-
自从美国环保署将16种具有代表性的多环芳烃(polycyclic aromatic hydrocarbon, PAHs)作为优先控制污染物[1],人们开始逐渐重视环境中芳香烃类持久性有机污染物。目前,随着分析科学的发展及环境要求的提高,人们发现许多毒性更强的PAHs衍生物未受到足够的关注。这些衍生物和母体PAHs一样,广泛存在于人类环境中,虽然浓度更低,但具有更高的遗传毒性、致突变性和致癌性[2],时刻威胁着人们的身体健康。例如大气中的硝基PAHs会引起染色体突变[3],含氧PAHs易与人体中蛋白质结合,使细胞过早的凋亡[4],与母体PAHs相比,其衍生物具有更高的生物毒性。因此有必要对环境中存在的PAHs衍生物进行检测和分析。
PAHs衍生物主要包括硝基PAHs(nitrated polycyclic aromatic hydrocarbons, NPAHs),羟基PAHs(hydroxy polycyclic aromatic hydrocarbons, OH-PAHs),氧化PAHs(oxygenated polycyclic aromatic hydrocarbons, OPAHs),羧基PAHs(carboxylic polycyclic aromatic hydrocarbons, COOH-PAHs)以及一些含氯(Cl),硫(S)的杂环PAHs等[5],这些衍生物可以存在于几乎所有的环境介质以及食物中,如在土壤、水体和大气颗粒物中都曾发现PAHs衍生物的踪影[2]。由于所处的环境基质不同,衍生物的性质和存在形式会有很大变化,对此相应的前处理和分析方法也会发生改变[6]。此外PAHs衍生物种类复杂,浓度一般的比母体PAHs低1—2个数量级,而之前的研究多以某一种单一衍生物为研究对象,缺乏对衍生物分析方法的全面研究[7]。
本文重点综述了近年来对不同基质中PAHs衍生物的前处理及分析方法,为发展更加精密高效的检测方法提供思路,并且对今后的研究趋势进行展望,以期为PAHs衍生物的研究提供一定的参考。
环境样品中PAHs衍生物的前处理及分析方法研究进展
Research progress on pretreatment and analysis methods of polycyclic aromatic hydrocarbons derivatives in environmental samples
-
摘要: 多环芳烃(Polycyclic aromatic hydrocarbon, PAHs)衍生物主要是由木材、化石燃料、有机高分子化合物不完全燃烧以及母体PAHs在一定条件下转化产生,是具有持久性有机污染物特征的一类污染物质。与母体PAHs相比,其赋存浓度虽然更低,但具有较母体更高的毒性,因此建立高效以及高灵敏度的PAHs衍生物前处理和分析方法具有重要的意义。随着检测技术的飞速发展,针对不同基质中各PAHs衍生物已经开发出一些较为可靠和新型的分析技术,但尚未有系统且全面综述PAHs衍生物的前处理以及分析方法的工作。本文综述了近年来环境样品(水体、固体、生物体)中PAHs衍生物的最新研究进展,介绍了被广泛运用到实际样品中的前处理技术(萃取、净化)、分析方法及其方法优化等方面的实例,并且对现有技术的性能进行了比较,提出了当前方法存在的缺陷,最后对未来的研究方向进行了展望。Abstract: Polycyclic aromatic hydrocarbons (PAHs) derivatives are mainly produced by incomplete combustion of wood, fossil fuels, organic polymer compounds and the conversion of parent PAHs under certain conditions, which is type of pollutant with persistent organic pollutants’ (POPs) characteristics. Compared with the parent PAHs, although the concentration of the PAHs derivatives is lower, they have higher toxicity. Therefore, it is of great significance to establish efficient and sensitive PAHs derivatives pretreatment and analysis methods. With the rapid development of detection technology, some more reliable and new analytical techniques have been developed for various PAHs derivatives in different matrices, but there has not been a systematic and comprehensive review of the pretreatment and analysis methods of PAHs derivatives. This study reviews the developments of PAHs derivatives in environmental samples (water, solid, biological) studied in recent years, introduces examples of pre-processing (extraction, purification), analysis methods and optimization measures that are widely used in actual samples, and evaluates the performance of existing technologies. After comparing, put forward the shortcomings of the current method, and finally look forward to the future research direction.
