-
有机磷酸酯阻燃剂(OPFRs)作为一种替代传统的新型溴化阻燃剂,随着使用量的增加已在环境中普遍存在。它们被添加到各种材料(如塑料、纺织品、橡胶等)中,用于阻燃或塑化[1] 。有研究报告OPFRs进入环境后,在大气中会被长距离输送,甚至到达偏远地区[2] 。OPFRs存在于废水[3-4] 、污泥[5] 、土壤[6-7] 、大气[8] 、粉尘[9-11] 、沉积物[12] 等,甚至在人的血浆[13] 中。由于OPFRs的亲油性和疏水性,其倾向在大气颗粒物[14] 上积累。人体可通过呼吸、摄入和直接皮肤接触等暴露途径接触OPFRs[15-18] ,虽然OPFRs比传统阻燃剂更环保,但大多数还是具有神经毒性、致癌性和胎儿毒性等[19-21] 。建立大气颗粒物中OPFRs的预处理方法,便于深入分析大气中OPFRs的来源、浓度水平和人体暴露情况[22] 。同时,也可以为相关部门提供检测大气颗粒物中有机磷酸酯阻燃剂的相关技术。
目前,国内外大气颗粒物样品的预处理方法主要有索氏提取[23] 、微波辅助提取[8] 、加压溶剂提取[24-25] 、超声提取[26] 等。索氏提取时间长,微波辅助提取和加速溶剂提取成本高,超声波装置成本低,操作方便。大气颗粒物基质复杂,存在痕量的有机污染物,提取后需要进一步提纯浓缩以达到更高的灵敏度。常用的固相萃取盒、层析纯化柱或其他纯化技术,会消耗较多的有机溶剂。分散液液微萃取(DLLME)以纯水为底物进行净化,用微量溶剂萃取,有机溶剂的消耗最小化并可作为一个整体进行净化浓缩。在分散剂的作用下,当萃取剂与目标分析物的接触面积增加时,可以立即达到反应平衡。无需额外的设备,节省大量的预处理时间,达到较高的萃取效率。与其他提取纯化方法相比,该技术简单、高效[27] 。
为了进一步提高该方法的灵敏度,本文建立了超声提取与分散液液微萃取相结合的预处理方法[28] . 样品经超声提取,分散液液微萃取提纯、浓缩,最后经气相色谱串联质谱仪(GC-MS/MS)检测。
超声提取-分散液液微萃取-气相色谱串联质谱法测定大气PM10中的7种有机磷酸酯阻燃剂
Determination of seven organophosphate flame retardants in atmospheric particulate matter (PM10) by ultrasonic extraction-dispersed liquid-liquid microextraction combined with gas chromatography tandem mass spectrometry
-
摘要: 建立了超声提取-分散液液微萃取联合气相色谱串联三重四极杆质谱测定大气中7种有机磷酸酯阻燃剂(磷酸三丙酯(TPrP)、磷酸三异丁酯(TiBP)、磷酸三正丁酯(TnBP)、磷酸三(1-氯-2-丙基)酯(TCIPP)、磷酸三(1,3-二氯-2-丙基)酯(TDCPP)、磷酸三苯酯(TPP)、磷酸三甲苯酯(TCP))的方法。本实验采用单因素优化法结合BBD实验设计法对超声波提取以及分散液-液微萃取的工艺参数进行优化后确定实验的最佳条件。样品以乙酸乙酯和丙酮(3∶2,V/V)混合溶液为提取剂进行超声提取,再采用分散液-液微萃取技术(纯水为纯化基质,四氯化碳为萃取剂,无水乙醇为分散剂)进一步提纯浓缩。7种OPFRs的检出限为0.0049—0.3310 pg·m−3,定量下限为0.0158—1.0835 pg·m−3,加标回收率为70.0%—119.7%,相对标准偏差为0.2%—9.4%。将此方法用于苏州地区实际样品大气PM10的检测,检测显示当地大气PM10中存在大部分有机磷酸酯阻燃剂。Abstract: A method of ultrasonic extraction-dispersive liquid-liquid microextraction combined with gas chromatography-triple quadrupole tandem mass spectrometry (GC-MS/MS) was established for the determination of 7 organophosphate flame retardants (OPFRs) (tripropyl phosphate (TPrP), triisobutyl phosphate(TiBP), tri-n-butyl phosphate (TnBP), tris (1-chloro-2-propyl) phosphate (TCIPP), tris (1,3-dichloro-2) ester (TDCPP), triphenyl phosphate (TPP), tricresyl phosphate (TCP). In this experiment, the single factor optimization method combined with BBD experimental design method was adopted to optimize the technological parameters of ultrasonic extraction and dispersed liquid-liquid microextraction. Finally, the optimal conditions for the experiment were determined. The samples were ultrasonic extracted with ethyl acetate and acetone (3∶2, V/V) as the extraction agent, and then further purified and concentrated with the dispersive liquid-liquid microextraction technology (pure water as the purification matrix, carbon tetrachloride as the extraction agent, anhydrous ethanol as the dispersant). The results showed that the limits of detection (LOD) ranged from 0.0049 pg·m−3 to 0.3310 pg·m−3, and the limits of quantitative (LOQ) ranged from 0.0158 pg·m−3 to1.0835 pg·m−3.The spiked recoveries ranged from 70.0% to 119.7%, and the RSDs ranged from 0.2% to 9.4%. The method was applied to the actual atmospheric PM10 samples in Suzhou area, the results showed that most of the organophosphate flame retardants existed in the local atmospheric PM10.
