-
改革开放以来,我国工业建设和城市化进程取得巨大成就,但发展带来的大气环境问题日益严重[1-3]. 依赖化石燃料的重工业和交通业持续不断地向大气环境排放氮氧化物(NOx,x=1,2;NO占比约95%),不仅增加居民患呼吸道疾病的风险,还加剧光化学烟雾、酸雨和雾霾等污染事件的发生,严重威胁了居民健康和气候环境[4-9]. 面临严峻的大气环境污染形势,我国采取了一系列措施控制大气NOx的排放. 然而,在2011—2017年间,我国大气环境中NOx的浓度仍保持高位,NOx污染物的浓度只降了26%. 因此,开发高效净化氮氧化物技术迫在眉睫.
传统物理吸附和选择催化还原技术能有效减少工业废气和汽车尾气中高浓度的NO,但并不适用于净化大气和室内环境中低浓度的NO污染[10-12]. 与传统净化技术相比,光催化净化NO技术利用太阳能高效转化NO形成硝酸盐,在绿色治理NOx领域展现出广阔的应用前景[13-21]. 光催化去除NOx的基本步骤如图1所示,NO光催化剂在太阳能激发下产生大量光生电子和空穴. 激发态电子和空穴迅速迁移到半导体表面后,与表面吸附的分子反应产生新物种,例如光生电子还原O2生成·O2−,空穴氧化H2O形成·OH[22-29]. 这些活性氧物种均能够高效氧化NO形成硝酸盐或NO2(反应式1—8),有望实现太阳能绿色净化NO污染物. 然而,目前光催化消减NO技术的实际应用仍面临巨大挑战,催化剂的净化效率和选择性成为了限制其发展的重要因素.
众所周知,光催化去除NO效率与催化剂的物理电子结构紧密相关[30-34]. 可以通过改性策略改变催化剂的物理结构来提升催化剂的光吸收能力、载流子迁移效率或调控氧化还原电位,进而增强光催化去除NO的活性[35-39]. 遗憾的是,常规的改性策略一般无法实现选择性光催化去除NO形成硝酸盐,在反应过程中光生空穴和·OH仍可以氧化NO形成有毒中间产物NO2[35-36]. 因此,调节催化剂表界面反应产生的氧物种被认为是提升光催化去除NO选择性的有效策略,如光生电子还原O2产生的·O2−可定向氧化NO形成硝酸盐[37-39]. 然而,部分研究者发现·O2−也能氧化NO形成NO2[40]. 诚然,选择性光催化氧化NO反应的调控机制存在许多争议,这反映出我们对催化剂表界面氧化NO机理的认识不足.
鉴于此,本文综述了光催化去除NO的表界面反应研究进展,在介绍改性策略和关键化学过程的基础上,深刻讨论了影响光催化去除NO效率和选择性的关键因素. 最后,展望了光催化净化NO技术的发展和应用前景,旨在为设计高效净化NO的光催化剂及净化组件提供理论依据和实践参考.
光催化去除NO的研究进展
Research progress on photocatalytic NO removal
-
摘要: 光催化去除NO技术能利用太阳能转化大气环境中低浓度的NO为硝酸盐,在大气污染控制领域有广阔的应用前景. 本文综述了光催化去除NO的表界面反应研究进展,在介绍改性策略和关键化学过程的基础上,深刻讨论了影响光催化去除NO效率和选择性的关键因素. 最后,展望了光催化净化NO技术的发展和应用前景,为设计高效净化NO的光催化剂及净化组件提供理论依据和实践参考.Abstract: Photocatalytic removal of NO can convert low concentrations of NO pollutants to nitrate by utilizing solar energy in atmospheric environment, it has a broad application prospect in the field of air pollution control. In this paper, we specifically summarize the research progress in the surface-interface reaction of photocatalytic NO removal. Based on the introduction of the modification strategies and the key chemical processes, we highlight the key factors affecting the efficiency and selectivity of photocatalytic NO removal. Finally, we present the development and application prospect of the photocatalytic NO removal technology, as well as provide theoretical guidance and practical reference for the design of efficient NO photocatalysts and corresponding purification components.