-
Key words:
- PAHs derivatives /
- sample matrix /
- extraction /
- clean-up /
- analytical methods
-
表 1 近年来不同前处理方法处理水体中PAHs衍生物
Table 1. Recent pretreatment methods used to analyze polycyclic aromatic hydrocarbon derivatives in water
分析物
Analytical
substance萃取方法
Extraction
method萃取条件
Extraction conditions回收率
Recovery文献
ReferencesPAHs、
NPAHs、
Cl-PAHs液液萃取 二氯甲烷溶剂萃取3次,第1次萃取液体积50 mL,第2、3次,萃取液体积均为30 mL 60%—120% [9] OH-PAHs 液液微萃取 提取溶剂甲苯:环己烷(1:1)加入10% MSTFA,样品溶液的离子强度调节至30% NaCl,pH=2,搅拌速度350 r·min−1 82%—117% [11] NPAHs 甲醇为分散溶剂,1-十二醇为提取溶剂,温度35 ℃,混合液涡旋后3000 r·min−1离心10 min,并冰浴5 min取顶部的固化漂浮有机溶剂 95%—100% [15] NPAHs、
OPAHs水样温度35 ℃,丙酮为分散溶剂,二氯甲烷为萃取溶剂,涡旋后甲醇分散乳液,干燥后用在乙腈中保存 95%—98% [16] Cl-PAHs 固相萃取 乙烯/二乙烯共聚物的为填料萃取柱,流速2 mL·min−1,10 mL超纯水:甲醇(4:1)清洗,5 mL超纯水淋洗并低真空度抽干SPE柱,用6 mL正己烷:二氯甲烷(4:1)洗脱 78%—106% [17] NPAHs 二氯甲烷、甲醇和蒸馏水(各20 mL)以100 mL·min−1的速度进行萃取。NPAHs用10 mL DCM以100 mL·min−1的速度进行洗脱。将二氯甲烷溶液蒸发至干,残留物溶解在乙腈中 90%—101% [18] NPAHs 以C18作为吸附剂,DCM为萃取溶剂进行固相萃取 71%—103% [19] PAHs、
NPAHs固相微萃取 ZIF-8SPME作涂层,样品调节pH=6,35 ℃萃取45 min,,萃取后SPME纤维进GC分析,解吸温度260 ℃,解吸时间5 min 70%—105% [13] NPAHS 采用PDMS纤维直接萃取,搅拌速度1250 r·min−1,提取时间45 min,不另外加入NaCl 91%—102% [20] NPAHs 65 μm PDMS/DVB纤维在55 ℃下直接萃取,搅拌速度1150 r·min−1,提取时间35 min 66%—112% [14] 表 2 近年来不同前处理方法处理固体颗粒物中PAHs衍生物
Table 2. Recent pretreatment methods used to analyze polycyclic aromatic hydrocarbon derivatives in solid samples
样品基质
Sample matrix分析物
Analytical substance萃取方法
Extraction method净化方法
Purification method回收率
Recovery文献
References大气颗粒物 OPAHs、NPAHs 加速溶剂萃取 硅胶层析柱 40%—120% [40] PAHs、NPAHs、OPAHs、
OH-PAHs索氏提取 固相萃取(NH2) 60%—100% [35] NPAHs、OPAHs 索氏提取 硅胶和氧化铝层析柱 76%—104% [41] OPAHs、NPAHs 微波提取 硅胶和氧化铝层析柱 83%—108% [31] 土壤 OPAHs、OH-PAHs、
COOH-PAHs超声提取 固相萃取(NH2及Silica) 70%—150% [21] OPAHs 加速溶剂萃取 硅胶层析柱 55%—114% [42] Cl-PAHs 加速溶剂萃取 凝胶渗透色谱 64%—118% [36] 城市灰尘 NPAHs、CPAHs、OH-PAHs 加速溶剂萃取 硅胶和氧化铝混合层析柱 80%—111% [23] 室内灰尘 Cl-PAHs、Br-PAHs 索氏提取法 固相萃取(Silica) 39%—121% [37-38] NPAHs、OPAHs 索氏提取法 硅胶和氧化铝混合层析柱 87%—112% [43] Cl-PAHs 索氏提取法 固相萃取(活性炭混合硅胶) 60%—120% [44] 底泥 NPAHs、OPAHs、OH-PAHs 加速溶剂萃取 固相萃取(NH2及Alumina-N) 53%—114% [34] 表 3 近年来OPAHs的GC-MS和LC-MS检测方法
Table 3. GC/MS and LC/MS detection methods for OPAHs in recent years
样品基质
Sample matrix分析数量
Analysis number检测方法
Detection method检测限
Limit of detection文献
References水体 24 GC-EI-MS,色谱柱DB5-MS(30 m×0.25 mm×0.25 μm) 0.50—50.00 ng·mL−1 [6] 水体 24 LC-APCI-MS,色谱柱phenyl(150 mm×3 mm×3 μm) 2.60—26.00 ng·mL−1 [6] 土壤颗粒 18 GC-EI-MS,色谱柱HP-5MS
(30 m×0.25 mm×0.25 μm)0.10—1.60 ng·g−1 [88] 烟尘颗粒 9 超高效液相色谱大气压化学电离飞行时间质谱联用(UPLC-APCIToFMS),色谱柱Waters Acquity UPLC BEH-C1
