-
河流的水化学组分记录了流域岩性、气候特征、土壤类型、植被覆盖以及人类活动等信息,这有助于揭示流域的环境质量状况、岩石风化及生物地球化学特征[1-2]。一般认为,大气圈中CO2与地球矿物的交互作用为天然水体中
${\rm{HCO}}_3^{-} $ 、Ca2+、Mg2+的主要来源,而Na+、Cl−、${\rm{SO}}_4^{2-} $ 、NO3−来源复杂,主要受控于岩石圈、生物圈、大气圈和智慧圈的影响[3-4]。水体中的主要离子被视为天然的“示踪剂”,通过对水体离子化学组分的研究有助于识别影响离子浓度的主要因素,这能够在一定程度上增加对流域自然环境和人类活动特征的了解。国内外学者针对河流水化学开展了大量研究,Gibbs[5]通过对全球多种水体(降水、海水、湖水、河水)水化学组分的分析,认为岩石风化、大气降水输入和蒸发-结晶作用为全球地表水化学组分的三大控制因素。Kattan[6]对叙利亚幼发拉底河水化学特征的分析表明,河流中的水化学组分受到蒸发、岩石的风化溶解和水温的影响。孙平安等[7]报道了大溶江、灵渠流域地表水中碳酸盐岩的风化溶解为${\rm{HCO}}_3^{-} $ 、Ca2+、Mg2+的主要来源,大气降水和人类活动为Na+、K+、Cl−、${\rm{SO}}_4^{2-} $ 、${\rm{NO}}_3^{-} $ 主要控制因素。Pant等[3]研究发现,蒸发结晶和碳酸盐岩溶解作用是尼泊尔甘达基河离子的主要控制因素。Xiao等[8]基于化学质量平衡法定量分析了我国极端干旱区塔里木河流域地表水溶质来源占阳离子总量的递减顺序为蒸发盐岩溶蚀作用(58.3%)、碳酸盐岩风化(25.7%)、大气输入(8.7%)、硅酸盐岩风化(8.2%)。余冲等[9]针对我国东南沿海受人类扰动较大的韩江流域水化学组分的定量分析结果显示,硅酸盐岩、碳酸盐岩、大气降水和人类活动依次占韩江流域阳离子总量的37.69%、33.04%、21.98%和7.29%。国内学者对黄河、珠江、长江及其重要支流水化学的研究,认为岩石风化和大气降水是影响我国东部湿润地区河流水化学的主要控制因素[10-14],此外针对我国西北干旱和半干旱地区的疏勒河[15]、格尔木河[16]、艾比湖流域[17]、榆树沟流域[18]、额尔齐斯河[19-20]、乌鲁木齐河[21]、吉木乃诸河[22]、塔里木河[8,23]及阿克苏河[24]流域地表水化学特征的研究认为,岩石风化、蒸发-结晶和人类活动为我国西北干旱半干旱地区地表水化学组分构成的主控因素。综上可知,由于不同流域地表水补给类型、下垫面性质、太阳辐射、人类活动等自然和人文要素的空间差异较大,致使不同流域地表水的化学组分具有明显的地域差异性。近年来学者针对我国典型西风区内陆河流域开展的有关地表水方面的研究工作相对较少,尤其是针对新疆伊犁喀什河流域的研究工作,主要集中于地下水系统的划分[25]、水电站工程区构造稳定性研究[26]、引水枢纽工程运行研究[27]等方面,但有关喀什河流域地表水化学方面的研究鲜见报道。
鉴于此,本文以喀什河流域地表水为研究对象,采用数理统计、Piper三线图、离子比值法、Gibbs模型等方法揭示了研究区地表水化学特征,并探讨了影响其水化学组分的控制因素。这在一定程度上丰富了我国典型西风区内陆河流水文学的研究,并为喀什河流域水资源系统决策与管理提供参考。
新疆伊犁喀什河流域地表水水化学特征及控制因素
Hydrochemical characteristics and possible controls of the surface water in Kashi River Basin, Ili, Xinjiang
-
摘要: 利用2019年1月至7月伊犁喀什河流域的水化学测试数据,采用Piper三线图、相关性分析、Gibbs模型等方法,分析喀什河流域的地表水水化学特征及其控制因素,并对其物质来源进行探讨。结果表明,喀什河流域地表水呈弱碱性(7.77≤pH≤8.16),TDS介于184.8—588.12 mg·L−1之间,其浓度均值(243.48 mg·L−1)低于世界半干旱区地表水TDS的均值(370 mg·L−1),同时低于干旱区地表水TDS的均值(440 mg·L−1),但高于世界河流的均值(115 mg·L−1);阳离子以Ca2+为主,
${\rm{HCO}}_3^{-} $ 为其主要阴离子,两者分别占其相应离子总量的82.8%和82.6%;研究区主要离子浓度总体随海拔升高而降低,主要原因是高海拔流域冰雪融水占比高;水化学类型以HCO3-Ca·Mg和HCO3-Ca型为主;地表水主要离子受岩石风化作用和阳离子交换作用的影响,主要离子来源于碳酸盐岩和硅酸盐岩的风化溶解,${\rm{HCO}}_3^{-} $ 、Mg2+、Ca2+与${\rm{SO}}_4^{2-} $ 主要来自白云岩等碳酸岩盐的风化溶解,Na+与K+主要来自长石类硅酸盐岩的风化溶解,人类活动对离子组分的影响较弱。Abstract: Based on the hydrochemical data of Kashi River Basin from January to July in 2019, this study analyzed the hydrochemical characteristics, the control factors of surface water in Kashi River Basin by using Piper diagrams, correlation analysis and Gibbs model. We also discussed the material source on hydrochemical of surface water. The results as follows: the surface