-
Key words:
- photocatalysis /
- NO removal /
- environmental purification
-
图 4 (a)DFT模拟缺陷BiOCl(010)表面光催化氧化NO的化学过程,(b)稳态荧光光谱,(c)BiOCl(010)表面氧空位充放电电子传输示意图,(d)光催化去除NO性能图,(e)红外光谱分析,(f)NO2的TPD分析,(g)缺陷态BiOCl(010)光催化去除NO过程中电子传输过程[53]
Figure 4. (a)DFT calculation of photocatalytic NO oxidation on defective BiOCl(010) surface,(b)the steady-state fluorescence spectra,(c)schematic illustration of the charging-decharging scheme for BiOCl(010) surface with oxygen vacancies,(d)photocatalytic NO removal,(e)FTIR analysis,(f)NO2-TPD analysis,(g)schematic illustration of electronic excitation process for photocatalytic NO removal on defective BiOCl(010) surface[53]
图 6 (a)DFT计算模拟Au/CeO2和CeO2表面光催化NO氧化反应路径,(b)CeO2和Au/CeO2催化剂在可见光照射下光催化去除NO的性能,(c)对应的一级动力学常数,(d)O2和NO在Au/CeO2上吸附的示意图[126]
Figure 6. (a)DFT calculations for photocatalytic NO oxidation on the Au/CeO2 and CeO2,(b)photocatalytic NO removal performance of CeO2 and Au/CeO2 catalysts under the visible light irradiation,(c)the corresponding first-order kinetic constants,(d)illustration of O2 and NO adsorption on Au/CeO2[126]
表 1 NO光催化剂的改性策略
Table 1. Modification strategies of NO photocatalyst
年份Year 光催化剂Photocatalyst 改性策略Modified strategy 参考文献Reference 2017 TiO2(001) 晶面构建 [51] 2019 Ag3PO4@Al2O3 晶面构建 [52] 2019 BiOCl 晶面构建&表面缺陷 [53] 2018 Bi@BiOCl 表面缺陷&表面修饰 [54] 2018 Bi4MoO9@Bi metal core/shell heterostructure 表面缺陷&表面修饰 [55] 2018 Bi2O2CO3 表面缺陷 [44] 2018 SrFexTi1-xO3-δ 表面缺陷 [45] 2019 Bi@Bi2O2SiO3 表面缺陷&表面修饰 [56] 2019 BaSO4 (Ba vacancy) 表面缺陷 [47] 2019 g-C3N4 (N vacancy) 表面缺陷 [50] 2020 Bi@Bi2O2CO3 表面缺陷&表面修饰 [57] 2020 Bi2MoO6 表面缺陷 [58] 2016 Bi-doped BiMoO6 元素掺杂 [40] 2018 Sr-intercalated g-C3N4 元素掺杂 [59] 2018 Ca-intercalated g-C3N4 元素掺杂 [16] 2019 Sr multi-site doped C3N4 元素掺杂 [60] 2021 Ce-doped SnO2 元素掺杂 [61] 2020 group IIA element ion-doped g-C3N4 元素掺杂 [24] 2018 Bi/Bi2O3/Bi2WO6 表面修饰&异质结构建 [22] 2017 Ag@TiO2-x 表面修饰&表面缺陷 [62] 2017 monodisperse Bi@C3N4 表面修饰 [29] 2018 monodisperse Bi@graphene oxide 表面修饰&异质结构建 [17] 2018 O/Ba@C3N4 表面修饰 [63] 2018 Ag@TiO2 表面修饰 [64] 2019 Borate@polymer C3N4 表面修饰&表面缺陷 [65] 2021 single-atom Pd@g-C3N4 (C vacancy) 表面修饰&表面缺陷 [48] 2016 PdCl2/g-C3N4 异质结构建 [39] 2016 Bi2O2CO3/MoS2 异质结构建 [66] 2016 Bi2O2CO3/g-C3N4 异质结构建 [20] 2017 LaFeO3/SrTiO3 异质结构建 [67] 2017 Bi2O2CO3/MoS2/carbon nanofibers 异质结构建 [68] 2018 Bi2O2CO3/ZnFe2O4 异质结构建 [69] 2018 SrTiO3/SrCO3 异质结构建 [15] 2019 BiOBr/BiOI 异质结构建 [70] 2020 g-C3N4/(BiO)2CO3 异质结构建 [71] 2021 α-Fe2O3/g-C3N4 异质结构建 [72] -
[1] BRAUER M, AMANN M, BURNETT R T, et al. Exposure assessment for estimation of the global burden of disease attributable to outdoor air pollution [J]. Environmental Science & Technology, 2012, 46(2): 652-660. [2] BRAUER M, FREEDMAN G, FROSTAD J, et al. Ambient air pollution exposure estimation for the global burden of disease 2013 [J]. Environmental Science & Technology, 2016, 50(1): 79-88. [3] WEST J J, COHEN A, DENTENER F, et al. “What we breathe impacts our health: Improving understanding of the link between air pollution and health” [J]. Environmental Science & Technology, 2016, 50(10): 4895-4904. [4] KREUZER L B, PATEL C K N. Nitric oxide air pollution: Detection by optoacoustic spectroscopy [J]. Science, 1971, 173(3991): 45-47. doi: 10.1126/science.173.3991.45 [5] GÓMEZ ALVAREZ E, WORTHAM H, STREKOWSKI R, et al. Atmospheric photosensitized heterogeneous and multiphase reactions: From outdoors to indoors [J]. Environmental Science & Technology, 2012, 46(4): 1955-1963. [6] LIANG S, LIU Z, CRAWFORD-BROWN D, et al. Decoupling analysis and socioeconomic drivers of environmental pressure in China [J]. Environmental Science & Technology, 2014, 48(2): 1103-1113. [7] TIAN H Z, LIU K Y, HAO J M, et al. Nitrogen oxides emissions from thermal power plants in China: Current status and future predictions [J]. Environmental Science & Technology, 2013, 47(19): 11350-11357. [8] DAI W R, TAO Y, ZOU H H, et al. Gas-phase photoelectrocatalytic oxidation of NO via TiO2 nanorod array/FTO photoanodes [J]. Environmental Science & Technology, 2020, 54(9): 5902-5912. [9] XIAO S N, WAN Z, ZHOU J C, et al. Gas-phase photoelectrocatalysis for breaking down nitric oxide [J]. Environmental Science & Technology, 2019, 53(12): 7145-7154. [10] GRANGER P, PARVULESCU V I. Catalytic NOx abatement systems for mobile sources: From three-way to lean burn after-treatment technologies [J]. Chemical Reviews, 2011, 111(5): 3155-3207. doi: 10.1021/cr100168g [11] GUO Q B, SUN T H, WANG Y L, et al. Spray absorption and electrochemical reduction of nitrogen oxides from flue gas [J]. Environmental Science & Technology, 2013, 47(16): 9514-9522. [12] HEO I, KIM M K, SUNG S, et al. Combination of photocatalysis and HC/SCR for improved activity