-
近年来,PM2.5成为了中国大部分城市的主要污染物,PM2.5不仅会出现水体富营养化、能见度降低以及土壤酸化等环境问题,还会对人类的呼吸系统、心血管系统造成严重伤害[1-5]. 据《2017年中国生态环境状况公报》显示,大多数的城市空气质量不达标,其中只有99个地级市空气质量达标,占城市总数的29.3%[6-7].
水溶性离子是PM2.5中的主要化学组成部分[8]. 研究学者对水溶性离子的污染特征以及来源解析做了不少报道,这对治理大气环境的问题有重要的意义[9].在京津冀的水溶性离子化学特征的研究中显示,SNA(SO42−、NH4+、NO3−)是大气颗粒物中最重要的组成成分[10]. 张蕾等[11]在盘锦市秋季的水溶性离子的特征研究中,PM2.5的平均质量浓度为(52.71±19.44) μg·m−3 ,采样期间的颗粒物整体偏酸性.曹云擎等[12]对“2+26”城市一次污染过程的PM2.5的化学组分以及来源进行了研究,结果显示,北京、唐山以及太原的PM2.5本地的排放量最大,天津等18个城市为外地城市的贡献最大,济南等7个城市的外围区域的贡献最大,呈现出明显的区域性污染特征. 程渊等[13]在武汉市的水溶性离子的研究中表明,武汉市的大气存在较强的SO2向 SO42−、NO2向 NO3−转化的二次过程,主成分分析中显示,该市的水溶性离子主要来源于燃煤以及机动车排放、工业生产、扬尘等.
邯郸市位于河北省的南部,与河南、山西、山东省相邻,是京津冀主要的燃煤城市之一,高强度的污染排放导致邯郸成为颗粒物污染的频发区和重灾区,其次西部有太行山脉,它的阻挡作用导致大量的颗粒物不易扩散. 目前针对邯郸的水溶性离子的季节性变化研究相对比较少. 孟琛琛等[14]对邯郸市2013年水溶性离子进行了讨论,春、夏、秋的3个季节的PM2.5呈酸性,冬季呈碱性,并分析得出了SO42−、NO3−、Cl−的存在形式.刘召策等[15]探讨了邯郸PM2.5的光学特性,结果显示,消光系数平均值为(780.9±439.1)mol·L−1·m−1,EC(有机碳)和NH4NO3的消光系数高于其他成分. 牛红亚等[16]利用离子色谱法并分析了水溶性无机离子的特征,结果发现,SO42−、NO3−、NH4+是春夏秋冬季PM2.5中主要的成分,并且水溶性离子的来源主要为生物质燃烧和二次转化.
由于对邯郸多时间序列的研究比较有限,因此本文将利用2017年所采集的水溶性离子数据对PM2.5的污染特征以及来源解析进行较为系统的研究,为邯郸市的大气污染防治工作提供科学依据与数据支撑.
邯郸市大气细颗粒物中水溶性离子的污染特征及来源解析
Pollution characteristics and source of water-soluble ions in atmospheric fine particles in Handan City
-
摘要: 为研究邯郸市大气细颗粒物中水溶性离子的季节变化特征及来源,于2017年采集了大气PM2.5样品,并结合气象要素(温度、相对湿度)、气态污染物(SO2、NO2、O3)浓度对水溶性无机离子进行分析. 结果显示,2017年邯郸市PM2.5年均浓度为(88.08±59.08)μg·m−3,季节变化特征为冬季>秋季>春季>夏季;8种水溶性离子年均浓度为(53.0±38.1) μg·m−3,对PM2.5的贡献值为58.2%,各离子的浓度高低顺序为
${\rm{NO}}_3^{-} $ >${\rm{SO}}_4^{2-} $ >${\rm{NH}}_4^{+} $ >Cl−>K+>Ca2+>Na+>Mg2+;SNA(${\rm{SO}}_4^{2-} $ 、${\rm{NO}}_3^{-} $ 、${\rm{NH}}_4^{+} $ )为水溶性离子的重要组成部分;通过对颗粒物的酸碱度与相关性分析,春、夏、秋季PM2.5呈酸性,冬季呈碱性;春、夏、秋季${\rm{NH}}_4^{+} $ 的存在形态为NH4NO3和(NH4)2SO4,冬季${\rm{NH}}_4^{+} $ 存在形式为NH4Cl;湿度对硫氧转化率和氮氧转化率有一定的促进作用.二次转化生成、燃煤、生物质燃烧和扬尘为水溶性离子主要的来源.-
关键词:
- 邯郸市 /
- PM2.5 /
- 水溶性离子 /
- 硫酸盐、硝酸盐及铵盐 /
- 来源
Abstract: In order to explore the characteristics and sources of water-soluble ions in PM2.5 in Handan, China, PM2.5 samples were collected in 2017, combined with meteorological elements (temperature, relative humidity), gaseous pollutants (SO2, NO2, O3) and water-soluble ions were analyzed. The results showed that the average concentration of PM2.5 in Handan was (88.08±59.08)μg·m−3 in 2017, and its seasonal variation was characterized by winter> autumn> spring> summer. The annual average concentration of 8 water-soluble ions was (53.0±38.1)μg·m−3, and the contribution value to PM2.5 was 58.2%. The order of each ion concentration was${\rm{NO}}_3^{-} $ >${\rm{SO}}_4^{2-} $ >NH4+>Cl−>K+>Ca2+> Na+>Mg2+. SNA (${\rm{SO}}_4^{2-} $ 、${\rm{NO}}_3^{-} $ 、${\rm{NH}}_4^{+} $ ) was the important component of TWSII. Through the analysis of the pH and correlation , PM2.5 was acidic in spring, summer and autumn, and alkaline in winter.