-
表 1 化合物性质
Table 1. compound properties
化合物
Compounds简称
Abbreviation化学式
Molecular formula分子量
Molecular weightCAS号
CAS number生产商
Manufacturer沸点/℃
Boiling point极性
lgKow磷酸三丙酯 TPrP C9H21O4P 224.24 513-08-6 Sigma-Aldrich 120—122 1.87 磷酸三异丁酯 TiBP C12H27O4P 266.31 126-71-6 Fluoro Chem 205 3.60 磷酸三正丁酯 TnBP C12H27O4P 266.31 126-73-8 aladdin 289 4.00 磷酸三(1-氯-2-丙基)酯 TCIPP C9H18Cl3O4P 327.57 13674-84-5 Adamas 270 2.59 磷酸三(1,3-二氯-2-丙基)酯 TDCPP C9H15Cl6O4P 430.90 13674-87-8 Adamas 315 3.65 磷酸三苯酯 TPP C18H15O4P 326.28 115-86-8 Adamas 370 4.59 磷酸三甲苯酯 TCP C21H21O4P 368.36 563-04-2 Adamas 410 5.11 表 2 目标物的多反应监测条件
Table 2. Multi-reaction monitoring conditions of the target
化合物
Compounds保留时间/min
Retention time子母离子对(m/z)
Parent ion pair碰撞能量/eV
Collision energyTPrP 5.87 99>81、141>99、141>125 5 TiBP 6.57 99>81、139>99、155>139 5 TnBP-D27 7.12 103>102、103>83、167>103 10 TnBP 7.24 99>81、125>99、155>99 5 TCIPP 8.02 99>91、125>99、157>99 10 TDCPP 12.30 191>75、191>99、209>99 10 TPP 13.37 326>233、326>325、327>326 5 TCP 15.25 92>91、92>91、368>251 20 表 3 响应面试验方案及结果
Table 3. Response surface test plan and results
运行
Run萃取剂用量/μL
Extractant volume分散剂用量/μL
Dispersant volumepH 回收率/%
Recovery1 40 600 5 56.5 2 40 500 7 102.2 3 50 600 7 79.3 4 30 600 7 81.6 5 40 500 7 102.7 6 40 400 5 72.8 7 30 400 7 56.7 8 30 500 5 72.0 9 40 500 7 98.6 10 50 400 7 90.7 11 40 500 7 98.4 12 50 500 9 83.5 13 30 500 9 46.5 14 40 600 9 72.3 15 50 500 5 65.4 16 40 500 7 99.6 17 40 400 9 50.3 表 4 BBD设计的方差分析
Table 4. Analysis of variance for BBD design
变量
Source平方和
Squares自由度
df均方
SquareF值
F ValueP值
Prob﹥FModel 5614.50 9 623.83 178.95 ﹤0.001 significant A-Extractant volume 480.50 1 480.50 137.83 ﹤0.001 B-Dispersant volume 46.56 1 46.56 13.36 0.0081 C-pH 24.85 1 24.85 7.13 0.0320 AB 331.24 1 331.24 95.02 ﹤0.001 AC 475.24 1 475.24 136.33 ﹤0.001 BC 366.72 1 366.72 105.20 ﹤0.001 A2 393.11 1 393.11 112.77 ﹤0.001 B2 771.64 1 771.64 221.35 ﹤0.001 C2 2382.51 1 2382.51 683.44 ﹤0.001 Residual 24.40 7 3.49 Lack of fit 8.04 3 2.68 0.66 0.6205 not significant Pure Error 16.36 4 4.09 Cor Total 5638.90 16 表 5 7种有机磷酸酯阻燃剂的选择离子、线性方程、检出限及定量下限
Table 5. Selected ions, linear equations, detection limits and lower limit of quantification of seven OPFRs
化合物
Compounds线性方程
Linear equation线性范围/(μg·L−1)
Linearity range相关系数
Correlation coefficients检出限/(pg·m−3)
LOD定量下限/(pg·m−3)
LOQTPrP y=1.03×102x+8.36×102 1—200 0.9993 0.0049 0.0158 TiBP y=6.19×102x+1.52×102 1—200 0.9996 0.0056 0.0186 TnBP y=6.44×102x+1.23×102 1—200 0.9992 0.0133 0.0433 TCIPP y=7.62×102x+4.94×102 1—200 0.9993 0.0049 0.0158 TDCPP y=5.65×102x−1.54×103 1—200 0.9999 0.0574 0.1878 TPP y=2.58×103x+1.25×104 1—200 0.9993 0.0399 0.1307 TCP y=0.15×102x+11.93×102 2—1000 0.9960 0.3310 1.0835 表 6 7种有机磷酸酯阻燃剂的加标回收率、相对标准偏差