and durability of deNOx catalysts [J]. Environmental Science & Technology, 2013, 47(8): 3657-3664. [13] TONG H, OUYANG S X, BI Y P, et al. Nano-photocatalytic materials: Possibilities and challenges [J]. Advanced Materials, 2012, 24(2): 229-251. doi: 10.1002/adma.201102752 [14] CHEN X, CAI Y, LIANG R, et al. NH2-UiO-66(Zr) with fast electron transfer routes for breaking down nitric oxide via photocatalysis [J]. Applied Catalysis B:Environmental, 2020, 267: 118687. doi: 10.1016/j.apcatb.2020.118687 [15] JIN S, DONG G, LUO J, et al. Improved photocatalytic NO removal activity of SrTiO3 by using SrCO3 as a new co-catalyst [J]. Applied Catalysis B:Environmental, 2018, 227: 24-34. doi: 10.1016/j.apcatb.2018.01.020 [16] LI J, DONG X A, SUN Y, et al. Tailoring the rate-determining step in photocatalysis via localized excess electrons for efficient and safe air cleaning [J]. Applied Catalysis B:Environmental, 2018, 239: 187-195. doi: 10.1016/j.apcatb.2018.08.019 [17] LI X, ZHANG W, CUI W, et al. Bismuth spheres assembled on graphene oxide: Directional charge transfer enhances plasmonic photocatalysis and in situ DRIFTS studies [J]. Applied Catalysis B:Environmental, 2018, 221: 482-489. doi: 10.1016/j.apcatb.2017.09.046 [18] LUO J, DONG G, ZHU Y, et al. Switching of semiconducting behavior from n-type to p-type induced high photocatalytic NO removal activity in g-C3N4 [J]. Applied Catalysis B:Environmental, 2017, 214: 46-56. doi: 10.1016/j.apcatb.2017.05.016 [19] SUGRA EZ R, BALBUENA J, CRUZ-YUSTA M, et al. Efficient behaviour of hematite towards the photocatalytic degradation of NO gases [J]. Applied Catalysis B:Environmental, 2015, 165: 529-536. doi: 10.1016/j.apcatb.2014.10.025 [20] WANG Z, HUANG Y, HO W, et al. Fabrication of Bi2O2CO3/g-C3N4 heterojunctions for efficiently photocatalytic NO in air removal: In-situ self-sacrificial synthesis, characterizations and mechanistic study [J]. Applied Catalysis B:Environmental, 2016, 199: 123-133. doi: 10.1016/j.apcatb.2016.06.027 [21] ZHANG R Y, RAN T, CAO Y H, et al. Surface hydrogen atoms promote oxygen activation for solar light-driven NO oxidization over monolithic α-Ni(OH)2/Ni foam [J]. Environmental Science & Technology, 2020, 54(24): 16221-16230. [22] HE W, SUN Y, JIANG G, et al. Activation of amorphous Bi2WO6 with synchronous Bi metal and Bi2O3 coupling: Photocatalysis mechanism and reaction pathway [J]. Applied Catalysis B:Environmental, 2018, 232: 340-347. doi: 10.1016/j.apcatb.2018.03.047 [23] HUANG Y, GAO Y, ZHANG Q, et al. Biocompatible FeOOH-carbon quantum dots nanocomposites for gaseous NOx removal under visible light: Improved charge separation and high selectivity [J]. Journal of Hazardous Materials, 2018, 354: 54-62. doi: 10.1016/j.jhazmat.2018.04.071 [24] ZHOU M, DONG G, MA J, et al. Photocatalytic removal of NO by intercalated carbon nitride: The effect of group IIA element ions [J]. Applied Catalysis B:Environmental, 2020, 273: 119007. doi: 10.1016/j.apcatb.2020.119007 [25] CHEN X, ZHANG H, ZHANG D, et al. Controllable synthesis of mesoporous multi-shelled ZnO microspheres as efficient photocatalysts for NO oxidation [J]. Applied Surface Science, 2018, 435: 468-475. doi: 10.1016/j.apsusc.2017.11.045 [26] LI Y, SUN Y, HO W, et al. Highly enhanced visible-light photocatalytic NOx purification and conversion pathway on self-structurally modified g-C3N4 nanosheets [J]. Science Bulletin, 2018, 63(10): 609-620. doi: 10.1016/j.scib.2018.04.009 [27] HUO W C, DONG X A, LI J Y, et al. Synthesis of Bi2WO6 with gradient oxygen vacancies for highly photocatalytic NO oxidation and mechanism study [J]. Chemical Engineering Journal, 2019, 361: 129-138. doi: 10.1016/j.cej.2018.12.071 [28] LI J, CHEN R, CEN W, et al. Quantifying the activation energies of ROS-induced NOx conversion: Suppressed toxic intermediates generation and clarified reaction mechanism [J]. Chemical Engineering Journal, 2019, 375: 122026. doi: 10.1016/j.cej.2019.122026 [29] JIANG G, LI X, LAN M, et al. Monodisperse bismuth nanoparticles decorated graphitic carbon nitride: Enhanced visible-light-response photocatalytic NO removal and reaction pathway [J]. Applied Catalysis B:Environmental, 2017, 205: 532-540. doi: 10.1016/j.apcatb.2017.01.009 [30] CHEN M, HUANG Y, YAO J, et al. Visible-light-driven N-(BiO)2CO3/graphene oxide composites with improved photocatalytic activity and selectivity for NOx removal [J]. Applied Surface Science, 2018, 430: 137-144. doi: 10.1016/j.apsusc.2017.06.056 [31] CHEN M, LI X, HUANG Y, et al. Synthesis and characterization of Bi-BiPO4 nanocomposites as plasmonic photocatalysts for oxidative NO removal [J]. Applied Surface Science, 2020, 513: 145775. doi: 