-
重金属因高毒性、不可降解性和生物累积性而威胁人类健康[1-2]。目前已有各种技术去除重金属离子,例如离子交换、化学沉淀、膜分离和吸附[3-5]。其中,吸附法有效、经济,因为它易于设计和操作,如活性炭、粘土、生物炭和聚合物被广泛用于废水处理[6-8]。然而,上述商业吸附剂可回收性差,去除效率低,成本高。因此,研究新型吸收剂是必要的。
气凝胶是高度互连的多孔固体材料,形状如海绵,具有超低密度、高表面积和强吸附能力,易于从水溶液中分离[9-10]。这些特质使其成为水处理理想材料。纤维素纳米纤维(cellulose nanofiber,CNF)由于高纵横比、丰富表面羟基和结构灵活性而适宜制备气凝胶[9]。众多研究表明CNF基材料对重金属有显著吸附作用[11-12],但单纯羟基吸附能力有限,CNF上引入羧基和氨基,可以提高重金属吸附能力[13]。传统物理交联气凝胶的力学性能较差[14],机械强度低,可再生性能差,严重限制其在重金属吸附领域的实际应用。
2,2,6,6-四甲基哌啶-1-氧自由基(2,2,6,6-tetramethylpiperidine -1- oxygen radical,TEMPO)改性是常用的CNF改性方法,改性能增加CNF中羧基含量[15]。本文将使用3-缩水甘油氧丙基三甲氧基硅烷(3- glycidoxypropyltrimethoxysilane,GPTMS)将支化聚乙烯亚胺(Branched polyethyleneimine,b-PEI)化学交联到TEMPO氧化的纤维素纳米纤维(TOCNF)上,制备得到CNF基复合海绵状吸附剂(TOCGP),并考察其对Cu2+、Cd2 +和Pb2+的吸附性能和自身循环再生性能。
纤维素纳米纤维基复合吸附剂的制备及吸附水中重金属离子
Preparation of cellulose nanofiber-based composite adsorbent and adsorption of heavy metal ions in water
-
摘要: 开发高效去除重金属生物基吸附剂是治理全球水污染的关键策略之一。纤维素纳米纤维(cellulose nanofiber,CNF)通过氧化,提高羧基含量可以增强对重金属的吸附能力。通过使用3-缩水甘油氧丙基三甲氧基硅烷(3- glycidoxypropyltrimethoxysilane,GPTMS)将支化聚乙烯亚胺(branched polyethyleneimine,b-PEI)交联到TEMPO氧化的TOCNF上,制备了CNF基复合海绵状吸附剂(TOCGP)。研究了TOCGP的物理表征及吸附性能。FTIR结果显示成功将氨基引入TOCGP,氨基和羧基都对重金属吸附有较大贡献。TOCGP对Cu2+、Cd2+和Pb2+有很高的吸附容量,在最佳pH和100 mg·L−1的初始离子浓度下,分别能达到89.61、 72.80、 205.59 mg·g−1。吸附过程符合准二级动力学和Langmuir等温吸附。TOCGP具有较强的再生性能,5次吸附-解吸循环后,吸附能力仍能达到最初的80%以上。
-
关键词:
- 纤维素纳米纤维(CNF) /
- 交联 /
- 海绵状吸附剂 /
- 重金属离子 /
- 吸附
Abstract: Developing bio-based adsorbents for removing heavy metals with high efficiency is one of the key strategies to control global water pollution. The adsorption capacity of heavy metals can be enhanced by oxidizing CNF and increasing carboxyl content. CNF-based composite sponge adsorbent(TOCGP) was prepared by crosslinking Branched polyethyleneimine(b-PEI) onto TOCNF oxidized by TEMPO with 3-glycidoxypropyltrimethoxysilane(GPTMS). The physical characterization and adsorption properties of TOCGP were studied. FTIR results showed that amino groups were successfully introduced into TOCGP, and both amino groups and carboxyl groups contributed greatly to the adsorption of heavy metals. TOCGP has a high adsorption capacity for Cu2+, Cd2+ and Pb2+, which can reach 89.61 mg·g−1, 72.80 mg·g−1 and 205.59 mg·g−1 under the optimal pH and initial ion concentration of 100 mg·L−1, respectively. The adsorption process accords with quasi-second-order kinetics and Langmuir isotherm adsorption. TOCGP has strong regeneration performance, and its adsorption capacity can still reach more than 80% of the original one after five adsorption-desorption cycles.-
Key words:
- CNF /
- crosslinking /
- sponge adsorbent /
- heavy metal ions /
- adsorb
-
表 1 TOCGP对 Cu2+、Cd2+和Pb2+的吸附动力学拟合参数