water was weakly alkaline, value of pH was from 7.77 to 8.16, in Kashi River Basin. Average concentration of TDS was 243.48 mg·L−1(the variation range of TDS was 184.8—588.12 mg·L−1),which was lower than that in world semi-arid area (370 mg·L−1) and arid area (440 mg·L−1), but higher than that in world rivers (115 mg·L−1); Ca2+ and${\rm{HCO}}_3^{-} $ were the main ions which respectively account for 82.8% and 82.6% of their corresponding total ions, The concentration of main ions generally decreased with increasing altitude in study area, which was mainly due to the high proportion of melt water from ice and snow in high altitude basin; The hydrochemical types are mainly${\rm{HCO}}_3^{-} $ Ca·Mg and HCO3-Ca; The main ions of surface water are affected by rock weathering and cation exchange. The main ions come from weathering and dissolution of carbonate and silicate rocks.${\rm{HCO}}_3^{-} $ , Mg2+, Ca2+ and${\rm{SO}}_4^{2-} $ mainly come from weathering and dissolution of carbonate rock salt such as dolomite. Na+ and K+ mainly come from weathering and dissolution of feldspar silicate rocks. Human activities have a weak influence on ion components.-
Key words:
- hydrochemical characteristics /
- surface water /
- ion sources /
- chemical genesis /
- Kashi River Basin
-
表 1 喀什河流域地表水水化学统计(n=56)
Table 1. Statistical of hydrochemistry composition of surface water in the Kashi River Basin(n=56)
项目
Items均值
Average中值
Median标准差
Standard deviation最小值
Minimum最大值
MaximumpH 7.97 7.96 0.20 7.53 8.39 TDS/(mg·L−1) 243.48 184.8 87.86 29.4 588.12 EC/(µS·cm−1) 174.90 168.1 72.11 6.3 438 Na+/(mg·L−1) 3.44 2.99 2.56 0 15.31 K+/(mg·L−1) 1.29 1.16 0.57 0 2.69 Ca2+/(mg·L−1) 46.70 48.98 16.96 6.30 123.55 Mg2+/(mg·L−1) 4.97 4.80 2.29 0.08 10.61 Cl-/(mg·L−1) 1.40 1.0 1.93 0 10.55 /(mg·L−1)${\rm{SO}}_4^{2-} $ 20.70 20.09 8.32 0.32 56.09 /(mg·L−1)${\rm{HCO}}_3^{-} $ 105.06 105.78 48.89 1.57 296.23 表 2 喀什河干流主要离子浓度与其他河流主离子浓度对比分析(mg·L−1)
Table 2. Comparision of major ion concentrations in the Kashi River with other rivers(mg·L−1)
表 3 各常规指标之间相关关系(n=56)
Table 3. Correlation coefficients between major ions in the water(n=56)
离子Ions Na+ K+ Ca2+ Mg2+ Cl− ${\rm{SO}}_4^{2-} $ ${\rm{HCO}}_3^{-} $ TDS Na+ 1.00 K+ 0.528** 1.00 Ca2+ 0.768** 0.577** 1.00 Mg2+ 0.867** 0.557** 0.934** 1.00 Cl− 0.806** 0.206 0.415** 0.482** 1.00 ${\rm{SO}}_4^{2-} $ 0.795** 0.461** 0.867** 0.925** 0.448** 1.00 $ {\rm{HCO}}_3^{-}$ 0.827** 0.608** 0.977** 0.975** 0.434** 0.876** 1.00 TDS 0.630** 0.427** 0.768** 0.715** 0.369* 0.631** 0.766** 1.00 注:**P<0.01,*P<0.05. -