10.1016/j.apsusc.2020.145775 [32] HUANG Y, GAO Y, ZHANG Q, et al. Hierarchical porous ZnWO4 microspheres synthesized by ultrasonic spray pyrolysis: Characterization, mechanistic and photocatalytic NO removal studies [J]. Applied Catalysis A:General, 2016, 515: 170-178. doi: 10.1016/j.apcata.2016.02.007 [33] JIANG G, CAO J, CHEN M, et al. Photocatalytic NO oxidation on n-doped TiO2/g-C3N4 heterojunction: Enhanced efficiency, mechanism and reaction pathway [J]. Applied Surface Science, 2018, 458: 77-85. doi: 10.1016/j.apsusc.2018.07.087 [34] LI X, SHI H, WANG T, et al. Photocatalytic removal of NO by z-scheme mineral based heterojunction intermediated by carbon quantum dots [J]. Applied Surface Science, 2018, 456: 835-844. doi: 10.1016/j.apsusc.2018.06.133 [35] CUI W, LI J, CEN W, et al. Steering the interlayer energy barrier and charge flow via bioriented transportation channels in g-C3N4: Enhanced photocatalysis and reaction mechanism [J]. Journal of Catalysis, 2017, 352: 351-360. doi: 10.1016/j.jcat.2017.05.017 [36] UNER D, BAYAR I, TABARI T. The influence of relative humidity on photocatalytic oxidation of nitric oxide (NO) over TiO2 [J]. Applied Surface Science, 2015, 354: 260-266. doi: 10.1016/j.apsusc.2015.07.045 [37] ZOU Y, XIE Y, YU S, et al. SnO2 quantum dots anchored on g-C3N4 for enhanced visible-light photocatalytic removal of NO and toxic NO2 inhibition [J]. Applied Surface Science, 2019, 496: 143630. doi: 10.1016/j.apsusc.2019.143630 [38] DONG F, WANG Z Y, LI Y H, et al. Immobilization of polymeric g-C3N4 on structured ceramic foam for efficient visible light photocatalytic air purification with real indoor illumination [J]. Environmental Science & Technology, 2014, 48(17): 10345-10353. [39] ZHANG Z, XU M, HO W, et al. Simultaneous excitation of PdCl2 hybrid mesoporous g-C3N4 molecular/solid-state photocatalysts for enhancing the visible-light-induced oxidative removal of nitrogen oxides [J]. Applied Catalysis B:Environmental, 2016, 184: 174-181. doi: 10.1016/j.apcatb.2015.11.034 [40] DING X, HO W, SHANG J, et al. Self doping promoted photocatalytic removal of NO under visible light with Bi2MoO6: Indispensable role of superoxide ions [J]. Applied Catalysis B:Environmental, 2016, 182: 316-325. doi: 10.1016/j.apcatb.2015.09.046 [41] SHEN X, DONG G, WANG L, et al. Enhancing photocatalytic activity of NO removal through an in situ control of oxygen vacancies in growth of TiO2 [J]. Advanced Materials Interfaces, 2019, 6(19): 1901032. doi: 10.1002/admi.201901032 [42] MA J Z, WU H M, LIU Y C, et al. Photocatalytic removal of NOx over visible light responsive oxygen-deficient TiO2 [J]. The Journal of Physical Chemistry C, 2014, 118(14): 7434-7441. doi: 10.1021/jp500116n [43] SHAO M, LIU J J, DING W J, et al. Oxygen vacancy engineering of self-doped SnO2−x nanocrystals for ultrasensitive NO2 detection [J]. Journal of Materials Chemistry C, 2020, 8(2): 487-494. doi: 10.1039/C9TC05705F [44] YU S, ZHANG Y, DONG F, et al. Readily achieving concentration-tunable oxygen vacancies in Bi2O2CO3: Triple-functional role for efficient visible-light photocatalytic redox performance [J]. Applied Catalysis B:Environmental, 2018, 226: 441-450. doi: 10.1016/j.apcatb.2017.12.074 [45] ZHANG Q, HUANG Y, PENG S, et al. Synthesis of SrFexTi1-xO3-δ nanocubes with tunable oxygen vacancies for selective and efficient photocatalytic NO oxidation [J]. Applied Catalysis B:Environmental, 2018, 239: 1-9. doi: 10.1016/j.apcatb.2018.07.076 [46] SHANG H, LI M Q, LI H, et al. Oxygen vacancies promoted the selective photocatalytic removal of NO with blue TiO2 via simultaneous molecular oxygen activation and photogenerated hole annihilation [J]. Environmental Science & Technology, 2019, 53(11): 6444-6453. [47] CUI W, CHEN L, LI J, et al. Ba-vacancy induces semiconductor-like photocatalysis on insulator BaSO4 [J]. Applied Catalysis B:Environmental, 2019, 253: 293-299. doi: 10.1016/j.apcatb.2019.04.070 [48] LIU G, HUANG Y, LV H, et al. Confining single-atom Pd on g-C3N4 with carbon vacancies towards enhanced photocatalytic NO conversion [J]. Applied Catalysis B:Environmental, 2021, 284: 119683. doi: 10.1016/j.apcatb.2020.119683 [49] LI Y, HO W, LV K, et al. Carbon vacancy-induced enhancement of the visible light-driven photocatalytic oxidation of NO over g-C3N4 nanosheets [J]. Applied Surface Science, 2018, 430: 380-389. doi: 10.1016/j.apsusc.2017.06.054 [50] DONG G, ZHAO L, WU X, et al. Photocatalysis removing of NO based on modified carbon nitride: The effect of celestite mineral particles [J]. Applied Catalysis B:Environmental, 2019, 245: 459-468. doi: 10.1016/j.apcatb.2019.01.013 [51] YU J C C, NGUYEN V H, LASEK