Table 1. Fitting parameters of adsorption kinetics of Cu2+,Cd2+ and Pb2+ by TOCGP
重金属离子
Heavy metal ion准一级动力学模型
Quasi-first-order dynamic model准二级动力学模型
Quasi-second order dynamic modelq1e /(mg·g−1) k1 /(min−1) R2 q2e /(mg·g−1) k2 /(g·mg−1·min−1) R2 Cu2+ 4.15 0.1649 0.8107 91.74 0.0276 0.9991 Cd2+ 4.86 0.1563 0.7663 76.34 0.0147 0.9968 Pb2+ 8.93 0.1272 0.9902 212.77 0.0048 0.9973 表 2 TOCGP对 Cu2+、Cd2+和Pb2+的等温吸附拟合参数
Table 2. Isothermal adsorption parameters of Cu2+, Cd2+ and Pb2+ by TOCGP
重金属离子
Heavy metal ionLangmuir等温吸附 Freundlich等温吸附 qm/(mg·g−1) KL/(L·mg−1) RL R2 KF/(L·mg−1) 1/n R2 Cu2+ 92.59 0.0431 0.0443 0.9984 14.664 0.3197 0.9088 Cd2+ 76.92 0.1841 0.0107 0.9999 28.806 0.1800 0.7881 Pb2+ 200.00 0.1241 0.0158 0.9994 53.485 0.2379 0.8578 表 3 CNF改性后对Cu2+、 Cd2+和 Pb2+的吸附能力
Table 3. Adsorption capacity of modified CNF for Cu2+,Cd2+ and Pb2+
重金属
heavy metal表面功能化材料
Surface functionalizationpH Qe//
(mg·g−1)Langmuir Freundlich 参考文献
referencesQm/
(mg·g−1)KL/
(mg·L−1)R2 KF/
(L·mg−1)1/n R2 Cd2+ 丝光化(-COO-) 5 5 2.06 691 0.923 - - - [31] 胺化作用 5 58.1 40.56 61.3 0.892 - - - [32] 聚甲基丙烯酸-共马来酸
接枝5 135 - - - - - - [33] 巯基化 4 45.9 45.9 0.011 0.995 2.17 0.6023 0.935 [34] TEMPO-氧化/GPTMS/b-PEI 5 75.72 76.92 0.1841 0.9999 28.806 0.18 0.7881 本研究 Cu2+ 胺化作用 5 - 18.9 0.17 0.975 6.71 0.24 0.903 [15] 5 50.6 55.6 4.072 0.77 - - - [32] 聚丙烯酸接枝 4.5 45.8 57.5 0.124 0.972 0.104 0.72 0.988 [35] 聚丙烯酸/腐植酸钠接枝 4.5 44.7 64.6 0.175 0.97 0.114 0.66 0.991 [35] TEMPO-氧化/聚乙烯亚胺
接枝5 - 52.3 0.17 0.985 31 10.4 0.919 [36] TEMPO-氧化/氧化石墨烯复合材料 5.7 63.5 - - - - - - [37] 接枝可再生腰果酚衍生的硅氧烷(CDA) 5 47.61 45.89 0.54 0.993 13.43 0.28 0.896 [38] TEMPO/高碘酸盐氧化 5.5 92.23 - - - - - - [39] Cu2+ TEMPO-氧化(-COO-) 5.1 67.2 - - - - - - [40] 巯基化 4 49 49 0.016 0.999 7.51 0.5284 0.926 [41] TEMPO-氧化/GPTMS/b-PEI 5 88.59 92.59 0.0431 0.9984 14.664 0.3197 0.9088 本研究 Pb2+ 磺化 5 123 251 0.69 0.97 72.8 0.66 0.93 [42] TEMPO-氧化(-COO-) 6 6 9.7 - - - - - [43] TEMPO-氧化(-COO-)/硫代化(-Si-SH) 5.5 133 137.7 0.783 0.998 - - - [44] 聚甲基丙烯酸-共马来酸
接枝5 165 - - - - - - [43] TEMPO/高碘酸盐氧化 5.5 97.34 - - - - - - [39] 巯基化 4 22 22 0.052 0.994 2.68 0.3937 0.822 [41] TEMPO-氧化/GPTMS/b-PEI 6 195.15 200 0.1241 0.9994 53.485 0.2379 0.8578 本研究 -
[1] HAN R R, ZHOU B H, HUANG Y Y, et al. Bibliometric overview of research trends on heavy metal health risks and impacts in 1989-2018 [J]. Journal of Cleaner Production, 2020, 276: 123249. doi: 10.1016/j.jclepro.2020.123249 [2] DUAN W W, XU C, LIU Q, et al. Levels of a mixture of heavy metals in blood and urine and all-cause, cardiovascular disease and cancer mortality: A population-based cohort study [J]. Environmental Pollution, 2020, 263: 114630. doi: 10.1016/j.envpol.2020.114630 [3] JOSEPH L, JUN B M, FLORA J