-
挥发性有机污染物(volatile organic compounds,VOCs)是城市大气主要污染物之一,已取代SO2成为我国生态环境部制定的“十四五”城市空气质量考核新指标。VOCs在生产与生活中来源广泛,室内建材的释放,道路机动车的排放,化石燃料的燃烧以及工业生产排放的废气都是大气中VOCs的重要来源[1-2]。这些废气中的VOCs组分复杂,易造成次生污染,对大气环境影响突出,严重威胁着生态环境和人体健康[3]。因此,VOCs的高效治理是当前亟待解决的环境问题。
芬顿(Fenton)法以溶液中的二价铁离子或固体粒子为催化剂,通过催化过氧化氢分解生成具有强氧化性的羟基自由基,进而降解溶液中的有机污染物[4-5],是废水中有机污染物治理最具代表性和最有效的方法之一[6]。近年来,将芬顿氧化法应用于废气中VOCs的治理也取得了良好的效果[7]。芬顿法分为均相芬顿法和非均相芬顿法[8],由于催化剂状态的不同,VOCs在两种体系中的降解过程有一定差异。均相芬顿体系以溶液中的Fe2+为催化剂,VOCs首先通过气-液传质进入芬顿体系,然后被溶液中的羟基自由基氧化分解[9]。非均相芬顿体系以固相粒子为催化剂,VOCs的降解过程可分为“传质-吸附-催化氧化-解吸附-传质”五个步骤[10](图1),即VOCs经过气-液传质由气相进入溶液并吸附于催化剂表面,在催化剂表面发生催化氧化反应生成氧化产物(中间产物或二氧化碳),这些氧化产物经过解吸附和传质过程返回气相或进入溶液中。
VOCs的分子结构相对简单,且羟基自由基具有较强的氧化能力,当VOCs分子通过气-液传质进入芬顿反应体系后,催化降解效率往往较高。而疏水性VOCs极低的气-液传质速率限制了其进入芬顿体系中并被氧化降解,进而导致芬顿过程降解复杂混合VOCs的效率降低,成为当前VOCs治理过程中亟待解决的关键问题之一[11]。根据气-液传质的双膜理论,气-液相界面两侧各存在一个相对静止的膜,气相一侧称为气膜,液相一侧称为液膜,气液两相的传质速率取决于气膜和液膜内的传质速率。疏水性VOCs由于溶解度系数小,液膜传质阻力大,导致总传质效率低。因此,提高疏水性VOCs气-液传质效率的关键是提高疏水性VOCs的液膜传质效率。
近年来,通过改进反应器结构、加入分散相粒子和优化催化界面微结构等措施来增大气-液传质界面和传质驱动力、降低传质阻力,在提高芬顿体系中VOCs气-液传质效率方面取得了良好效果。此外,通过将实验与理论模拟相结合,构建传质模型,在传质增强机制等方面也开展了一系列研究。随着传质增强研究的深入,芬顿体系全过程多步骤的协同作用引起了人们的关注与重视,传质、吸附、催化等多步骤通过耦合作用协同提高芬顿体系对VOCs的降解能力,不仅实现了复杂混合VOCs的高效降解,而且在促进污染物矿化、实现目标VOCs的深度降解等方面也取得了良好的效果。
本文综述了芬顿体系降解VOCs过程中气-液传质增强途径,深入分析了相关传质增强机理,通过总结传质-吸附-催化协同作用促进芬顿体系高效降解VOCs的发展现状并分析其微观机制,提出了芬顿体系降解复杂混合VOCs过程的进一步研究方向,旨在为芬顿体系降解VOCs过程优化及高效传质-吸附-催化耦合粒子的制备提供参考。
芬顿催化氧化VOCs过程中的传质增强及协同作用研究进展
Mass transfer enhancement and synergistic effect during VOCs removal by Fenton oxidation
-
摘要: 芬顿(Fenton)法是降解挥发性有机污染物(volatile organic compounds,VOCs)最有效的方法之一。在芬顿法降解复杂混合VOCs的过程中,难溶性VOCs极低的气-液传质效率是限制其降解速率的关键因素。近年来,如何增强芬顿法降解VOCs过程的传质效率得到了广泛关注和研究。本文综述了芬顿体系降解VOCs过程中的传质增强方法和研究现状,分析了VOCs降解过程中传质-吸附-催化多步协同作用及机制,提出了芬顿体系高效、深度降解复杂混合VOCs的未来研究方向。Abstract: Fenton process is one of the most effective methods to degrade volatile organic compounds (VOCs). The degradation of hydrophobic VOCs during Fenton process has been limited by the extremely low gas-liquid mass transfer rate, and methods to enhance the mass transfer process have been widely concerned and studied over the decades. Here, we present a brief review on the mass transfer enhancement, and the synergy of the multistep including mass transfer, adsorption and chemical reaction during VOCs removal in Fenton system. Environmental implications and the prospects are also given.