[1] 李晓强, 韩贵琳, 董爱国, 等. 九龙江丰水期水化学组成特征及其控制因素 [J]. 生态学杂志, 2018, 37(3): 697-706. LI X Q, HAN G L, DONG A G, et al. Hydrogeochemical characteristics and controlling factors in Jiulong River(Fujian Province) during the flood season [J]. Chinese Journal of Ecology, 2018, 37(3): 697-706(in Chinese).
[2] XU Z F, LIU C Q. Water geochemistry of the Xijiang basin rivers, South China: Chemical weathering and CO2 consumption [J]. Applied Geochemistry, 2010, 25(10): 1603-1614. doi: 10.1016/j.apgeochem.2010.08.012 [3] PANT R R, ZHANG F, REHMAN F U, et al. Spatiotemporal variations of hydrogeochemistry and its controlling factors in the Gandaki River Basin, Central Himalaya Nepal [J]. Science of the Total Environment, 2018, 622/623: 770-782. doi: 10.1016/j.scitotenv.2017.12.063 [4] 曹晏风, 张明军, 瞿德业, 等. 祁连山东端地表及地下水水化学时空变化特征 [J]. 中国环境科学, 2020, 40(4): 1667-1676. doi: 10.3969/j.issn.1000-6923.2020.04.034 CAO Y F, ZHANG M J, QU D Y, et al. Temporal-spatial variation of surface and undergroundwater chemistry in the eastern part of Qilian Mountains [J]. China Environmental Science, 2020, 40(4): 1667-1676(in Chinese). doi: 10.3969/j.issn.1000-6923.2020.04.034
[5] GIBBS R J. Mechanisms controlling world water chemistry [J]. Science, 1970, 170(3962): 1088-1090. doi: 10.1126/science.170.3962.1088 [6] KATTAN Z. Chemical and isotopic characteristics of the Euphrates River water, Syria: Factors controlling its geochemistry [J]. Environmental Earth Sciences, 2015, 73(8): 4763-4778. doi: 10.1007/s12665-014-3762-z [7] 孙平安, 于奭, 莫付珍, 等. 不同地质背景下河流水化学特征及影响因素研究: 以广西大溶江、灵渠流域为例 [J]. 环境科学, 2016, 37(1): 123-131. SUN P A, YU S, MO F Z, et al. Hydrochemical characteristics and influencing factors in different geological background: A case study in darongjiang and Lingqu basin, Guangxi, China [J]. Environmental Science, 2016, 37(1): 123-131(in Chinese).
[8] XIAO J, JIN Z D, DING H, et al. Geochemistry and solute sources of surface waters of the Tarim River Basin in the extreme arid region, NW Tibetan Plateau [J]. Journal of Asian Earth Sciences, 2012, 54/55: 162-173. doi: 10.1016/j.jseaes.2012.04.009 [9] 余冲, 徐志方, 刘文景, 等. 韩江流域河水地球化学特征与硅酸盐岩风化: 风化过程硫酸作用 [J]. 地球与环境, 2017, 45(4): 390-398. YU C, XU Z F, LIU W J, et al. River water geochemistry of Hanjiang river, implications for silicate weathering and sulfuric acid participation [J]. Earth and Environment, 2017, 45(4): 390-398(in Chinese).