R V, et al. Removal of heavy metals from water sources in the developing world using low-cost materials: A review [J]. Chemosphere, 2019, 229: 142-159. doi: 10.1016/j.chemosphere.2019.04.198 [4] AHMED M J K, AHMARUZZAMAN M. A review on potential usage of industrial waste materials for binding heavy metal ions from aqueous solutions [J]. Journal of Water Process Engineering, 2016, 10: 39-47. doi: 10.1016/j.jwpe.2016.01.014 [5] GARBA Z N, RAHIM A A. Evaluation of optimal activated carbon from an agricultural waste for the removal of Para-chlorophenol and 2, 4-dichlorophenol [J]. Process Safety and Environmental Protection, 2016, 102: 54-63. doi: 10.1016/j.psep.2016.02.006 [6] LIU J, SU D H, YAO J R, et al. Soy protein-based polyethylenimine hydrogel and its high selectivity for copper ion removal in wastewater treatment [J]. Journal of Materials Chemistry A, 2017, 5(8): 4163-4171. doi: 10.1039/C6TA10814H [7] QIN H Q, HU T J, ZHAI Y B, et al. The improved methods of heavy metals removal by biosorbents: A review [J]. Environmental Pollution, 2020, 258: 113777. doi: 10.1016/j.envpol.2019.113777 [8] MAHMOODI N M. Photocatalytic ozonation of dyes using multiwalled carbon nanotube [J]. Journal of Molecular Catalysis A:Chemical, 2013, 366: 254-260. doi: 10.1016/j.molcata.2012.10.002 [9] de FRANCE K J, HOARE T, CRANSTON E D. Review of hydrogels and aerogels containing nanocellulose [J]. Chemistry of Materials, 2017, 29(11): 4609-4631. doi: 10.1021/acs.chemmater.7b00531 [10] ZHOU Z H, YANG Y B, HAN Y Y, et al. In situ doping enables the multifunctionalization of templately synthesized polyaniline@cellulose nanocomposites [J]. Carbohydrate Polymers, 2017, 177: 241-248. doi: 10.1016/j.carbpol.2017.08.136 [11] ZHAO H, OUYANG X K, YANG L Y. Adsorption of lead ions from aqueous solutions by porous cellulose nanofiber-sodium alginate hydrogel beads [J]. Journal of Molecular Liquids, 2021, 324: 115122. doi: 10.1016/j.molliq.2020.115122 [12] TANG C X, BRODIE P, LI Y Z, et al. Shape recoverable and mechanically robust cellulose aerogel beads for efficient removal of copper ions [J]. Chemical Engineering Journal, 2020, 392: 124821. doi: 10.1016/j.cej.2020.124821 [13] MO L T, PANG H W, TAN Y, et al. 3D multi-wall perforated nanocellulose-based polyethylenimine aerogels for ultrahigh efficient and reversible removal of Cu(II) ions from water [J]. Chemical Engineering Journal, 2019, 378: 122157. doi: 10.1016/j.cej.2019.122157 [14] 李健, 张恩爽, 刘圆圆, 等. 超低密度气凝胶的制备及应用 [J]. 化学进展, 2020, 32(6): 713-726. LI J, ZHANG E S, LIU Y Y, et al. Preparation of the ultralow density aerogel and its application [J]. Progress in Chemistry, 2020, 32(6): 713-726(in Chinese).