${\rm{NH}}_4^{+} $ mainly existed in the form of NH4NO3 and(NH4)2SO4 in spring, summer, autumn. Besides,${\rm{NH}}_4^{+} $ mainly existed in the form of NH4Cl in winter. Humidity had a certain role in promoting the conversion rate of sulfur and oxygen and the conversion rate of nitrogen and oxygen. The result of principal component analysis indicated that secondary transformation, coal combustion, biomass burning and dust were the main sources of the water-soluble ions in Handan during sampling periods.-
Key words:
- Handan City /
- PM2.5 /
- water-soluble ions /
- SNA(SO42-、NO3-、NH4+) /
- source
-
表 1 不同城市的PM2.5浓度对比(μg·m−3)
Table 1. Comparison of PM2.5 concentration in different cities
城市City 采样日期Sampling date 春季Spring 夏季Summer 秋季Autumn 冬季Winter 全年Annua 北京[17] 2017.12—2018.12 102.9 54.7 75.4 75.8 77.1 唐山[20] 2016 70.3 64.5 74.8 89.1 74.6 石家庄[20] 2016 65.1 60.5 111.8 140.2 94.6 安阳[18] 2018.04—2019.01 75.9 46.9 90.5 104.8 85.8 本溪[19] 2016.01—2016.10 42.6 40.9 58.5 88.2 57.6 邯郸[14,16] 2013.01—2013.102016.04—2016.12 66.299.8 84.277.6 128.184.4 230.8122.5 131.295.0 本研究 2017.04—2017.12 64.9 41.1 93.4 153.9 88.0 表 2 PM2.5中各离子之间的相关系数矩阵
Table 2. Correlation coefficient matrix between ions in PM2.5
离子Ions Na+ NH4+ K+ Mg2+ Ca2+ Cl− SO42− NO3− Na+ 1 NH4+ 0.402** 1 K+ 0.618** 0.652** 1 Mg2+ 0.388** −0.012 0.394** 1 Ca2+ 0.241* −0.114 0.228* 0.841** 1 Cl− 0.576** 0.695** 0.860** 0.213* 0.142 1 SO42− 0.401** 0.916** 0.555* −0.024 −0.149 0.534* 1 NO3− 0.292** 0.909** 0.518** 0.010 −0.088 0.520** 0.725** 1 注: *表示相关性在0.05是水平显著(双侧),**表示相关性在0.01水平显著(双侧).
Note: * indicates that the correlation is significant at 0.05 level (bilateral), and ** indicates that the correlation is significant at 0.01 level (bilateral).表 3 主成分旋转因子载荷矩阵
Table 3. Principal Factor Rotation Factor Load Matrix
离子组分Ionic components 因子1Factor 1 因子2Factor 2 因子3Factor 3 Na+ 0.726 0.529 0.001 NH4+ 0.974 0.051 0.081 K+ 0.693 0.609 0.138 Mg2+ 0.070 0.882 −0.236 Ca2+ 0.019 0.944 0.045 Cl− 0.743 0.494 0.142 SO42- 0.910 −0.052 0.020 NO3− 0.857 0.029 −0.001 方差贡献率Variance contribution rate 49.096% 18.547% 13.014% 累计方差贡献率Cumulative variance contribution rate 49.096% 67.643% 80.657% 特征值Eigenvalues 5.401 2.040 1.432 来源Source 二次转化生成 扬尘 生物质及煤燃烧 注:黑体字为该因子中载荷较大的组分载荷量.