J, et al. Titania nanosheet photocatalysts with dominantly exposed (001) reactive facets for photocatalytic NOx abatement [J]. Applied Catalysis B:Environmental, 2017, 219: 391-400. doi: 10.1016/j.apcatb.2017.07.077 [52] XIA D, HU L, WANG Y, et al. Immobilization of facet-engineered Ag3PO4 on mesoporous Al2O3 for efficient industrial waste gas purification with indoor LED illumination [J]. Applied Catalysis B:Environmental, 2019, 256: 117811. doi: 10.1016/j.apcatb.2019.117811 [53] LI H, SHANG H, LI Y H, et al. Interfacial charging-decharging strategy for efficient and selective aerobic NO oxidation on oxygen vacancy [J]. Environmental Science & Technology, 2019, 53(12): 6964-6971. [54] WANG H, ZHANG W, LI X, et al. Highly enhanced visible light photocatalysis and in situ FT-IR studies on Bi metal@defective BiOCl hierarchical microspheres [J]. Applied Catalysis B:Environmental, 2018, 225: 218-227. doi: 10.1016/j.apcatb.2017.11.079 [55] HE W, SUN Y, JIANG G, et al. Defective Bi4MoO9/Bi metal core/shell heterostructure: Enhanced visible light photocatalysis and reaction mechanism [J]. Applied Catalysis B:Environmental, 2018, 239: 619-627. doi: 10.1016/j.apcatb.2018.08.064 [56] LI X, ZHANG W, LI J, et al. Transformation pathway and toxic intermediates inhibition of photocatalytic NO removal on designed Bi metal@defective Bi2O2SiO3 [J]. Applied Catalysis B:Environmental, 2019, 241: 187-195. doi: 10.1016/j.apcatb.2018.09.032 [57] CHEN P, LIU H, SUN Y, et al. Bi metal prevents the deactivation of oxygen vacancies in Bi2O2CO3 for stable and efficient photocatalytic NO abatement [J]. Applied Catalysis B:Environmental, 2020, 264: 118545. doi: 10.1016/j.apcatb.2019.118545 [58] WANG S, DING X, YANG N, et al. Insight into the effect of bromine on facet-dependent surface oxygen vacancies construction and stabilization of Bi2MoO6 for efficient photocatalytic NO removal [J]. Applied Catalysis B:Environmental, 2020, 265: 118585. doi: 10.1016/j.apcatb.2019.118585 [59] DONG X A, LI J, XING Q, et al. The activation of reactants and intermediates promotes the selective photocatalytic NO conversion on electron-localized Sr-intercalated g-C3N4 [J]. Applied Catalysis B:Environmental, 2018, 232: 69-76. doi: 10.1016/j.apcatb.2018.03.054 [60] ZHOU M, DONG G, YU F, et al. The deep oxidation of NO was realized by Sr multi-site doped g-C3N4 via photocatalytic method [J]. Applied Catalysis B:Environmental, 2019, 256: 117825. doi: 10.1016/j.apcatb.2019.117825 [61] SONG X, QIN G, CHENG G, et al. Oxygen defect-induced NO− intermediates promoting NO deep oxidation over Ce doped SnO2 under visible light [J]. Applied Catalysis B:Environmental, 2021, 284: 119761. doi: 10.1016/j.apcatb.2020.119761 [62] DUAN Y, ZHANG M, WANG L, et al. Plasmonic Ag-TiO2−x nanocomposites for the photocatalytic removal of NO under visible light with high selectivity: The role of oxygen vacancies [J]. Applied Catalysis B:Environmental, 2017, 204: 67-77. doi: 10.1016/j.apcatb.2016.11.023 [63] CUI W, LI J, SUN Y, et al. Enhancing ROS generation and suppressing toxic intermediate production in photocatalytic NO oxidation on O/Ba co-functionalized amorphous carbon nitride [J]. Applied Catalysis B:Environmental, 2018, 237: 938-946. doi: 10.1016/j.apcatb.2018.06.071 [64] DUAN Y, LUO J, ZHOU S, et al. TiO2-supported ag nanoclusters with enhanced visible light activity for the photocatalytic removal of NO [J]. Applied Catalysis B:Environmental, 2018, 234: 206-212. doi: 10.1016/j.apcatb.2018.04.041 [65] CAO J, ZHANG J, DONG X A, et al. Defective Borate-decorated polymer carbon nitride: Enhanced photocatalytic NO removal, synergy effect and reaction pathway [J]. Applied Catalysis B:Environmental, 2019, 249: 266-274. doi: 10.1016/j.apcatb.2019.03.012 [66] XIONG T, WEN M, DONG F, et al. Three dimensional z-scheme (BiO)2CO3/MoS2 with enhanced visible light photocatalytic NO removal [J]. Applied Catalysis B:Environmental, 2016, 199: 87-95. doi: 10.1016/j.apcatb.2016.06.032 [67] ZHANG Q, HUANG Y, PENG S, et al. Perovskite LaFeO3-SrTiO3 composite for synergistically enhanced NO removal under visible light excitation [J]. Applied Catalysis B:Environmental, 2017, 204: 346-357. doi: 10.1016/j.apcatb.2016.11.052 [68] HU J, CHEN D, LI N, et al. In situ fabrication of Bi2O2CO3/MoS2 on carbon nanofibers for efficient photocatalytic removal of NO under visible-light irradiation [J]. Applied Catalysis B:Environmental, 2017, 217: 224-231. doi: 10.1016/j.apcatb.2017.05.088 [69] HUANG Y, ZHU D, ZHANG Q, et al. Synthesis of a Bi2O2CO3/ZnFe2O4 heterojunction with enhanced photocatalytic activity for visible light irradiation-induced NO removal [J]. Applied Catalysis B:Environmental, 