(100 mm×2.1 mm×1.7 μm)10.00—1493.00 pg [84] 生物组织,沉积
物及灰尘颗粒9 GC-EI-MS,色谱柱DB5-MS(30 m×0.25 mm×0.25 μm) 0.50—50 .00 pg [89] 大气颗粒物 22 GC-EI-MS,色谱柱DB5-MS(30 m×0.25 mm×0.25 μm) 0.20—27.00 ng·m−3 [86] 10 GC-NICI-MS,色谱柱DB5-MS(30 m×0.25 mm×0.25 μm) 3.04—39.10 pg·m−3 [90] 7 GC-EI-MS,色谱柱Rxi-5-MS(30 m×0.25 mm×0.25 μm) 0.01 μg·L−1 [91] -
[1] SHEN H Z, HUANG Y, WANG R, et al. Global atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions [J]. Environmental Science & Technology, 2013, 47(12): 6415-6424. [2] IDOWU O, SEMPLE K T, RAMADASS K, et al. Beyond the obvious: Environmental health implications of polar polycyclic aromatic hydrocarbons [J]. Environment International, 2019, 123: 543-557. doi: 10.1016/j.envint.2018.12.051 [3] ZHANG Y X, TAO S, SHEN H Z, et al. Inhalation exposure to ambient polycyclic aromatic hydrocarbons and lung cancer risk of Chinese population [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(50): 21063-21067. doi: 10.1073/pnas.0905756106 [4] BERKTAŞ B M, BIRCAN A. Effects of atmospheric sulphur dioxide and particulate matter concentrations on emergency room admissions due to asthma in Ankara [J]. Tuberkuloz Ve Toraks, 2003, 51(3): 231-238. [5] ACHTEN C, ANDERSSON J T. Overview of polycyclic aromatic compounds (PAC) [J]. Polycyclic Aromatic Compounds, 2015, 35(2/3/4): 177-186. [6] O’CONNELL S G, HAIGH T, WILSON G, et al. An analytical investigation of 24 oxygenated-PAHs (OPAHs) using liquid and gas chromatography-mass spectrometry [J]. Analytical and Bioanalytical Chemistry, 2013, 405(27): 8885-8896. doi: 10.1007/s00216-013-7319-x [7] 马涛, 孔继婕, 韩孟书, 等. 环境中硝基多环芳烃的污染现状及其毒性效应研究进展 [J]. 环境化学, 2020, 39(9): 2430-2440. doi: 10.7524/j.issn.0254-6108.2019062907 MA T, KONG J J, HAN M S, et al. Review on the pollution status and toxicity effects of nitrated polycyclic aromatic hydrocarbons in the environment [J]. Environmental Chemistry, 2020, 39(9): 2430-2440(in Chinese). doi: 10.7524/j.issn.0254-6108.2019062907
[8] 宋冠群, 林金明. 环境样品中多环芳烃的前处理技术 [J]. 环境科学学报, 2005, 25(10): 1287-1296. doi: 10.3321/j.issn:0253-2468.2005.10.001 SONG G Q, LIN J M. Sample pretreatment techniques for polycyclic aromatic hydrocarbons in environmental matrix [J]. Acta Scientiae Circumstantiae, 2005, 25(10): 1287-1296(in Chinese). doi: 10.3321/j.issn:0253-2468.2005.10.001