-
-
[1] MONTERO-MONTOYA R, LÓPEZ-VARGAS R, ARELLANO-AGUILAR O. Volatile organic compounds in air: Sources, distribution, exposure and associated illnesses in children [J]. Annals of Global Health, 2018, 84(2): 225-238. doi: 10.29024/aogh.910 [2] NORRIS C, FANG L, BARKJOHN K K, et al. Sources of volatile organic compounds in suburban homes in Shanghai, China, and the impact of air filtration on compound concentrations [J]. Chemosphere, 2019, 231: 256-268. doi: 10.1016/j.chemosphere.2019.05.059 [3] ZHANG D C, LIU J J, JIA L Z, et al. Speciation of VOCs in the cooking fumes from five edible oils and their corresponding health risk assessments [J]. Atmospheric Environment, 2019, 211: 6-17. doi: 10.1016/j.atmosenv.2019.04.043 [4] GAO P, SONG Y, HAO M J, et al. An effective and magnetic Fe2O3-ZrO2 catalyst for phenol degradation under neutral pH in the heterogeneous Fenton-like reaction [J]. Separation and Purification Technology, 2018, 201: 238-243. doi: 10.1016/j.seppur.2018.03.017 [5] JUNG K W, LEE S Y, LEE Y J, et al. Ultrasound-assisted heterogeneous Fenton-like process for bisphenol A removal at neutral pH using hierarchically structured manganese dioxide/biochar nanocomposites as catalysts [J]. Ultrasonics Sonochemistry, 2019, 57: 22-28. doi: 10.1016/j.ultsonch.2019.04.039 [6] BABUPONNUSAMI A, MUTHUKUMAR K. A review on Fenton and improvements to the Fenton process for wastewater treatment [J]. Journal of Environmental Chemical Engineering, 2014, 2(1): 557-572. doi: 10.1016/j.jece.2013.10.011 [7] TOKUMURA M, WADA Y, USAMI Y, et al. Method of removal of volatile organic compounds by using wet scrubber coupled with photo-Fenton reaction - Preventing emission of by-products [J]. Chemosphere, 2012, 89(10): 1238-1242. doi: 10.1016/j.chemosphere.2012.07.018 [8] ZHAN J J, LI M F, ZHANG X J, et al. Aerosol-assisted submicron γ-Fe2O3/C spheres as a promising heterogeneous Fenton-like catalyst for soil and groundwater remediation: Transport, adsorption and catalytic ability [J]. Chinese Chemical Letters, 2020, 31(3): 715-720. doi: 10.1016/j.cclet.2019.09.001 [9] YAN L C, LIU J M, FENG Z H, et al. Continuous degradation of BTEX in landfill gas by the UV-Fenton reaction [J]. RSC Advances, 2016, 6(2): 1452-1459. doi: 10.1039/C5RA22585J [10] CHONG M N, JIN B, CHOW C W K, et al. Recent developments in photocatalytic water treatment technology: A review [J]. Water Research, 2010, 44(10): 2997-3027. doi: 10.1016/j.watres.2010.02.039 [11] XIE R J, LIU G Y, LIU D P, et al. Wet scrubber coupled with heterogeneous UV/Fenton for enhanced VOCs oxidation over Fe/ZSM-5 catalyst [J]. Chemosphere, 2019, 227: 401-408. doi: 10.1016/j.chemosphere.2019.03.160 [12] ZIYLAN A, INCE N H. Catalytic ozonation of ibuprofen with ultrasound and Fe-based catalysts [J]. Catalysis Today, 2015, 240: 2-8. doi: 10.1016/j.cattod.2014.03.002 [13] AKITA K, YOSHIDA F. Gas holdup and volumetric mass transfer coefficient in bubble columns. effects of liquid properties [J]. Industrial & Engineering Chemistry Process Design and Development, 1973, 12(1): 76-80. [14] YOSWATHANA N. Toluene degradation using aqueous absorption and Fenton's oxidation in pilot plant [J]. Journal of Food Agriculture and Environment, 2013, 11(2): 808-813. [15] TISA F, ABDUL RAMAN A A, WAN DAUD W M A. Applicability of fluidized bed reactor in recalcitrant compound degradation through advanced oxidation processes: A review [J]. Journal of Environmental Management, 2014, 146: 260-275. doi: 10.1016/j.jenvman.2014.07.032 [16] MOREIRA F C, BOAVENTURA R A R, BRILLAS E, et al. Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters [J]. Applied Catalysis B:Environmental, 2017, 202: 217-261. doi: 10.1016/j.apcatb.2016.08.037 [17] MOLINA R, MARTÍNEZ F, MELERO J A, et al. Mineralization of phenol by a heterogeneous ultrasound/Fe-SBA-15/H2O2 process: Multivariate study by factorial design of experiments [J]. Applied Catalysis B:Environmental, 2006, 66(3/4): 198-207. [18] ROY K, MOHOLKAR V S. Sulfadiazine degradation using hybrid AOP of heterogeneous Fenton/persulfate system coupled with hydrodynamic cavitation [J]. Chemical Engineering Journal, 2020, 386: 121294. doi: 10.1016/j.cej.2019.03.170 [19] ZHONG X, ROYER S, ZHANG H, et al. Mesoporous silica iron-doped as stable and efficient heterogeneous catalyst for the degradation of C. I. Acid Orange 7 using sono-photo-Fenton process [J]. Separation and Purification Technology, 2011, 80(1): 163-171. doi: 10.1016/j.seppur.2011.04.024 [20] XIANG W, ZHANG B P, ZHOU T, et al. An insight in magnetic field enhanced zero-valent iron/H 2 O2 Fenton-like systems: Critical role and evolution of the pristine iron oxides layer [J]. Scientific Reports, 2016, 6: 24094. doi: 10.1038/srep24094 [21] PÉREZ J F, LLANOS J, SÁEZ C, et al. On the design of a jet-aerated microfluidic flow-through reactor for wastewater treatment by electro-Fenton [J]. Separation and Purification Technology, 2019, 208: 123-129. doi: 10.1016/j.seppur.2018.04.021 [22] LIM M, RUDOLPH V, ANPO M, et al. Fluidized-bed photocatalytic degradation of airborne styrene [J]. Catalysis Today, 2008, 131(1/2/3/4): 548-552. [23] de JESUS S S, MOREIRA NETO J, MACIEL FILHO R. Hydrodynamics and mass transfer in bubble column, conventional airlift, stirred airlift and stirred tank bioreactors, using viscous fluid: A comparative study [J]. Biochemical Engineering Journal, 2017, 118: 70-81. doi: 10.1016/j.bej.2016.11.019 [24] HERNÁNDEZ M, QUIJANO G, MUÑOZ R, et al. Modeling of VOC mass transfer in two-liquid phase stirred tank, biotrickling filter and airlift reactors [J]. Chemical Engineering Journal, 2011, 172(2/3): 961-969. [25] SU C C, PUKDEE-ASA M, RATANATAMSKUL C, et al. Effect of operating parameters on decolorization and COD removal of three reactive dyes by Fenton's reagent using fluidized-bed reactor [J]. Desalination, 2011, 278(1/2/3): 211-218. [26] RADJENOVIC J, SEDLAK D L. Challenges and opportunities for electrochemical processes as next-generation technologies for the treatment of contaminated water [J]. Environmental Science & Technology, 2015, 49(19): 11292-11302. [27] WANG C, HUANG Y K, ZHAO Q, et al. Treatment of secondary effluent using a three-dimensional electrode system: COD removal, biotoxicity assessment, and disinfection effects [J]. Chemical Engineering Journal, 2014, 243: 1-6. doi: 10.1016/j.cej.2013.12.044 [28] YIN H S, GUO Q, LEI C, et al. Electrochemical-driven carbocatalysis as highly efficient advanced oxidation processes for simultaneous removal of humic acid and Cr(VI) [J]. Chemical Engineering Journal, 2020, 396: 125156. doi: 10.1016/j.cej.2020.125156 [29] CHAUVEAU R, GRÉVILLOT G, MARSTEAU S, et al. Values of the mass transfer coefficient of the linear driving force model for VOC adsorption on activated carbons [J]. Chemical Engineering Research and Design, 2013, 91(5): 955-962. doi: 10.1016/j.cherd.2012.09.019 [30] LEE J, KIM K, CHANG I S, et al. Enhanced mass transfer rate of methane in aqueous phase via methyl-functionalized SBA-15 [J]. Journal of Molecular Liquids, 2016, 215: 154-160. doi: 10.1016/j.molliq.2015.12.041 [31] ZHANG S, WANG D, FAN P P, et al. Enhancement of gas-to-liquid oxygen transfer in the presence of fine solid particles for air-exposed multiphase system [J]. Chemical Engineering Research and Design, 2015, 100: 434-443. doi: 10.1016/j.cherd.2015.04.024 [32] KARS R L, BEST R J, DRINKENBURG A A H. The sorption of propane in slurries of active carbon in water [J]. The Chemical Engineering Journal, 1979, 17(2): 201-210. doi: 10.1016/0300-9467(79)85014-5 [33] CHEN H Y, LIU J M, PEI Y P, et al. Study on the synergistic effect of UV/Fenton oxidation and mass transfer enhancement with addition of activated carbon in the bubble column reactor [J]. Chemical Engineering Journal, 2018, 336: 82-91. doi: 10.1016/j.cej.2017.10.185 [34] RAZZAK S A. Hydrodynamic studies in liquid-solid and gas-liquid-solid circulating fluidized beds[D]. Canada: University of Western Ontario, 2009. [35] KIM S D, KANG Y. Heat and mass transfer in three-phase fluidized-bed reactors—an overview [J]. Chemical Engineering Science, 1997, 52(21/22): 3639-3660. [36] KIM J K, JUNG J Y, KANG Y T. The effect of nano-particles on the bubble absorption performance in a binary nanofluid [J]. International Journal of Refrigeration, 2006, 29(1): 22-29. doi: 10.1016/j.ijrefrig.2005.08.006 [37] BALASUBRAMANIAN G, SEN S, PURI I K. Shear viscosity enhancement in water-nanoparticle suspensions [J]. Physics Letters A, 2012, 376(6/7): 860-863. [38] WANG A Q, CHEN Y W, ZHENG Z K, et al. In situ N-doped carbon-coated mulberry-like cobalt manganese oxide boosting for visible light driving photocatalytic degradation of pharmaceutical pollutants [J]. Chemical Engineering Journal, 2021, 411: 128497. doi: 10.1016/j.cej.2021.128497 [39] KIM S D, LEE D H, KIM D Y, et al. Liquid-liquid interfacial area and mass transfer characteristics in liquid-liquid three-phase fluidized beds [J]. Journal of the Kerean Institute of Chemical Engineers, 1993, 31(3): 311-317. [40] YANG Z H, WANG K, SHAO Z M, et al. In-situ preparation of Fe2O3 hierarchical arrays on stainless steel substrate for high efficient catalysis [J]. Journal of Solid State Chemistry, 2017, 246: 278-283. doi: 10.1016/j.jssc.2016.11.023 [41] LIN X C, XIE F, YU X D, et al. Ultraviolet light assisted hierarchical porous Fe2O3 catalyzing heterogeneous Fenton degradation of tetracycline under neutral condition with a low requirement of H2O2 [J]. Chemical Research in Chinese Universities, 2019, 35(2): 304-310. doi: 10.1007/s40242-019-8238-y [42] SHAO Y, CHEN H H. Heterogeneous Fenton oxidation of phenol in fixed-bed reactor using Fe nanoparticles embedded within ordered mesoporous carbons [J]. Chemical Engineering Research and Design, 2018, 132: 57-68. doi: 10.1016/j.cherd.2017.12.039 [43] 孙晓红, 陈佩佩, 胡旭东, 等. 纳米Fe2O3/KIT-6介孔结构材料的制备及非均相Fenton催化降解亚甲基蓝性能研究 [J]. 稀有金属材料与工程, 2015, 44(Sup1): 498-502. SUN X H, CHEN P P, HU X D, et al. Preparation of nanoscale Fe2O3/KIT-6 mesoporous structure catalysts for heterogeneous Fenton degradation of methylene blue [J]. Rare Metal Materials and Engineering, 2015, 44(Sup1): 498-502(in Chinese).