2018, 234: 70-78. doi: 10.1016/j.apcatb.2018.04.039 [70] SHI X, WANG P, LI W, et al. Change in photocatalytic NO removal mechanisms of ultrathin BiOBr/BiOI via NO3– adsorption [J]. Applied Catalysis B:Environmental, 2019, 243: 322-329. doi: 10.1016/j.apcatb.2018.10.037 [71] CUI W, CHEN L, SHENG J, et al. The pivotal roles of spatially separated charge localization centers on the molecules activation and photocatalysis mechanism [J]. Applied Catalysis B:Environmental, 2020, 262: 118251. doi: 10.1016/j.apcatb.2019.118251 [72] GENG Y, CHEN D, LI N, et al. Z-scheme 2D/2D α-Fe2O3/g-C3N4 heterojunction for photocatalytic oxidation of nitric oxide [J]. Applied Catalysis B:Environmental, 2021, 280: 119409. doi: 10.1016/j.apcatb.2020.119409 [73] DONG F, XIONG T, YAN S, et al. Facets and defects cooperatively promote visible light plasmonic photocatalysis with Bi nanowires@BiOCl nanosheets [J]. Journal of Catalysis, 2016, 344: 401-410. doi: 10.1016/j.jcat.2016.10.005 [74] CHEN P, SUN Y J, LIU H J, et al. Facet-dependent photocatalytic NO conversion pathways predetermined by adsorption activation patterns [J]. Nanoscale, 2019, 11(5): 2366-2373. doi: 10.1039/C8NR09147A [75] LIAO J, CHEN L, SUN M, et al. Improving visible-light-driven photocatalytic NO oxidation over BiOBr nanoplates through tunable oxygen vacancies [J]. Chinese Journal of Catalysis, 2018, 39(4): 779-789. doi: 10.1016/S1872-2067(18)63056-6 [76] RAMANA E V, PRASAD N V, TOBALDI D M, et al. Effect of samarium and vanadium Co-doping on structure, ferroelectric and photocatalytic properties of bismuth titanate [J]. RSC Advances, 2017, 7(16): 9680-9692. doi: 10.1039/C7RA00021A [77] YUAN C W, CHEN R M, WANG J D, et al. La-doping induced localized excess electrons on (BiO)2CO3 for efficient photocatalytic NO removal and toxic intermediates suppression [J]. Journal of hazardous materials, 2020, 400: 123174. doi: 10.1016/j.jhazmat.2020.123174 [78] CHANG L B, ZHU G Q, HASSAN Q U, et al. Synergetic effects of Pd(0) metal nanoparticles and Pd(2+) ions on enhanced photocatalytic activity of ZnWO4 nanorods for nitric oxide removal [J]. Langmuir:the ACS journal of surfaces and colloids, 2019, 35(35): 11265-11274. doi: 10.1021/acs.langmuir.9b01323 [79] ZHANG R, ZHANG A, CAO Y, et al. Mo-doped carbon nitride homojunction to promote oxygen activation for enhanced photocatalytic performance [J]. Chemical Engineering Journal, 2020, 401: 126028. doi: 10.1016/j.cej.2020.126028 [80] LI J R, RAN M X, CHEN P, et al. Controlling the secondary pollutant on B-doped g-C3N4 during photocatalytic NO removal: A combined DRIFTS and DFT investigation [J]. Catalysis Science & Technology, 2019, 9(17): 4531-4537. [81] RAN M, LI J, CUI W, et al. Efficient and stable photocatalytic NO removal on C self-doped g-C3N4: Electronic structure and reaction mechanism [J]. Catalysis Science & Technology, 2018, 8(13): 3387-3394. [82] JIN R, JIANG X, ZHOU Y, et al. Microspheres of graphene oxide coupled to n-doped Bi2O2CO3 for visible light photocatalysis [J]. Chinese Journal of Catalysis, 2016, 37(5): 760-768. doi: 10.1016/S1872-2067(15)61079-8 [83] ZHOU Y, ZHAO Z, WANG F, et al. Facile synthesis of surface n-doped Bi2O2CO3: Origin of visible light photocatalytic activity and in situ DRIFTS studies [J]. Journal of Hazardous Materials, 2016, 307: 163-172. doi: 10.1016/j.jhazmat.2015.12.072 [84] DONG X A, ZHANG W, CUI W, et al. Pt quantum dots deposited on n-doped (BiO)2CO3: Enhanced visible light photocatalytic NO removal and reaction pathway [J]. Catalysis Science & Technology, 2017, 7(6): 1324-1332. [85] YUAN C, CUI W, SUN Y, et al. Inhibition of the toxic byproduct during photocatalytic NO oxidation via La doping in ZnO [J]. Chinese Chemical Letters, 2020, 31(3): 751-754. doi: 10.1016/j.cclet.2019.09.033 [86] HUO W, XU W, CAO T, et al. Carbonate-intercalated defective bismuth tungstate for efficiently photocatalytic NO removal and promotion mechanism study [J]. Applied Catalysis B:Environmental, 2019, 254: 206-213. doi: 10.1016/j.apcatb.2019.04.099 [87] YI J, LIAO J, XIA K, et al. Integrating the merits of two-dimensional structure and heteroatom modification into semiconductor photocatalyst to boost NO removal [J]. Chemical Engineering Journal, 2019, 370: 944-951. doi: 10.1016/j.cej.2019.03.182 [88] DONG G H, YANG L P, WANG F, et al. Removal of nitric oxide through visible light photocatalysis by g-C3N4 modified with perylene imides [J]. ACS Catalysis, 2016, 6(10): 6511-6519. doi: 10.1021/acscatal.6b01657 [89] FENG X, ZHANG W, DENG H, et al. Efficient visible light photocatalytic NOx removal with cationic Ag clusters-grafted (BiO)2CO3 hierarchical superstructures [J]. Journal