[9] 李贵洪, 郭峰, 饶竹, 等. 超高效液相色谱法同时分析地下水中的16种多环芳烃及4种衍生物 [J]. 环境化学, 2017, 36(6): 1295-1303. doi: 10.7524/j.issn.0254-6108.2017.06.2017041403 LI G H, GUO F, RAO Z, et al. Simultaneous determination of sixteen polycyclic aromatic hydrocarbons and four derivatives in groundwater by ultra-high performance liquid chromatography [J]. Environmental Chemistry, 2017, 36(6): 1295-1303(in Chinese). doi: 10.7524/j.issn.0254-6108.2017.06.2017041403
[10] LETZEL T, PÖSCHL U, WISSIACK R, et al. Phenyl-modified reversed-phase liquid chromatography coupled to atmospheric pressure chemical ionization mass spectrometry: A universal method for the analysis of partially oxidized aromatic hydrocarbons [J]. Analytical Chemistry, 2001, 73(7): 1634-1645. doi: 10.1021/ac001079t [11] WANG X W, LI Y, CAI F S, et al. Fully automatic single-drop microextraction with one-setp extraction and derivatization and its application for rapid analysis of hydroxylated polycyclic aromatic hydrocarbons in seawaters [J]. Talanta, 2017, 164: 727-734. doi: 10.1016/j.talanta.2016.06.011 [12] SUN C J, QU L L, WU L, et al. Advances in analysis of nitrated polycyclic aromatic hydrocarbons in various matrices [J]. TrAC Trends in Analytical Chemistry, 2020, 127: 115878. doi: 10.1016/j.trac.2020.115878 [13] KONG J J, ZHU F X, HUANG W, et al. Sol-gel based metal-organic framework zeolite imidazolate framework-8 fibers for solid-phase microextraction of nitro polycyclic aromatic hydrocarbons and polycyclic aromatic hydrocarbons in water samples [J]. Journal of Chromatography A, 2019, 1603: 92-101. doi: 10.1016/j.chroma.2019.06.063 [14] KONG J J, HAN M S, LIU Y, et al. Analysis of trace-level nitrated polycyclic aromatic hydrocarbons in water samples by solid-phase microextraction with gas chromatography and mass spectrometry [J]. Journal of Separation Science, 2018, 41(12): 2681-2687. doi: 10.1002/jssc.201701271 [15] GUIÑEZ M, MARTINEZ L D, FERNANDEZ L, et al. Dispersive liquid-liquid microextraction based on solidification of floating organic drop and fluorescence detection for the determination of nitrated polycyclic aromatic hydrocarbons in aqueous samples [J]. Microchemical Journal, 2017, 131: 1-8. doi: 10.1016/j.microc.2016.10.020 [16] GUIÑEZ M, CANALES R, MARTINEZ L D, et al. Solvent-based de-emulsification dispersive liquid-liquid microextraction coupled with UPLC-MS/MS for the fast determination of ultratrace levels of nitrated and oxygenated polycyclic aromatic hydrocarbons in environmental samples [J]. Analytical Methods, 2018, 10(8): 910-919. doi: 10.1039/C8AY00021B [17] 张晶华, 原文婷, 高占啟, 等. 固相萃取-气相色谱质谱法测定水体中氯代多环芳烃 [J]. 分析化学, 2018, 46(10): 1604-1609. doi: 10.11895/j.issn.0253-3820.181246 ZHANG J H, YUAN W T, GAO Z Q, et al. Determination of chlorinated polycyclic aromatic hydrocarbons in surface water by solid phase extraction coupled with gas chromatography-mass spectrometry [J]. Chinese Journal of Analytical Chemistry, 2018, 46(10): 1604-1609(in Chinese). doi: 10.11895/j.issn.0253-3820.181246