[10] 何姜毅, 张东, 赵志琦. 黄河流域河水水化学组成的时间和空间变化特征 [J]. 生态学杂志, 2017, 36(5): 1390-1401. HE J Y, ZHANG D, ZHAO Z Q. Spatial and temporal variations in hydrochemical composition of river water in Yellow River Basin, China [J]. Chinese Journal of Ecology, 2017, 36(5): 1390-1401(in Chinese).
[11] 陈静生, 王飞越, 夏星辉. 长江水质地球化学 [J]. 地学前缘, 2006, 13(1): 74-85. doi: 10.3321/j.issn:1005-2321.2006.01.010 CHEN J S, WANG F Y, XIA X H. Geochemistry of water quality of the Yangtze River basin [J]. Earth Science Frontiers, 2006, 13(1): 74-85(in Chinese). doi: 10.3321/j.issn:1005-2321.2006.01.010
[12] 张旺, 王殿武, 雷坤, 等. 黄河中下游丰水期水化学特征及影响因素 [J]. 水土保持研究, 2020, 27(1): 380-386,393. ZHANG W, WANG D W, LEI K, et al. Hydrochemical characteristics and impact factors in the middle and lower reaches of the Yellow River in the wet season [J]. Research of Soil and Water Conservation, 2020, 27(1): 380-386,393(in Chinese).
[13] 刘松韬, 张东, 李玉红, 等. 伊洛河流域河水来源及水化学组成控制因素 [J]. 环境科学, 2020, 41(3): 1184-1196. LIU S T, ZHANG D, LI Y H, et al. Water sources and factors controlling hydro-chemical compositions in the yiluo river basin [J]. Environmental Science, 2020, 41(3): 1184-1196(in Chinese).
[14] 禤映雪, 唐常源, 曹英杰, 等. 北江流域水化学时空变化及化学风化特征 [J]. 环境科学研究, 2018, 31(6): 1078-1087. XUAN Y X, TANG C Y, CAO Y J, et al. Spatial and temporal variation of hydro-chemistry and chemical weathering characteristics in the Beijiang river basin [J]. Research of Environmental Sciences, 2018, 31(6): 1078-1087(in Chinese).
[15] 周嘉欣, 丁永建, 曾国雄, 等. 疏勒河上游地表水水化学主离子特征及其控制因素 [J]. 环境科学, 2014, 35(9): 3315-3324. ZHOU J X, DING Y J, ZENG G X, et al. Major ion chemistry of surface water in the upper reach of Shule river basin and the possible controls [J]. Environmental Science, 2014, 35(9): 3315-3324(in Chinese).
[16] 汪生斌, 祁泽学, 王万平, 等. 格尔木河水化学特征及成因 [J]. 水资源保护, 2020, 36(5): 93-98. doi: 10.3880/j.issn.1004-6933.2020.05.014 WANG S B, QI Z X, WANG W P, et al. Hydrochemical characteristics and causes of formation of the Golmud River [J]. Water Resources Protection, 2020, 36(5): 93-98(in Chinese). doi: 10.3880/j.issn.1004-6933.2020.05.014
[17] 朱世丹, 张飞, 张海威, 等. 新疆艾比湖主要入湖河流同位素及水化学特征的季节变化 [J]. 湖泊科学, 2018, 30(6): 1707-1721. doi: 10.18307/2018.0622 ZHU S D, ZHANG F, ZHANG H W, et al. Seasonal variation of the isotope and hydrochemical characteristics of the main lake rivers in Lake Ebinur, Xinjiang [J]. Journal of Lake Sciences, 2018, 30(6): 1707-1721(in Chinese). doi: 10.18307/2018.0622
[18] 王晓艳, 李忠勤, 蒋缠文, 等. 天山哈密榆树沟流域夏季洪水期河水水化学特征及其成因 [J]. 冰川冻土, 2016, 38(5): 1385-1393. WANG X Y, LI Z Q, JIANG C W, et al. Hydrochemical characteristics and causes of the summer river water in Yushugou basin, Eastern Tianshan Mountains [J]. Journal of Glaciology and Geocryology, 2016, 38(5): 1385-1393(in Chinese).
[19] 韦虹, 吴锦奎, 沈永平, 等. 额尔齐斯河源区融雪期积雪与河流的水化学特征 [J]. 环境科学, 2016, 37(4): 1345-1352. WEI H, WU J K, SHEN Y P, et al. Hydrochemical characteristics of snow meltwater and river water during snow-melting period in the headwaters of the Ertis River, Xinjiang [J]. Environmental Science, 2016, 37(4): 1345-1352(in Chinese).