of Hazardous Materials, 2017, 322(PtA): 223-232. [90] HUO W, XU W, CAO T, et al. Carbonate doped Bi2MoO6 hierarchical nanostructure with enhanced transformation of active radicals for efficient photocatalytic removal of NO [J]. Journal of Colloid and Interface Science, 2019, 557: 816-824. doi: 10.1016/j.jcis.2019.09.089 [91] SUN Y, XIONG T, NI Z, et al. Improving g-C3N4 photocatalysis for NOx removal by Ag nanoparticles decoration [J]. Applied Surface Science, 2015, 358: 356-362. doi: 10.1016/j.apsusc.2015.07.071 [92] LI K, CUI W, LI J, et al. Tuning the reaction pathway of photocatalytic NO oxidation process to control the secondary pollution on monodisperse Au nanoparticles@g-C3N4 [J]. Chemical Engineering Journal, 2019, 378: 122184. doi: 10.1016/j.cej.2019.122184 [93] DONG F, ZHAO Z W, SUN Y J, et al. An advanced semimetal–organic Bi spheres–g-C3N4 nanohybrid with SPR-enhanced visible-light photocatalytic performance for NO purification [J]. Environmental Science & Technology, 2015, 49(20): 12432-12440. [94] LI X, SUN Y, XIONG T, et al. Activation of amorphous bismuth oxide via plasmonic Bi metal for efficient visible-light photocatalysis [J]. Journal of Catalysis, 2017, 352: 102-112. doi: 10.1016/j.jcat.2017.04.025 [95] LU Y, HUANG Y, ZHANG Y, et al. Effects of H2O2 generation over visible light-responsive Bi/Bi2O2CO3 nanosheets on their photocatalytic NO removal performance [J]. Chemical Engineering Journal, 2019, 363: 374-382. doi: 10.1016/j.cej.2019.01.172 [96] NI Z, ZHANG W, JIANG G, et al. Enhanced plasmonic photocatalysis by SiO2@Bi microspheres with hot-electron transportation channels via Bi–O–Si linkages [J]. Chinese Journal of Catalysis, 2017, 38(7): 1174-1183. doi: 10.1016/S1872-2067(17)62849-3 [97] SUN M, ZHANG W, SUN Y, et al. Synergistic integration of metallic Bi and defects on BiOI: Enhanced photocatalytic NO removal and conversion pathway [J]. Chinese Journal of Catalysis, 2019, 40(6): 826-836. doi: 10.1016/S1872-2067(18)63195-X [98] ZHANG L, YANG C, LV K, et al. SPR effect of bismuth enhanced visible photoreactivity of Bi2WO6 for NO abatement [J]. Chinese Journal of Catalysis, 2019, 40(5): 755-764. doi: 10.1016/S1872-2067(19)63320-6 [99] ZHU G, HOJAMBERDIEV M, ZHANG S, et al. Enhancing visible-light-induced photocatalytic activity of BiOI microspheres for NO removal by synchronous coupling with Bi metal and graphene [J]. Applied Surface Science, 2019, 467-468: 968-978. doi: 10.1016/j.apsusc.2018.10.246 [100] ZHAO Z, FAN J, LIU W, et al. In-situ hydrothermal synthesis of Ag3PO4/g-C3N4 composite and their photocatalytic decomposition of NOx [J]. Journal of Alloys and Compounds, 2017, 695: 2812-2819. doi: 10.1016/j.jallcom.2016.12.001 [101] ZHANG W, DONG X A, LIANG Y, et al. Ag/AgCl nanoparticles assembled on BiOCl/Bi12O17Cl2 nanosheets: Enhanced plasmonic visible light photocatalysis and in situ DRIFTS investigation [J]. Applied Surface Science, 2018, 455: 236-243. doi: 10.1016/j.apsusc.2018.05.171 [102] ZHANG W, DONG X A, JIA B, et al. 2D BiOCl/Bi12O17Cl2 nanojunction: Enhanced visible light photocatalytic NO removal and in situ DRIFTS investigation [J]. Applied Surface Science, 2018, 430: 571-577. doi: 10.1016/j.apsusc.2017.06.186 [103] ZHANG G P, ZHU X W, CHEN D Y, et al. Hierarchical z-scheme g-C3N4/Au/ZnIn2S4 photocatalyst for highly enhanced visible-light photocatalytic nitric oxide removal and carbon dioxide conversion [J]. Environmental Science:Nano, 2020, 7(2): 676-687. doi: 10.1039/C9EN01325C [104] WANG C, FU M, CAO J, et al. BaWO4/g-C3N4 heterostructure with excellent bifunctional photocatalytic performance [J]. Chemical Engineering Journal, 2020, 385: 123833. doi: 10.1016/j.cej.2019.123833 [105] LU Y, HUANG Y, CAO J-J, et al. Constructing z-scheme SnO2/N-doped carbon quantum dots/ZnSn(OH)6 nanohybrids with high redox ability for NOx removal under Vis-NIR light [J]. Journal of Materials Chemistry A, 2019, 7(26): 15782-15793. doi: 10.1039/C9TA03504D [106] LI Y, WU X, HO W, et al. Graphene-induced formation of visible-light-responsive SnO2-Zn2SnO4 z-scheme photocatalyst with surface vacancy for the enhanced photoreactivity towards NO and acetone oxidation [J]. Chemical Engineering Journal, 2018, 336: 200-210. doi: 10.1016/j.cej.2017.11.045 [107] KOU M, DENG Y, ZHANG R, et al. Molecular oxygen activation enhancement by BiOBr0.5I0.5/BiOI utilizing the synergistic effect of solid solution and heterojunctions for photocatalytic NO removal [J]. Chinese Journal of Catalysis, 2020, 41(10): 1480-1487. doi: 10.1016/S1872-2067(20)63607-5 [108] HUO W, CAO T, XU W, et al. Facile construction of Bi2MO3O12@Bi2O2CO3 heterojunctions for enhanced photocatalytic efficiency toward