[18] MURAHASHI T, ITO M, KIZU R, et al. Determination of nitroarenes in precipitation collected in Kanazawa, Japan [J]. Water Research, 2001, 35(14): 3367-3372. doi: 10.1016/S0043-1354(01)00035-5 [19] CHONDO Y, LI Y, MAKINO F, et al. Determination of selected nitropolycyclic aromatic hydrocarbons in water samples [J]. Chemical and Pharmaceutical Bulletin, 2013, 61(12): 1276-1274. [20] MEKIKI D, KALOGERAKIS N, PSILLAKIS E. Application of solid-phase microextraction for the analysis of nitropolycyclic aromatic hydrocarbons in water [J]. Chromatographia, 2006, 63(1/2): 85-89. [21] PULLEYBLANK C, KELLEHER B, CAMPO P, et al. Recovery of polycyclic aromatic hydrocarbons and their oxygenated derivatives in contaminated soils using aminopropyl silica solid phase extraction [J]. Chemosphere, 2020, 258: 127314. doi: 10.1016/j.chemosphere.2020.127314 [22] 张俊美. 山东典型地区PM2.5中无机元素、多环芳烃及其衍生物污染特征和氧化潜势[D]. 济南: 山东大学, 2019. ZHANG J M. The pollution characteristics of inorganic elements, polycyclic aromatic hydrocarbons and their derivatives, and oxidative potential of PM2.5 in Shandong Province[D]. Jinan: Shandong University, 2019(in Chinese).
[23] GBEDDY G, EGODAWATTA P, GOONETILLEKE A, et al. Optimized simultaneous pressurized fluid extraction and in-cell clean-up, and analysis of polycyclic aromatic hydrocarbons (PAHs), and nitro-, carbonyl-, hydroxy -PAHs in solid particles [J]. Analytica Chimica Acta, 2020, 1125: 19-28. doi: 10.1016/j.aca.2020.05.021 [24] EINAT F K, YOCHAI A, AMIR K, et al. Ultrafine particles in airways: a novel marker of COPD exacerbation risk and inflammatory status [J]. International journal of chronic obstructive pulmonary disease, 2019, 14: 739-740. doi: 10.2147/COPD.S208588 [25] KONEN M E, JACOBS P M, BURRAS C L, et al. Equations for predicting soil organic carbon using loss‐on‐ignition for north central U. S. soils [J]. Soil Science Society of America Journal, 2002, 66(6): 1878-1881. doi: 10.2136/sssaj2002.1878 [26] 王静. 杭州市空气中PAHs污染源及归宿研究[D]. 杭州: 浙江大学, 2004. WANG J. Sources and fate of polycylclic aromatic hydrocarbons (PAHs) in air of Hangzhou[D]. Hangzhou: Zhejiang University, 2004(in Chinese).