[44] JI Q H, YU D W, ZHANG G, et al. Microfluidic flow through polyaniline supported by lamellar-structured graphene for mass-transfer-enhanced electrocatalytic reduction of hexavalent chromium [J]. Environmental Science & Technology, 2015, 49(22): 13534-13541. [45] LEE J W, KIM J K, KANG T H, et al. Direct synthesis of hydrogen peroxide from hydrogen and oxygen over palladium catalyst supported on heteropolyacid-containing ordered mesoporous carbon [J]. Catalysis Today, 2017, 293/294: 49-55. doi: 10.1016/j.cattod.2016.10.008 [46] JEONG H E, KIM S, SEO M G, et al. Catalytic activity of Pd octahedrons/SiO2 for the direct synthesis of hydrogen peroxide from hydrogen and oxygen [J]. Journal of Molecular Catalysis A:Chemical, 2016, 420: 88-95. doi: 10.1016/j.molcata.2016.03.043 [47] XIE R J, JI J, GUO K H, et al. Wet scrubber coupled with UV/PMS process for efficient removal of gaseous VOCs: Roles of sulfate and hydroxyl radicals [J]. Chemical Engineering Journal, 2019, 356: 632-640. doi: 10.1016/j.cej.2018.09.025 [48] AZIZ A, KIM K S. Synergistic effect of UV pretreated Fe-ZSM-5 catalysts for heterogeneous catalytic complete oxidation of VOC: A technology development for sustainable use [J]. Journal of Hazardous Materials, 2017, 340: 351-359. doi: 10.1016/j.jhazmat.2017.07.019 [49] LIMA V N, RODRIGUES C S D, MADEIRA L M. Simultaneous treatment of toluene-containing gas waste and industrial wastewater by the Fenton process [J]. Science of the Total Environment, 2020, 749: 141497. doi: 10.1016/j.scitotenv.2020.141497 [50] ZHUANG Y, YUAN S Y, LIU J M, et al. Synergistic effect and mechanism of mass transfer and catalytic oxidation of octane degradation in yolk-shell Fe3O4@C/Fenton system [J]. Chemical Engineering Journal, 2020, 379: 122262. doi: 10.1016/j.cej.2019.122262 [51] KARTHIKEYAN S, GUPTA V K, BOOPATHY R, et al. A new approach for the degradation of high concentration of aromatic amine by heterocatalytic Fenton oxidation: Kinetic and spectroscopic studies [J]. Journal of Molecular Liquids, 2012, 173: 153-163. doi: 10.1016/j.molliq.2012.06.022 [52] LI L, LAI C, HUANG F L, et al. Degradation of naphthalene with magnetic bio-char activate hydrogen peroxide: Synergism of bio-char and Fe-Mn binary oxides [J]. Water Research, 2019, 160: 238-248. doi: 10.1016/j.watres.2019.05.081 [53] CHEN C, JIA N, SONG K J, et al. Sulfur-doped copper-yttrium bimetallic oxides: A novel and efficient ozonation catalyst for the degradation of aniline [J]. Separation and Purification Technology, 2020, 236: 116248. doi: 10.1016/j.seppur.2019.116248 [54] XIE Y, WANG X Q, TONG W H, et al. FexP/biochar composites induced oxygen-driven Fenton-like reaction for sulfamethoxazole removal: Performance and reaction mechanism [J]. Chemical Engineering Journal, 2020, 396: 125321. doi: 10.1016/j.cej.2020.125321 [55] LOVATO M, BUFFELLI J R, ABRILE M, et al. Kinetics and efficiency of ozone for treatment of landfill leachate including the effect of previous microbiological treatment [J]. Environmental Science and Pollution Research, 2019, 26(5): 4474-4487. doi: 10.1007/s11356-018-1710-2 [56] WANG Y M, ZHANG P, LI T, et al. Enhanced Fenton-like efficiency by the synergistic effect of oxygen vacancies and organics adsorption on FexOy-d-g-C3N4 with Fe-N complexation [J]. Journal of Hazardous Materials, 2021, 408: 124818. doi: 10.1016/j.jhazmat.2020.124818 [57] ZHUANG Y, LIU J M, YUAN S Y, et al. Degradation of octane using an efficient and stable core-shell Fe3O4@C during Fenton processes: Enhanced mass transfer, adsorption and catalysis [J]. Applied Surface Science, 2020, 515: 146083. doi: 10.1016/j.apsusc.2020.146083 [58] HANDA M, LEE Y, SHIBUSAWA M, et al. Removal of VOCs in waste gas by the photo-Fenton reaction: Effects of dosage of Fenton reagents on degradation of toluene gas in a bubble column [J]. Journal of Chemical Technology & Biotechnology, 2013, 88(1): 88-97. [59] TOKUMURA M, SHIBUSAWA M, KAWASE Y. Dynamic simulation of degradation of toluene in waste gas by the photo-Fenton reaction in a bubble column [J]. Chemical Engineering Science, 2013, 100: 212-224. doi: 10.1016/j.ces.2012.12.010 [60] CHEN H Y, LIU J M, WU C D, et al. A comprehensive mathematical model for analyzing synergistic effect of oxidation and mass transfer enhancement during UV-Fenton removal of VOCs [J]. Chemosphere, 2021, 283: 131021. doi: 10.1016/j.chemosphere.2021.131021