Note: The boldface is the load of the component with larger load in this factor. -
[1] BEI N F, ZHAO L N, WU J R, et al. Impact of sea-land and mountain-valley circulations on the air pollution in Beijing-Tian-Hebei (BTH): A case study [J]. Environmental Pollution, 2018, 234: 429-438. doi: 10.1016/j.envpol.2017.11.066 [2] YU S S, LIU W J, XU Y S, et al. Characteristics and oxidative potential of atmospheric PM2.5 in Beijing: Source apportionment and seasonal variation [J]. Science of the Total Environment, 2019, 650: 277-287. doi: 10.1016/j.scitotenv.2018.09.021 [3] ZHANG H, YUAN H O, LIU X H, et al. Impact of synoptic weather patterns on 24 h average PM2.5 concentrations in the North China Plain during 2013–2017 [J]. Science of the Total Environment, 2018, 627: 200-210. doi: 10.1016/j.scitotenv.2018.01.248 [4] SONG C, HE J, WU L, et al. Health burden attributable to ambient PM2.5 in China [J]. Environmental Pollution, 2017, 223: 575-586. doi: 10.1016/j.envpol.2017.01.060 [5] 李莉, 安静宇, 严茹莎. 基于细颗粒物来源追踪技术的2013年12月上海市严重污染过程的PM2.5的源贡献分析 [J]. 环境科学, 2015, 36(10): 3543-3553. LI L, JING Y Y, YAN R S. Analysis of PM2.5 source contribution based on fine particle source tracking technology in Shanghai in December 2013 [J]. Environmental Science, 2015, 36(10): 3543-3553(in Chinese).
[6] QIAO T, ZHAO M F, XIU G L, et al. Simultaneous monitoring andcompositions analysis of PM1 and PM2.5 in Shanghai: Implications for characterization of haze pollution and source apportionment [J]. Science of the Total Environment, 2016, 557: 386-394. [7] 赵庆炎, 姜楠, 燕启社, 等. 郑州市夏、秋季大气颗粒物中水溶性无机离子质量浓度及粒径分布特征 [J]. 环境科学, 2018, 39(11): 4866-4875. ZHAO Q Y, JIANG N, YAN Q S, et al. Mass concentration and particle size distribution characteristics of water-soluble inorganic ions in atmospheric particles in summer and autumn in Zhengzhou city [J]. Environmental Science, 2018, 39(11): 4866-4875(in Chinese).
[8] 赵亚南, 王跃思, 温天雪, 等. 长白山PM2.5中水溶性离子季节变化特征研究 [J]. 环境科学, 2014, 35(1): 9-14. ZHAO Y N, WANG Y S, WEN T X, et al. Study on the seasonal variation characteristics of water-soluble ions in PM2.5 in Changbai Mountain [J]. Environmental Science, 2014, 35(1): 9-14(in Chinese).
[9] 胡晓峰, 张翔, 柳笑, 等. 西宁市PM2.5水溶性无机离子特征及其来源解析 [J]. 环境科学研究, 2019, 32(7): 1179-1186. HU X F, ZHANG X, LIU X, et al. The characteristics and sources of PM2.5 water-soluble inorganic ions in Xining [J]. Environmental Science Research, 2019, 32(7): 1179-1186(in Chinese).
[10] SUN Y L, WANG Z F, FU P Q, et al. The impact of relativehumidity onaerosol composition and evolution processes during wintertime in Beijing, China [J]. Atmospheric Environment, 2013, 77: 927-934. doi: 10.1016/j.atmosenv.2013.06.019 [11] 张蕾, 姬亚芹, 王士宝, 等. 盘锦市冬季PM2.5水溶性离子特征及来源分析 [J]. 环境科学, 2018, 39(6): 2521-2527. ZHANG L, JI Y Q, WANG S B, et al. Analysis of the characteristics and sources of water-soluble ions of PM2.5 in Panjin city in winter [J]. Environmental Science, 2018, 39(6): 2521-2527(in Chinese).