[27] 牟世芬, 刘勇建. 加速溶剂萃取的原理及应用 [J]. 现代科学仪器, 2001(3): 18-20. doi: 10.3969/j.issn.1003-8892.2001.03.006 MOU S F, LIU Y J. The principle and application of accelerated solvent extraction [J]. Modern Scientific Instruments, 2001(3): 18-20(in Chinese). doi: 10.3969/j.issn.1003-8892.2001.03.006
[28] 欧阳勋, 陈家玮, 张小岗. 超临界CO2流体萃取土壤中污染物的应用研究进展 [J]. 地质通报, 2010, 29(11): 1655-1661. doi: 10.3969/j.issn.1671-2552.2010.11.008 OUYANG X, CHEN J W, ZHANG X G. Advance in supercritical CO2 fluid extraction of contaminants from soil [J]. Geological Bulletin of China, 2010, 29(11): 1655-1661(in Chinese). doi: 10.3969/j.issn.1671-2552.2010.11.008
[29] CASTELLS P, SANTOS F J, GALCERAN M T. Development of a sequential supercritical fluid extraction method for the analysis of nitrated and oxygenated derivatives of polycyclic aromatic hydrocarbons in urban aerosols [J]. Journal of Chromatography A, 2003, 1010(2): 141-151. doi: 10.1016/S0021-9673(03)01121-X [30] WALGRAEVE C, DEMEESTERE K, DEWULF J, et al. Oxygenated polycyclic aromatic hydrocarbons in atmospheric particulate matter: Molecular characterization and occurrence [J]. Atmospheric Environment, 2010, 44(15): 1831-1846. doi: 10.1016/j.atmosenv.2009.12.004 [31] DU W, CHEN Y C, SHEN G F, et al. Winter air pollution by and inhalation exposure to nitrated and oxygenated PAHs in rural Shanxi, North China [J]. Atmospheric Environment, 2018, 187: 210-217. doi: 10.1016/j.atmosenv.2018.06.004 [32] BARRADO A I, GARCÍA S, BARRADO E, et al. PM2.5-bound PAHs and hydroxy-PAHs in atmospheric aerosol samples: Correlations with season and with physical and chemical factors [J]. Atmospheric Environment, 2012, 49: 224-232. doi: 10.1016/j.atmosenv.2011.11.056 [33] GUO J H, LI Z N, SANDY A L, et al. Method development for simultaneous analyses of multiple legacy and emerging organic chemicals in sediments [J]. Journal of Chromatography A, 2014, 1370: 1-8. doi: 10.1016/j.chroma.2014.10.031 [34] HAN M S, KONG J J, YUAN J L, et al. Method development for simultaneous analyses of polycyclic aromatic hydrocarbons and their nitro-, oxy-, hydroxy- derivatives in sediments [J]. Talanta, 2019, 205: 120128. doi: 10.1016/j.talanta.2019.120128 [35] COCHRAN R E, DONGARI N, JEONG H, et al. Determination of polycyclic aromatic hydrocarbons and their oxy-, nitro-, and hydroxy-oxidation products [J]. Analytica Chimica Acta, 2012, 740: 93-103. doi: 10.1016/j.aca.2012.05.050 [36] 原文婷, 高占啟, 孙成. 土壤中6种氯代多环芳烃测定方法的建立及应用 [J]. 环境监控与预警, 2015, 7(6): 13-17,37. doi: 10.3969/j.issn.1674-6732.2015.06.004 YUAN W T, GAO Z Q, SUN C. Method development and application for the determination of chlorinated polycyclic aromatic hydrocarbons in soil [J]. Environmental Monitoring and Forewarning, 2015, 7(6): 13-17,37(in Chinese). doi: 10.3969/j.issn.1674-6732.2015.06.004
[37] CHEN H J, MA S T, YU Y X, et al. Seasonal profiles of atmospheric PAHs in an e-waste dismantling area and their associated health risk considering bioaccessible PAHs in the human lung [J]. Science of the Total Environment, 2019, 683: 371-379. doi: 10.1016/j.scitotenv.2019.04.385 [38] TANG J, MA S T, LIU R R, et al. The pollution profiles and human exposure risks of chlorinated and brominated PAHs in indoor dusts from e-waste dismantling workshops: Comparison of GC-MS, GC-MS/MS and GC × GC-MS/MS determination methods [J]. Journal of Hazardous Materials, 2020, 394: 122573. doi: 10.1016/j.jhazmat.2020.122573 [39] BERRUETA L A, GALLO B, VICENTE F. A review of solid phase extraction: Basic principles and new developments [J]. Chromatographia, 1995, 40(7/8): 474-483. [40] 魏崇, Benjamin A. Musa Bandowe, Hannah Meusel, 等. 同时测定大气中气态和颗粒态多环芳烃及其含氧/氮衍生物的新方法[C]//十一届全国气溶胶会议暨第十届海峡两岸气溶胶技术研讨会论文集. 武汉, 2013. WEI C, BANDOWE B A M, MEUSEL H, et al. A new method for simultaneous determination of gaseous and particulate polycyclic aromatic hydrocarbons and their oxygen/nitrogen derivatives in the atmosphere[C]//10th Cross-stralt Workshop for Aerosol Science and Technology, Wuhan, Hubei, China, 2013 (in Chinese).