Table 6. The recovery rate and relative standard deviation of seven OPFRs
化合物
Compounds1000 μg·L−1 250 μg·L−1 50 μg·L−1 加标回收率/%
Recovery相对标准偏差/%
RSD(n=6)加标回收率/%
Recovery相对标准偏差/%
RSD(n=6)加标回收率/%
Recovery相对标准偏差/%
RSD(n=6)TPrP 94.9 5.8 82.3 6.6 70.0 4.6 TiBP 79.5 9.4 94.1 1.3 83.9 7.3 TnBP 89.0 2.7 92.7 4.0 87.2 2.3 TCIPP 119.7 8.5 117.5 7.7 117.6 2.4 TDCPP 93.8 2.1 102.7 2.3 94.0 4.8 TPP 88.2 0.5 83.4 0.6 85.8 5.8 TCP 86.7 0.2 84.9 3.1 85.3 2.9 表 7 样品分析结果(ng·m−3)
Table 7. Sample analysis results
采样地点
Sampling position建筑工地
Construction site室内环境
Indoor environment交通道路
Traffic route学校
SchoolTPrP ND. 0.188 ND. 0.246 TiBP 0.613 ND. 0.841 0.348 TnBP 0.734 ND. 0.210 0.120 TCIPP 7.177 1.911 4.646 3.240 TDCPP 5.406 ND. ND. 0.559 TPP 1.530 ND. ND. 0.108 TCP 1.229 0.437 ND. ND. ∑OPFRs 16.689 2.536 5.697 4.621 注:ND.表示未检出. ND. means not detected. -
[1] CHEN Y Y, CHEN Y J, ZHANG Y H, et al. Determination of HFRs and OPFRs in PM2.5 by ultrasonic-assisted extraction combined with multi-segment column purification and GC-MS/MS [J]. Talanta, 2019, 194: 320-328. doi: 10.1016/j.talanta.2018.10.025 [2] MÖLLER A, STURM R, XIE Z Y, et al. Organophosphorus flame retardants and plasticizers in airborne particles over the northern Pacific and Indian ocean toward the polar regions: Evidence for global occurrence [J]. Environmental Science & Technology, 2012, 46(6): 3127-3134. [3] HAO C Y, HELM P A, MORSE D, et al. Liquid chromatography-tandem mass spectrometry direct injection analysis of organophosphorus flame retardants in Ontario surface water and wastewater effluent [J]. Chemosphere, 2018, 191: 288-295. doi: 10.1016/j.chemosphere.2017.10.060 [4] PANTELAKI I, VOUTSA D. Organophosphate flame retardants (OPFRs): A review on analytical methods and occurrence in wastewater and aquatic environment [J]. Science of the Total Environment, 2019, 649: 247-263. doi: 10.1016/j.scitotenv.2018.08.286 [5] PANG L, YUAN Y T, HE H, et al. Occurrence, distribution, and potential affecting factors of organophosphate flame retardants in sewage sludge of wastewater treatment plants in Henan Province, Central China [J]. Chemosphere, 2016, 152: 245-251. doi: 10.1016/j.chemosphere.2016.02.104 [6] LORENZO M, CAMPO J, PICÓ Y. Determination of organophosphate flame retardants in soil and fish using ultrasound-assisted extraction, solid-phase clean-up, and liquid chromatography with tandem mass spectrometry [J]. Journal of Separation Science, 2018, 41(12): 2595-2603. doi: 10.1002/jssc.201701461 [7] LUO Q, SHAN Y, MUHAMMAD A, et al. Levels, distribution, and sources of organophosphate flame retardants and plasticizers in urban soils of Shenyang, China [J]. Environmental Science and Pollution Research, 2018, 25(31): 31752-31761. doi: 10.1007/s11356-018-3156-y [8] NACCARATO A, TASSONE A, MORETTI S, et al. A green approach for organophosphate