[12] 曹云擎, 王体健, 韩军彩, 等. “2+26”城市一次污染过程PM2.5化学组分和来源解析研究 [J]. 环境科学学报, 2020, 40(2): 361-372. CAO Y Q, WANG T J, HAN J C, et al. Analysis of the chemical components and sources of PM2.5 in the “2+26” urban primary pollution process [J]. Journal of Environmental Science, 2020, 40(2): 361-372(in Chinese).
[13] 程渊, 吴建会, 毕晓辉, 等. 武汉市大气PM2.5中水溶性离子污染特征及来源 [J]. 环境科学学报, 2019, 39(1): 191-198. CHENG Y, WU J H, BI X H, et al. Characteristics and sources of water-soluble ion pollution in atmospheric PM2.5 in Wuhan [J]. Journal of Environmental Sciences, 2019, 39(1): 191-198(in Chinese).
[14] 孟琛琛, 王丽涛, 张芬芬, 等. 邯郸市PM2.5中水溶性无机离子污染特征及来源解析 [J]. 环境科学学报, 2015, 35(11): 3443-3451. MENG C C, WANG L T, ZHANG F F, et al. Pollution characteristics and source analysis of water-soluble inorganic ions in PM2.5 in Handan City [J]. Journal of Environmental Science, 2015, 35(11): 3443-3451(in Chinese).
[15] 刘召策,袁 琦,胡 伟,等.邯郸市冬季一次霾过程中细颗粒物化学组分的污染特征及消光贡献[J].地球化学,2020,49(03):298-305. LIU Z C, YUAN Q, HU W, et al. Pollution characteristics and extinction contribution of chemical composition in fine particulate matter during a winter haze episode in Handan[J]. Geochimica, 2020, 49(03): 298-305 .
[16] 牛红亚, 杨旗, 刘召策, 等. 燃煤工业城市大气细颗粒物中水溶性无机离子的季节变化特征及来源解析——以邯郸市为例 [J]. 中国环境监测, 2020, 36(1): 26-33. NIU H Y, YANG Q, LIU Z C, et al. Seasonal variation characteristics and source analysis of water-soluble inorganic ions in atmospheric fine particles in coal-burning industrial cities——taking Handan city as an example [J]. China Environmental Monitoring, 2020, 36(1): 26-33(in Chinese).
[17] 李欢, 唐贵谦, 张军科, 等. 2017~2018年北京大气PM2.5中水溶性无机离子特征[J]. 环境科学, 2020, 41(10): 4364-4373. LI H, TANG G Q, ZHANG J K, et al. Characteristics of water-soluble inorganic ions in atmospheric PM2.5 in Beijing from 2017 to 2018[J]. Environmental Science, 2020, 41(10): 4364-4373.
[18] 孙有昌, 姜楠, 王申博, 等. 安阳市大气PM2.5中水溶性离子季节特征及来源解析 [J]. 环境科学, 2020, 41(1): 75-81. SUN Y C, JIANG N, WANG S B, et al. Seasonal characteristics and source analysis of water-soluble ions in atmospheric PM2.5 in Anyang City [J]. Environmental Science, 2020, 41(1): 75-81(in Chinese).
[19] 张敬巧, 王涵, 胡君, 等. 本溪市PM2.5中水溶性离子季节性变化特征及来源分析 [J]. 环境科学研究, 2019, 32(2): 246-252. ZHANG J Q, WANG H, HU J, et al. Seasonal variation characteristics and source analysis of water-soluble ions in PM2.5 in Benxi City [J]. Environmental Science Research, 2019, 32(2): 246-252(in Chinese).