[15] ZHANG N, ZANG G L, SHI C, et al. A novel adsorbent TEMPO-mediated oxidized cellulose nanofibrils modified with PEI: Preparation, characterization, and application for Cu(II) removal [J]. Journal of Hazardous Materials, 2016, 316: 11-18. doi: 10.1016/j.jhazmat.2016.05.018 [16] JRADI K, BIDEAU B, CHABOT B, et al. Characterization of conductive composite films based on TEMPO-oxidized cellulose nanofibers and polypyrrole [J]. Journal of Materials Science, 2012, 47(8): 3752-3762. doi: 10.1007/s10853-011-6226-9 [17] HO Y S, OFOMAJA A E. Pseudo-second-order model for lead ion sorption from aqueous solutions onto palm kernel fiber [J]. Journal of Hazardous Materials, 2006, 129(1/2/3): 137-142. [18] MITTAL A, THAKUR V, GAJBE V. Evaluation of adsorption characteristics of an anionic azo dye Brilliant Yellow onto hen feathers in aqueous solutions [J]. Environmental Science and Pollution Research, 2012, 19(6): 2438-2447. doi: 10.1007/s11356-012-0756-9 [19] 杜明阳, 邹京, 豆俊峰, 等. 钾改性蒙脱石磁性微球对铯的吸附性能 [J]. 环境化学, 2021, 40(3): 779-789. doi: 10.7524/j.issn.0254-6108.2019110202 DU M Y, ZOU J, DOU J F, et al. Adsorption properties of potassium modified montmorillonite magnetic microspheres for cesium [J]. Environmental Chemistry, 2021, 40(3): 779-789(in Chinese). doi: 10.7524/j.issn.0254-6108.2019110202
[20] 侯璟玥, 马海红, 徐卫兵, 等. 改性羧甲基纤维素缓释肥包膜材料的制备与表征 [J]. 材料科学与工程学报, 2018, 36(1): 90-94. HOU J Y, MA H H, XU W B, et al. Preparation and characterization of modified carboxymethyl cellulose films coating materials of fertilizers [J]. Journal of Materials Science and Engineering, 2018, 36(1): 90-94(in Chinese).
[21] PAN Z Z, NISHIHARA H, IWAMURA S, et al. Cellulose nanofiber as a distinct structure-directing agent for xylem-like microhoneycomb monoliths by unidirectional freeze-drying [J]. ACS Nano, 2016, 10(12): 10689-10697. doi: 10.1021/acsnano.6b05808 [22] CHENG H, LI Y Z, WANG B J, et al. Chemical crosslinking reinforced flexible cellulose nanofiber-supported cryogel [J]. Cellulose, 2018, 25(1): 573-582. doi: 10.1007/s10570-017-1548-7 [23] DONG Z, ZHAO J, DU J F, et al. Radiation synthesis of spherical cellulose-based adsorbent for efficient adsorption and detoxification of Cr(VI) [J]. Radiation Physics and Chemistry, 2016, 126: 68-74. doi: 10.1016/j.radphyschem.2016.05.013 [24] LI Y Z, GRISHKEWICH N, LIU L L, et al. Construction of functional cellulose aerogels via atmospheric drying chemically cross-linked and solvent exchanged cellulose nanofibrils [J]. Chemical Engineering Journal, 2019, 366: 531-538. doi: 10.1016/j.cej.2019.02.111 [25] 周丹丹, 吴文卫, 赵婧, 等. 花生壳和松木屑制备的生物炭对Cu2+的吸附研究 [J]. 生态环境学报, 2016, 25(3): 523-530. ZHOU D D, WU W W, ZHAO J, et al. Study on the adsorption of Cu2+ to biochars produced from peanut shells and pine chips [J]. Ecology and Environmental Sciences, 2016, 25(3): 523-530(in Chinese).
[26] SARUCHI, KUMAR V. Adsorption kinetics and isotherms for the removal of rhodamine B dye and Pb+2 ions from aqueous solutions by a hybrid ion-exchanger [J]. Arabian Journal of Chemistry, 2019, 12(3): 316-329. doi: 10.1016/j.arabjc.2016.11.009 [27] GUSAIN D, SRIVASTAVA V, SHARMA Y C. Kinetic and thermodynamic studies on the removal of Cu(II) ions from aqueous solutions by adsorption on modified sand [J]. Journal of Industrial and Engineering Chemistry, 2014, 20(3): 841-847. doi: 10.1016/j.jiec.2013.06.014 [28] TRAN H N, YOU S J, CHAO H P. Insight into adsorption mechanism of cationic dye onto agricultural residues-derived hydrochars: Negligible role of π-π interaction [J]. Korean Journal of Chemical Engineering, 2017, 34(6): 1708-1720. doi: 10.1007/s11814-017-0056-7 [29] MITTAL A, AHMAD R, HASAN I. Iron oxide-impregnated dextrin nanocomposite: Synthesis and its application for the biosorption of Cr(VI) ions from aqueous solution [J]. Desalination and Water Treatment, 2016, 57(32): 15133-15145. doi: 10.1080/19443994.2015.1070764 [30] 王彤彤, 马江波, 曲东, 等. 两种木材生物炭对铜离子的吸附特性及其机制 [J]. 环境科学, 2017, 38(5): 2161-2171. WANG T T, MA J B, QU D, et al. Characteristics and mechanism of copper adsorption from aqueous solutions on biochar produced from sawdust and apple branch [J]. Environmental Science, 2017, 38(5): 2161-2171(in Chinese).