ester determination in airborne particulate matter: Microwave-assisted extraction using hydroalcoholic mixture coupled with solid-phase microextraction gas chromatography-tandem mass spectrometry [J]. Talant, 2018, 189: 657-665. doi: 10.1016/j.talanta.2018.07.077 [9] THU H T, DUC C N, THI H L, et al. Determination of organophosphate ester flame retardants in indoor dust and their potential health exposure risk [J]. Vietnam Journal of Chemistry, 2020, 58(6): 723-730. [10] GILL R, HURLEY S, BROWN R, et al. Polybrominated diphenyl ether and organophosphate flame retardants in canadian fire station dust [J]. Chemosphere, 2020, 253: 126669. doi: 10.1016/j.chemosphere.2020.126669 [11] de la TORRE A, NAVARRO I, SANZ P, et al. Organophosphate compounds, polybrominated diphenyl ethers and novel brominated flame retardants in European indoor house dust: Use, evidence for replacements and assessment of human exposure [J]. Journal of Hazardous Materials, 2020, 382: 121009. doi: 10.1016/j.jhazmat.2019.121009 [12] GAO X Z, XU Y P, MA M, et al. Distribution, sources and transport of organophosphorus flame retardants in the water and sediment of Ny- Ålesund;lesund, Svalbard, the Arctic [J]. Environmental Pollution, 2020, 264: 114792. doi: 10.1016/j.envpol.2020.114792 [13] LI P, JIN J, WANG Y, et al. Concentrations of organophosphorus, polybromobenzene, and polybrominated diphenyl ether flame retardants in human serum, and relationships between concentrations and donor ages [J]. Chemosphere, 2017, 171: 654-660. doi: 10.1016/j.chemosphere.2016.12.126 [14] VEEN I V D, BOER J D. Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis [J]. Chemosphere, 2012, 88(10): 1119-1153. doi: 10.1016/j.chemosphere.2012.03.067 [15] CHEN Y X, LIU Q Y, MA J, et al. A review on organophosphate flame retardants in indoor dust from China: Implications for human exposure [J]. Chemosphere, 2020, 260: 127633. doi: 10.1016/j.chemosphere.2020.127633 [16] LI M Q, YAO Y M, WANG Y, et al. Organophosphate ester flame retardants and plasticizers in a Chinese population: Significance of hydroxylated metabolites and implication for human exposure [J]. Environmental Pollution, 2020, 257: 113633. doi: 10.1016/j.envpol.2019.113633 [17] SANCHEZ-PINERO J, BOWERBANK S L, MOREDA-PINEIOR J, et al. The occurrence and distribution of polycyclic aromatic hydrocarbons, bisphenol A and organophosphate flame retardants in indoor dust and soils from public open spaces: Implications for human exposure [J]. Environmental Pollution, 2020, 266(Pt1): 115372. [18] van den EEDE N, DIRTU A C, NEELS H, et al. Analytical developments and preliminary assessment of human exposure to organophosphate flame retardants from indoor dust [J]. Environment International, 2011, 37(2): 454-461. doi: 10.1016/j.envint.2010.11.010 [19] LUO D, LIU W, WU W X, et al. Trimester-specific effects of maternal exposure to organophosphate