[20] 贾佳, 韩力慧, 程水源, 等. 京津冀区域PM2.5及二次无机组分污染特征研究 [J]. 中国环境科学, 2018, 38(3): 801-811. doi: 10.3969/j.issn.1000-6923.2018.03.001 JIA J, HAN L H, CHENG S Y, et al. Study on pollution characteristics of PM2.5 and secondary inorganic components in Beijing-Tianjin-Hebei region [J]. Chinese Environmental Science, 2018, 38(3): 801-811(in Chinese). doi: 10.3969/j.issn.1000-6923.2018.03.001
[21] WANG S X, XING J, CHATANI S, et al. Verification of anthropogenicemissions of China by satellite and ground observations [J]. Atmospheric Environment, 2011, 45(35): 6347-6358. doi: 10.1016/j.atmosenv.2011.08.054 [22] 邯郸市生态环境局. 环境观察: “煤改气”要弹好钢琴[EB/OL]. http://sthj.hd.gov.cn/main/detail/68993, 2017-12-20. Handan ecological and environment bureau. Environmental observation: “Coal to Gas” must play the piano [EB/OL]. http://sthj.hd.gov.cn/main/detail/68993, 2017-12-20.
[23] 闫广轩, 张靖雯, 雷豪杰, 等. 郑州市大气细颗粒物中水溶性离子季节性变化特征及其源解析 [J]. 环境科学, 2019, 40(4): 1545-1552. YAN G X, ZHANG J W, LEI H J, et al. Seasonal variation characteristics and source analysis of water-soluble ions in atmospheric fine particles in zhengzhou city [J]. Environmental Science, 2019, 40(4): 1545-1552(in Chinese).
[24] 牛宏宏, 王宝庆, 刘博薇, 等. 天津冬季PM2.5中水溶性无机离子污染特征研究 [J]. 环境污染与防治, 2019, 41(5): 592-595. NIU H H, WANG B Q, LIU B W, et al. Study on pollution characteristics of water-soluble inorganic ions in PM2.5 in Tianjin in winter [J]. Environmental Pollution and Control, 2019, 41(5): 592-595(in Chinese).
[25] WANG Y, ZHUANG G S, ZHANG X Y, et al. The ion chemistry, seasonal cycle, and sources of PM2.5 and TSP aerosol in Shanghai [J]. Atmospheric Environment, 2005, 40(16): 2935-2952. [26] VOUTSA D, SAMARA C, MANOLI E, et al. Ionic composition of PM2.5 at urban sites of northern Greece: Secondary inorganic aerosol formation [J]. Environmental Science & Pollution Research, 2013, 21(7): 4995-5006. [27] XIE S, GU A Z, CEN T, et al. The effect and mechanism of urban fine particulate matter (PM2.5) on horizontal transfer of plasmid-mediated antimicrobial resistance genes [J]. Science of the Total Environment, 2019, 683(SEP.15): 116-123. [28] WANG H, AN J, SHEN L, et al. Mechanism for the formation and microphysical characteristics of submicron aerosol during heavy haze pollution episode in the Yangtze River Delta, China [J]. Science of the Total Environment, 2014, 490: 501-508. doi: 10.1016/j.scitotenv.2014.05.009 [29] 张棕巍, 胡恭任, 于瑞莲, 等. 厦门市大气PM2.5中水溶性离子污染特征及来源解析 [J]. 中国环境科学, 2016, 36(7): 1947-1954. doi: 10.3969/j.issn.1000-6923.2016.07.004 ZHANG Z W, HU G R, YU R L, et al. Characteristics and source analysis of water-soluble ion pollution in atmospheric PM2.5 in Xiamen city [J]. Chinese Journal of Environmental Science, 2016, 36(7): 1947-1954(in Chinese). doi: 10.3969/j.issn.1000-6923.2016.07.004
[30] ZHANG T, CAO J J, TIE X X, et al. Water-soluble ions in atmospheric aerosols measured in Xi'an, China: Seasonal variations and sources [J]. Atmospheric research, 2011, 102(1/2): 110-119. [31] 王念飞, 陈阳, 郝庆菊, 等. 苏州市PM2.5中水溶性离子的季节变化及来源分析 [J]. 环境科学, 2016, 37(12): 4482-4489. WANG N F, CHEN Y, HAO Q J, et al. Seasonal change and source analysis of water-soluble ions in PM2.5 in Suzhou City [J]. Environmental Science, 2016, 37(12): 4482-4489(in Chinese).
[32] SHON Z H, GHOSH S, KIM K H, et al. Analysis of water-soluble ions and their precursor gases over diurnal cycle [J]. Atmospheric Research, 2013, 132-133(oct.-no): 309-321. [33] HUANG X, LIU Z, ZHANG J, et al. Seasonal variation and secondary formation of size-segregated aerosol water-soluble inorganic ions during pollution episodes in Beijing [J]. Atmospheric Research, 2016, 168(FEB.): 70-79.