[31] HOKKANEN S, REPO E, SILLANPÄÄ M. Removal of heavy metals from aqueous solutions by succinic anhydride modified mercerized nanocellulose [J]. Chemical Engineering Journal, 2013, 223: 40-47. doi: 10.1016/j.cej.2013.02.054 [32] HOKKANEN S, REPO E, SUOPAJÄRVI T, et al. Adsorption of Ni(II), Cu(II) and Cd(II) from aqueous solutions by amino modified nanostructured microfibrillated cellulose [J]. Cellulose, 2014, 21(3): 1471-1487. doi: 10.1007/s10570-014-0240-4 [33] MAATAR W, BOUFI S. Poly(methacylic acid-co-maleic acid) grafted nanofibrillated cellulose as a reusable novel heavy metal ions adsorbent [J]. Carbohydrate Polymers, 2015, 126: 199-207. doi: 10.1016/j.carbpol.2015.03.015 [34] CHOI H Y, BAE J H, HASEGAWA Y, et al. Thiol-functionalized cellulose nanofiber membranes for the effective adsorption of heavy metal ions in water [J]. Carbohydrate Polymers, 2020, 234: 115881. doi: 10.1016/j.carbpol.2020.115881 [35] ZHANG X F, ZHAO J Q, CHENG L, et al. Acrylic acid grafted and acrylic acid/sodium humate grafted bamboo cellulose nanofibers for Cu2+adsorption [J]. RSC Adv, 2014, 4(98): 55195-55201. doi: 10.1039/C4RA08307E [36] GENG B Y, WANG H Y, WU S, et al. Surface-tailored nanocellulose aerogels with thiol-functional moieties for highly efficient and selective removal of Hg(II) ions from water [J]. ACS Sustainable Chemistry & Engineering, 2017, 5(12): 11715-11726. [37] ZHU C T, LIU P, MATHEW A P. Self-assembled TEMPO cellulose nanofibers: Graphene oxide-based biohybrids for water purification [J]. ACS Applied Materials & Interfaces, 2017, 9(24): 21048-21058. [38] JI Y, WEN Y Y, WANG Z, et al. Eco-friendly fabrication of a cost-effective cellulose nanofiber-based aerogel for multifunctional applications in Cu(II) and organic pollutants removal [J]. Journal of Cleaner Production, 2020, 255: 120276. doi: 10.1016/j.jclepro.2020.120276 [39] ABOU-ZEID R E, DACRORY S, ALI K A, et al. Novel method of preparation of tricarboxylic cellulose nanofiber for efficient removal of heavy metal ions from aqueous solution [J]. International Journal of Biological Macromolecules, 2018, 119: 207-214. doi: 10.1016/j.ijbiomac.2018.07.127 [40] LIU P, OKSMAN K, MATHEW A P. Surface adsorption and self-assembly of Cu(II) ions on TEMPO-oxidized cellulose nanofibers in aqueous media [J]. Journal of Colloid and Interface Science, 2016, 464: 175-182. doi: 10.1016/j.jcis.2015.11.033 [41] SEHAQUI H, LARRAYA U P, LIU P, et al. Enhancing adsorption of heavy metal ions onto biobased nanofibers from waste pulp residues for application in wastewater treatment [J]. Cellulose, 2014, 21(4): 2831-2844. doi: 10.1007/s10570-014-0310-7 [42] SUOPAJÄRVI T, LIIMATAINEN H, KARJALAINEN M, et al. Lead adsorption with sulfonated wheat pulp nanocelluloses [J]. Journal of Water Process Engineering, 2015, 5: 136-142. doi: 10.1016/j.jwpe.2014.06.003 [43] SRIVASTAVA S, KARDAM A, RAJ K R. Nanotech reinforcement onto cellulosic fibers: Green remediation of toxic metals [J]. International Journal of Green Nanotechnology, 2012, 4(1): 46-53. doi: 10.1080/19430892.2012.654744 [44] YANG R, AUBRECHT K B, MA H Y, et al. Thiol-modified cellulose nanofibrous composite membranes for chromium (Ⅵ) and lead (Ⅱ) adsorption [J]. Polymer, 2014, 55(5): 1167-1176. doi: 10.1016/j.polymer.2014.01.043