]. 科学通报, 2018, 63(22): 2201-2213. doi: 10.1360/N972018-00334 QI D, CHEN L Q, CAI W J, et al. Review on ocean acidification and carbon cycling in the Arctic Ocean [J]. Chinese Science Bulletin, 2018, 63(22): 2201-2213(in Chinese). doi: 10.1360/N972018-00334
[7] 祝叶华. 全球变暖被预测进一步加重 [J]. 科技导报, 2017, 35(24): 9. ZHU Y H. Global warming is predicted to be further aggravated [J]. Science & Technology Review, 2017, 35(24): 9(in Chinese).
[8] WEYHENMEYER G A, LIVINGSTONE D M, MEILI M, et al. Large geographical differences in the sensitivity of ice-covered lakes and rivers in the Northern Hemisphere to temperature changes [J]. Global Change Biology, 2011, 17(1): 268-275. doi: 10.1111/j.1365-2486.2010.02249.x [9] MEYER T, LEI Y D, WANIA F. Measuring the release of organic contaminants from melting snow under controlled conditions [J]. Environmental Science & Technology, 2006, 40(10): 3320-3326. [10] NAKAGAWA K, NAGAHAMA H, MAEBASHI S, et al. Usefulness of solute elution from frozen matrix for freeze-concentration technique [J]. Chemical Engineering Research and Design, 2010, 88(5/6): 718-724. [11] NAKAGAWA K, MAEBASHI S, MAEDA K. Freeze-thawing as a path to concentrate aqueous solution [J]. Separation and Purification Technology, 2010, 73(3): 403-408. doi: 10.1016/j.seppur.2010.04.031 [12] HODGKINS R, TRANTER M, DOWDESWELL J A. Solute provenance, transport and denudation in a high arctic glacierized catchment [J]. Hydrological Processes, 1997, 11(14): 1813-1832. doi: 10.1002/(SICI)1099-1085(199711)11:14<1813::AID-HYP498>3.0.CO;2-C [13] SPENCER R G M, BOLTON L, BAKER A. Freeze/thaw and pH effects on freshwater dissolved organic matter fluorescence and absorbance properties from a number of UK locations [J]. Water Research, 2007, 41(13): 2941-2950. doi: 10.1016/j.watres.2007.04.012 [14] 薛爽, 陈静, 铁梅, 等. 水体冻结过程中卤乙酸前体物在水-冰体系中的分配研究 [J]. 中国环境科学, 2014, 34(11): 2773-2780. XUE S, CHEN J, TIE M, et al. Ratio of haloacetic acids precursor in water-ice system during the freezing processes of water [J]. China Environmental Science, 2014, 34(11): 2773-2780(in Chinese).
[15] XUE S, CHEN J, TIE M. Release of dissolved organic matter from melting ice [J]. Environmental Progress & Sustainable Energy, 2016, 35(5): 1458-1467. [16] BRIMBLECOMBE P, CLEGG S L, DAVIES T D, et al. Observations of the preferential loss of major ions from melting snow and laboratory ice [J]. Water Research, 1987, 21(10): 1279-1286. doi: 10.1016/0043-1354(87)90181-3 [17] BRIMBLECOMBE P, CLEGG S L, DAVIES T D, et al. The loss of halide and sulphate ions from melting ice [J]. Water Research, 1988, 22(6): 693-700. doi: 10.1016/0043-1354(88)90180-7 [18] 刘玉灿, 苏苗苗, 张岩, 等. 不同UV工艺中阿特拉津的降解效果与机理研究 [J]. 中国给水排水, 2019, 35(5): 60-66. LIU Y C, SU M M, ZHANG Y, et al. Degradation effect and mechanism of atrazine in UV-based oxidation processes [J]. China Water & Wastewater, 2019, 35(5): 60-66(in Chinese).
[19] GAO W, SMITH D W, SEGO D C. Release of contaminants from melting spray ice of industrial wastewaters [J]. Journal of Cold Regions Engineering, 2004, 18(1): 35-51. doi: 10.1061/(ASCE)0887-381X(2004)18:1(35) [20] TANG Y Q, ZHANG Y, ZHAO W L, et al. The migration law of iron during the process of water icing [J]. Water, 2020, 12(2): 441. doi: 10.3390/w12020441 [21] 甄志磊, 李畅游, 张生, 等. 冰封期达里诺尔湖主要离子特征 [J]. 环境化学, 2015, 34(10): 1901-1910. doi: 10.7524/j.issn.0254-6108.2015.10.2015050202 ZHEN Z L, LI C Y, ZHANG S, et al. Major ions in Dali Lake during the icebound season [J]. Environmental Chemistry, 2015, 34(10): 1901-1910(in Chinese). doi: 10.7524/j.issn.0254-6108.2015.10.2015050202
[22] MARTIN S. A field study of brine drainage and oil entrainment in first-year sea ice [J]. Journal of Glaciology, 1979, 22(88): 473-502. doi: 10.1017/S0022143000014477 [23] KNIGHT C A. Observations of the morphology of melting snow [J]. Journal of the Atmospheric Sciences, 1979, 36(6): 1123-1130. doi: 10.1175/1520-0469(1979)036<1123:OOTMOM>2.0.CO;2 [24] NAKAGAWA K, MAEBASHI S, MAEDA K. Concentration of aqueous dye solution by freezing and thawing [J]. The Canadian Journal of Chemical Engineering, 2009, 87(5): 779-787. doi: 10.1002/cjce.20213 [25] XUE S, WEN Y, HUI X J, et al. The migration and transformation of dissolved organic matter during the freezing processes of water [J]. Journal of Environmental Sciences, 2015, 27: 168-178. doi: 10.1016/j.jes.2014.05.035 [26] 吕宏洲, 李畅游, 史小红, 等. 不同条件下乌梁素海污染物在冰-水体系中分布规律的模拟 [J]. 湖泊科学, 2015, 27(6): 1151-1158. doi: 10.18307/2015.0621 LV H Z, LI C Y, SHI X H, et al. Pollutant distribution under different conditions in Lake Ulansuhai ice-water system [J]. Journal of Lake Sciences, 2015, 27(6): 1151-1158(in Chinese). doi: 10.18307/2015.0621
[27] 薛洪海, 唐晓剑, 康春莉, 等. 六六六(α-HCH)在水、冰和雪中的光化学反应 [J]. 环境化学, 2014, 33(8): 1342-1346. doi: 10.7524/j.issn.0254-6108.2014.08.006 XUE H H, TANG X J, KANG C L, et al. The photochemistry of α-hexachlorocyclohexane(α-HCH)in water, ice and snow [J]. Environmental Chemistry, 2014, 33(8): 1342-1346(in Chinese). doi: 10.7524/j.issn.0254-6108.2014.08.006
[28] SÁNCHEZ J, RUIZ Y, RAVENTÓS M, et al. Progressive freeze concentration of orange juice in a pilot plant falling film [J]. Innovative Food Science & Emerging Technologies, 2010, 11(4): 644-651.