[20] 刘峰, 李忠勤, 郝嘉楠, 等. 额尔齐斯河源春季水化学及稳定同位素特征研究 [J]. 冰川冻土, 2020, 42(1): 234-242. LIU F, LI Z Q, HAO J N, et al. Study on the hydrochemical and stable isotope characteristics at the headwaters of the Irtysh River in spring [J]. Journal of Glaciology and Geocryology, 2020, 42(1): 234-242(in Chinese).
[21] 吴丽娜, 孙从建, 贺强, 等. 中天山典型内陆河流域水化学时空特征分析 [J]. 水土保持研究, 2017, 24(5): 149-156. WU L N, SUN C J, HE Q, et al. Analysis of temporal and spatial variation of hydrochemical characteristics of the typical inland river in the middle of Tianshan mountains [J]. Research of Soil and Water Conservation, 2017, 24(5): 149-156(in Chinese).
[22] 宋梦媛, 李忠勤, 王飞腾, 等. 新疆吉木乃诸河水体氢氧同位素和水化学特征 [J]. 环境化学, 2020, 39(7): 1809-1820. doi: 10.7524/j.issn.0254-6108.2019050402 SONG M Y, LI Z Q, WANG F T, et al. Hydrogen and oxygen isotopes and hydrochemical parameters of water samples from the Jimunai River Basin, Xinjiang [J]. Environmental Chemistry, 2020, 39(7): 1809-1820(in Chinese). doi: 10.7524/j.issn.0254-6108.2019050402
[23] 王建, 韩海东, 赵求东, 等. 塔里木河流域水化学组成分布特征 [J]. 干旱区研究, 2013, 30(1): 10-15. WANG J, HAN H D, ZHAO Q D, et al. Study on hydrochemical components of river water in the Tarim river basin, Xinjiang, China [J]. Arid Zone Research, 2013, 30(1): 10-15(in Chinese).
[24] SUN C J, CHEN Y N, LI X G, et al. Analysis on the streamflow components of the typical inland river, Northwest China [J]. Hydrological Sciences Journal, 2016, 61(5): 970-981. [25] 蒋显忠, 夏平. 伊犁盆地地下水系统划分研究 [J]. 地下水, 2020, 42(4): 44-45. JIANG X Z, XIA P. Study on groundwater system division in Yili basin [J]. Ground Water, 2020, 42(4): 44-45(in Chinese).
[26] 王成虎, 张彦山, 熊玉珍, 等. 喀什河水电站工程区构造稳定性研究 [J]. 地质力学学报, 2008, 14(2): 135-140. doi: 10.3969/j.issn.1006-6616.2008.02.004 WANG C H, ZHANG Y S, XIONG Y Z, et al. Tectonic stability analysis of the kax river hydroelectric project area [J]. Journal of Geomechanics, 2008, 14(2): 135-140(in Chinese). doi: 10.3969/j.issn.1006-6616.2008.02.004
[27] 李金环, 涂新富. 伊犁州喀什河下游灌区费尔干式引水枢纽工程运行浅谈[J]. 新疆有色金属, 2005, 28(增刊2): 67-68. LI J H, TU X F. A brief discussion on operation of Fergan type water diversion project in the lower irrigation area of Kashi River in Yili Prefecture[J]. Xinjiang Nonferrous Metals, 2005, 28(Sup 2): 67-68 (in Chinese).
[28] 王小丽. RS与GIS支持下的伊犁谷地地质灾害风险评价 : 以尼勒克县滑坡为例[D]. 西安: 长安大学, 2013. WANG X L. Geological hazard risk assessment on Ili valley based on RS and GIS —A case study of landslide in nilka County[D]. Xi'an: Changan University, 2013(in Chinese).
[29] 高瑞, 穆振侠, 彭亮, 等. 水量平衡与能量平衡模式下的VIC模型在喀什河流域的应用研究 [J]. 灌溉排水学报, 2018, 37(1): 106-112. GAO R, MU Z X, PENG L, et al. Application research of VIC model with the mode of water balance and energy balance in Kashi river basin [J]. Journal of Irrigation and Drainage, 2018, 37(1): 106-112(in Chinese).