NO removal and study of the conversion process [J]. Chinese Journal of Catalysis, 2020, 41(2): 268-275. doi: 10.1016/S1872-2067(19)63460-1 [109] GUO Z, HUO W, CAO T, et al. Controllable synthesis of a 3D ZnS@MoO3 heterojunction via a hydrothermal method towards efficient NO purification under visible light [J]. CrystEngComm, 2020, 22(2): 257-266. doi: 10.1039/C9CE01375J [110] CHEN R, WANG H, WU H, et al. SrTiO3/BiOI heterostructure: Interfacial charge separation, enhanced photocatalytic activity, and reaction mechanism [J]. Chinese Journal of Catalysis, 2020, 41(4): 710-718. doi: 10.1016/S1872-2067(19)63472-8 [111] BALBUENA J, CARRARO G, CRUZ M, et al. Advances in photocatalytic NOx abatement through the use of Fe2O3/TiO2 nanocomposites [J]. RSC Advances, 2016, 6(78): 74878-74885. doi: 10.1039/C6RA15958C [112] WANG Z, HUANG Y, CHEN L, et al. In situ g-C3N4 self-sacrificial synthesis of a g-C3N4/LaCO3OH heterostructure with strong interfacial charge transfer and separation for photocatalytic NO removal [J]. Journal of Materials Chemistry A, 2018, 6(3): 972-981. doi: 10.1039/C7TA09132J [113] MENDOZA J A, LEE D H, KANG J H. Photocatalytic removal of gaseous nitrogen oxides using WO3/TiO2 particles under visible light irradiation: Effect of surface modification [J]. Chemosphere, 2017, 182: 539-546. doi: 10.1016/j.chemosphere.2017.05.069 [114] LI J, YAN P, LI K, et al. Generation and transformation of ROS on g-C3N4 for efficient photocatalytic NO removal: A combined in situ DRIFTS and DFT investigation [J]. Chinese Journal of Catalysis, 2018, 39(10): 1695-1703. doi: 10.1016/S1872-2067(18)63097-9 [115] NIE H Y, OU M, ZHONG Q, et al. Efficient visible-light photocatalytic oxidation of gaseous NO with graphitic carbon nitride (g-C3N4) activated by the alkaline hydrothermal treatment and mechanism analysis [J]. Journal of Hazardous Materials, 2015, 300: 598-606. doi: 10.1016/j.jhazmat.2015.07.066 [116] ZHU W, XIAO S N, ZHANG D Q, et al. Highly efficient and stable Au/CeO2-TiO2 photocatalyst for nitric oxide abatement: Potential application in flue gas treatment [J]. Langmuir:the ACS Journal of Surfaces and Colloids, 2015, 31(39): 10822-10830. doi: 10.1021/acs.langmuir.5b02232 [117] WANG H, HE W, DONG X A, et al. In situ DRIFT investigation on the photocatalytic NO oxidation mechanism with thermally exfoliated porous g-C3N4 nanosheets [J]. RSC Advances, 2017, 7(31): 19280-19287. doi: 10.1039/C7RA00879A [118] LI H, SHANG H, CAO X M, et al. Oxygen vacancies mediated complete visible light NO oxidation via side-on bridging superoxide radicals [J]. Environmental Science & Technology, 2018, 52(15): 8659-8665. [119] LI X, ZHANG W, CUI W, et al. Reactant activation and photocatalysis mechanisms on Bi-metal@Bi2GeO5 with oxygen vacancies: A combined experimental and theoretical investigation [J]. Chemical Engineering Journal, 2019, 370: 1366-1375. doi: 10.1016/j.cej.2019.04.003 [120] LI Y, GU M, ZHANG M, et al. C3N4 with engineered three coordinated (N3C) nitrogen vacancy boosts the production of 1O2 for efficient and stable NO photo-oxidation [J]. Chemical Engineering Journal, 2020, 389: 124421. doi: 10.1016/j.cej.2020.124421 [121] LI H, CHEN S, SHANG H, et al. Surface hydrogen bond network spatially confined BiOCl oxygen vacancy for photocatalysis [J]. Science Bulletin, 2020, 65(22): 1916-1923. doi: 10.1016/j.scib.2020.06.013 [122] LIAO J, CUI W, LI J, et al. Nitrogen defect structure and NO+ intermediate promoted photocatalytic NO removal on H2 treated g-C3N4 [J]. Chemical Engineering Journal, 2020, 379: 122282. doi: 10.1016/j.cej.2019.122282 [123] CUI W, LI J Y, DONG F, et al. Highly efficient performance and conversion pathway of photocatalytic NO oxidation on SrO-clusters@amorphous carbon nitride [J]. Environmental Science & Technology, 2017, 51(18): 10682-10690. [124] WANG H, SUN Y J, JIANG G M, et al. Unraveling the mechanisms of visible light photocatalytic NO purification on earth-abundant insulator-based core–shell heterojunctions [J]. Environmental Science & Technology, 2018, 52(3): 1479-1487. [125] TAN X F, QIN G D, CHENG G, et al. Oxygen vacancies enhance photocatalytic removal of NO over an n-doped TiO2 catalyst [J]. Catalysis Science & Technology, 2020, 10(20): 6923-6934. [126] SHANG H, HUANG S, LI H, et al. Dual-site activation enhanced photocatalytic removal of NO with Au/CeO2 [J]. Chemical Engineering Journal, 2020, 386: 124047. doi: 10.1016/j.cej.2020.124047 [127] DONG G, HO W, ZHANG L. Photocatalytic NO removal on BiOI surface: The change from nonselective oxidation to selective oxidation [J]. Applied Catalysis B:Environmental, 2015, 168-169: 490-496. doi: 10.1016/j.apcatb.2015.01.014