flame retardants on offspring size at birth: A prospective cohort study in China [J]. Journal of Hazardous Materials, 2020, 406: 124754. [20] YAO Y M, LI M Q, PAN L Y, et al. Exposure to organophosphate ester flame retardants and plasticizers during pregnancy: Thyroid endocrine disruption and mediation role of oxidative stress [J]. Environment International, 2021, 146: 106215. doi: 10.1016/j.envint.2020.106215 [21] AL-SALEM A M, SAQUIB Q, SIDDIQUI M A, et al. Organophosphorus flame retardant (tricresyl phosphate) trigger apoptosis in HepG2 cells: Transcriptomic evidence on activation of human cancer pathways [J]. Chemosphere, 2019, 237: 124519. doi: 10.1016/j.chemosphere.2019.124519 [22] 李锦, 张占恩, 陈鑫, 等. 超声提取-分散液相微萃取-气相色谱质谱法测定大气PM2.5中15种邻苯二甲酸酯 [J]. 环境化学, 2017, 36(1): 183-189. doi: 10.7524/j.issn.0254-6108.2017.01.2016051302 LI J, ZHANG Z N, CHEN X, et al. Determination of fifteen phthalate esters in air particulate matter (PM2.5) by ultrasonic extraction-dispersive liquid-liquid microextraction combined with gas chromatography-mass spectrometry [J]. Environmental Chemistry, 2017, 36(1): 183-189(in Chinese). doi: 10.7524/j.issn.0254-6108.2017.01.2016051302
[23] COCHRAN R E, KUBÁTOVÁ A. Pressurised fluid extraction of polycyclic aromatic hydrocarbons and their polar oxidation products from atmospheric particles [J]. International Journal of Environmental Analytical Chemistry, 2015, 95(5): 434-452. doi: 10.1080/03067319.2015.1025225 [24] RAMOS-CONTRERAS C, CONCHA-GRAÑA E, LÓPEZ-MAHÍA P, et al. Determination of atmospheric particle-bound polycyclic aromatic hydrocarbons using subcritical water extraction coupled with membrane microextraction [J]. Journal of Chromatography. A, 2019, 1606: 460381. doi: 10.1016/j.chroma.2019.460381 [25] COSCOLLÀ C, YUSÀ V, MARTÍ P, et al. Analysis of currently used pesticides in fine airborne particulate matter (PM2.5) by pressurized liquid extraction and liquid chromatography-tandem mass spectrometry [J]. Journal of Chromatography. A, 2008, 1200(2): 100-107. doi: 10.1016/j.chroma.2008.05.075 [26] FERNÁNDEZ-AMADO M, PRIETO-BLANCO M C, LÓPEZ-MAHÍA P, et al. Ion-pair in-tube solid phase microextraction for the simultaneous determination of phthalates and their degradation products in atmospheric particulate matter [J]. Journal of Chromatography. A, 2017, 1520: 35-47. doi: 10.1016/j.chroma.2017.09.010 [27] GARCÍA-LÓPEZ M, RODRÍGUEZ I, CELA R. Development of a dispersive liquid-liquid microextraction method for organophosphorus flame retardants and plastizicers determination in water samples [J]. Journal of Chromatography. A, 2007, 1166(1/2): 9-15. [28] YAN H Y, WANG H, QIN X Y, et al. Ultrasound-assisted dispersive liquid-liquid microextraction for determination of fluoroquinolones in pharmaceutical wastewater [J]. Journal of Pharmaceutical and Biomedical Analysis, 2011, 54(1): 53-57. doi: 10.1016/j.jpba.2010.08.007