[30] 张艳, 吴勇, 杨军, 等. 阆中市思依镇水化学特征及其成因分析 [J]. 环境科学, 2015, 36(9): 3230-3237. ZHANG Y, WU Y, YANG J, et al. Hydrochemical characteristic and reasoning analysis in siyi town, Langzhong city [J]. Environmental Science, 2015, 36(9): 3230-3237(in Chinese).
[31] 贾思达. 三江平原松花江—挠力河流域地下水与地表水转化关系研究[D]. 长春: 吉林大学, 2019. JIA S D. Groundwater-surface water interaction in Songhuajiang-naoli river basin of Sanjiang plain[D]. Changchun: Jilin University, 2019(in Chinese).
[32] 朱艺文. 西安黑河流域汇水区不同水体稳定同位素和水化学特征研究[D]. 西安: 陕西师范大学, 2017. ZHU Y W. Stable isotope and hydrochemical characteristics of different water bodies in the catchment area of Heihe, Xi 'an[D]. Xi'an: Shaanxi Normal University, 2017.
[33] 梁云, 吕斌, 钟庆. 乌鲁木齐南山中山带气候特征分析 [J]. 新疆气象, 2002(3): 20-21. LIANG Y, LU B, ZHONG Q. Research on the climatology features of middle zone of Nanshan mountain in Urumqi [J]. Bimonthly of Xinjiang Meteorology, 2002(3): 20-21(in Chinese).
[34] 张杰, 周金龙, 曾妍妍, 等. 新疆叶尔羌河流域地表水水化学特征及控制因素 [J]. 环境科学, 2021, 42(4): 1706-1713. ZHANG J, ZHOU J L, ZENG Y Y, et al. Hydrochemical characteristic and their controlling factors in the Yarkant river basin of Xinjiang [J]. Environmental Science, 2021, 42(4): 1706-1713(in Chinese).
[35] 杨玲. 石羊河流域多水体可溶离子水化学特征及控制因素[D]. 兰州: 西北师范大学, 2017. YANG L. Chemical characteristics and control factors of multi-type water resource in Shiyang river basin[D]. Lanzhou: Northwest Normal University, 2017(in Chinese).
[36] 尹恒, 姜丽丽, 裴尼松, 等. 基于水化学和多元统计的煤矿采空积水识别 [J]. 科学技术与工程, 2020, 20(27): 11051-11058. doi: 10.3969/j.issn.1671-1815.2020.27.011 YIN H, JIANG L L, PEI N S, et al. Identification of coalmine goaf groundwater based on hydrogeochemistry and multivariate statistics [J]. Science Technology and Engineering, 2020, 20(27): 11051-11058(in Chinese). doi: 10.3969/j.issn.1671-1815.2020.27.011
[37] 董维红, 孟莹, 王雨山, 等. 三江平原富锦地区浅层地下水水化学特征及其形成作用 [J]. 吉林大学学报(地球科学版), 2017, 47(2): 542-553. DONG W H, MENG Y, WANG Y S, et al. Hydrochemical characteristics and formation of the shallow groundwater in Fujin, Sanjiang plain [J]. Journal of Jilin University (Earth Science Edition), 2017, 47(2): 542-553(in Chinese).
[38] 张涛, 王明国, 张智印, 等. 然乌湖流域地表水水化学特征及控制因素 [J]. 环境科学, 2020, 41(9): 4003-4010. ZHANG T, WANG M G, ZHANG Z Y, et al. Hydrochemical characteristics and possible controls of the surface water in ranwu lake basin [J]. Environmental Science, 2020, 41(9): 4003-4010(in Chinese).
[39] 刘佳驹, 赵雨顺, 黄香, 等. 雅鲁藏布江流域水化学时空变化及其控制因素 [J]. 中国环境科学, 2018, 38(11): 4289-4297. doi: 10.3969/j.issn.1000-6923.2018.11.039 LIU J J, ZHAO Y S, HUANG X, et al. Spatiotemporal variations of hydrochemistry and its controlling factors in the Yarlung Tsangpo River [J]. China Environmental Science, 2018, 38(11): 4289-4297(in Chinese). doi: 10.3969/j.issn.1000-6923.2018.11.039
[40] 朱世丹, 张飞, 张海威. 艾比湖流域河流水化学季节特征及空间格局研究 [J]. 环境科学学报, 2018, 38(3): 892-899. ZHU S D, ZHANG F, ZHANG H W. The seasonal and spatial variations of water chemistry of rivers in Ebinur Lake Basin [J]. Acta Scientiae Circumstantiae, 2018, 38(3): 892-899(in Chinese).
[41] 孙瑞, 张雪芹, 吴艳红. 藏南羊卓雍错流域水化学主离子特征及其控制因素 [J]. 湖泊科学, 2012, 24(4): 600-608. doi: 10.3969/j.issn.1003-5427.2012.04.014 SUN R, ZHANG X Q, WU Y H. Major ion chemistry of water and its controlling factors in the Yamzhog Yumco Basin, South Tibet [J]. Journal of Lake Sciences, 2012, 24(4): 600-608(in Chinese). doi: 10.3969/j.issn.1003-5427.2012.04.014
[42] JIANG L G, YAO Z J, LIU Z F, et al. Hydrochemistry and its controlling factors of rivers in the source region of the Yangtze River on the Tibetan Plateau [J]. Journal of Geochemical Exploration, 2015, 155: 76-83. doi: 10.1016/j.gexplo.2015.04.009 [43] THOMAS J, JOSEPH S, THRIVIKRAMJI K P. Hydrochemical variations of a tropical mountain river system in a rain shadow region of the southern Western Ghats, Kerala, India [J]. Applied Geochemistry, 2015, 63: 456-471. doi: 10.1016/j.apgeochem.2015.03.018 [44] 王晓曦, 王文科, 王周锋, 等. 滦河下游河水及沿岸地下水水化学特征及其形成作用 [J]. 水文地质工程地质, 2014, 41(1): 25-33,73. WANG X X, WANG W K, WANG Z F, et al. Hydrochemical characteristics and formation mechanism of river water and groundwater along the downstream Luanhe River, northeastern China [J]. Hydrogeology & Engineering Geology, 2014, 41(1): 25-33,73(in Chinese).
[45] XIAO J, JIN Z D, ZHANG F. Geochemical controls on fluoride concentrations in natural waters from the middle Loess Plateau, China [J]. Journal of Geochemical Exploration, 2015, 159: 252-261. doi: 10.1016/j.gexplo.2015.09.018 [46] 周迅, 朱春芳. 福建省晋江市浅层地下水硝酸盐含量特征及其水化学指示意义 [J]. 地球学报, 2014, 35(2): 177-182. doi: 10.3975/cagsb.2014.02.08 ZHOU X, ZHU C F. The nitrate content characteristics of shallow groundwater in Jinjiang city, Fujian Province, and their hydrochemical indication significance [J]. Acta Geoscientica Sinica, 2014, 35(2): 177-182(in Chinese). doi: 10.3975/cagsb.2014.02.08
[47] FU C C, LI X Q, MA J F, et al. A hydrochemistry and multi-isotopic study of groundwater origin and hydrochemical evolution in the middle reaches of the Kuye River basin [J]. Applied Geochemistry, 2018, 98: 82-93. doi: 10.1016/j.apgeochem.2018.08.030 [48] MAURYA P, KUMARI R, MUKHERJEE S. Hydrochemistry in integration with stable isotopes (δ18O and δD) to assess seawater intrusion in coastal aquifers of Kachchh district, Gujarat, India [J]. Journal of Geochemical Exploration, 2019, 196: 42-56. doi: 10.1016/j.gexplo.2018.09.013 [49] AYADI Y, MOKADEM N, BESSER H, et al. Hydrochemistry and stable isotopes (δ18O and δ2H) tools applied to the study of Karst aquifers in southern Mediterranean basin (Teboursouk area, NW Tunisia) [J]. Journal of African Earth Sciences, 2018, 137: 208-217. doi: 10.1016/j.jafrearsci.2017.10.018 [50] XIAO J, JIN Z D, ZHANG F, et al. Major ion geochemistry of shallow groundwater in the Qinghai Lake catchment, NE Qinghai-Tibet Plateau [J]. Environmental Earth Sciences, 2012, 67(5): 1331-1344. doi: 10.1007/s12665-012-1576-4