[41] LI Y Y, YANG L X, CHEN X F, et al. Indoor/outdoor relationships, sources and cancer risk assessment of NPAHs and OPAHs in PM2.5 at urban and suburban hotels in Jinan, China [J]. Atmospheric Environment, 2018, 182: 325-334. doi: 10.1016/j.atmosenv.2018.03.058 [42] LUNDSTEDT S, BANDOWE B A M, WILCKE W, et al. First intercomparison study on the analysis of oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) and nitrogen heterocyclic polycyclic aromatic compounds (N-PACs) in contaminated soil [J]. TrAC Trends in Analytical Chemistry, 2014, 57: 83-92. doi: 10.1016/j.trac.2014.01.007 [43] YADAV I C, DEVI N L, SINGH V K, et al. Concentrations, sources and health risk of nitrated- and oxygenated-polycyclic aromatic hydrocarbon in urban indoor air and dust from four cities of Nepal [J]. Science of the Total Environment, 2018, 643: 1013-1023. doi: 10.1016/j.scitotenv.2018.06.265 [44] 郑继三, 马静, YUICHI HORII, 等. 固相萃取/气相色谱质谱法测定灰尘中的氯代多环芳烃 [J]. 环境化学, 2012, 31(7): 1101-1107. ZHENG J S, MA J, HORII Y, et al. Determination of chlorinated polycyclic aromatic hydrocarbons in dust by solid-phase extract(SPE) and gas chromatofraphy-mass spectrometry [J]. Environmental Chemistry, 2012, 31(7): 1101-1107(in Chinese).
[45] 何佳璘, 段永红. 农作物中多环芳烃污染的研究进展 [J]. 山西农业科学, 2020, 48(7): 1152-1157,1170. doi: 10.3969/j.issn.1002-2481.2020.07.37 HE J L, DUAN Y H. Research progress on polycyclic aromatic hydrocarbons pollution in crops [J]. Journal of Shanxi Agricultural Sciences, 2020, 48(7): 1152-1157,1170(in Chinese). doi: 10.3969/j.issn.1002-2481.2020.07.37
[46] MANOUSAKAS M, PAPAEFTHYMIOU H, DIAPOULI E, et al. Assessment of PM2.5 sources and their corresponding level of uncertainty in a coastal urban area using EPA PMF 5.0 enhanced diagnostics [J]. Science of the Total Environment, 2017, 574: 155-164. doi: 10.1016/j.scitotenv.2016.09.047 [47] UNO S, TANAKA H, MIKI S, et al. Bioaccumulation of nitroarenes in bivalves at Osaka Bay, Japan [J]. Marine Pollution Bulletin, 2011, 63(5-12): 477-481. doi: 10.1016/j.marpolbul.2011.02.044 [48] 余刚, 徐晓白, 张甬元, 等. 硝基多环芳烃在鱼水系统中的归趋和生物浓缩因子的研究 [J]. 环境科学学报, 1994, 14(1): 32-38. YU G, XU X B, ZHANG Y Y, et al. Fate and bioconcentration factor of nitro- pol ycyclic aromatic hydrocarbons in laboratory fish-water system [J]. Acta Scientiae Circumstantiae, 1994, 14(1): 32-38(in Chinese).
[49] HUANG L, CHERNYAK S M, BATTERMAN S A. PAHs, nitro-PAHs, hopanes, and steranes in lake trout from Lake Michigan [J]. Environmental Toxicology and Chemistry, 2014, 33(8): 1792-1801. doi: 10.1002/etc.2620 [50] BANDOWE B A M, LEIMER S, MEUSEL H, et al. Plant diversity enhances the natural attenuation of polycyclic aromatic compounds (PAHs and oxygenated PAHs) in grassland soils [J]. Soil Biology and Biochemistry, 2019, 129: 60-70. doi: 10.1016/j.soilbio.2018.10.017 [51] BANDOWE B A M, BIGALKE M, BOAMAH L, et al. Polycyclic aromatic compounds (PAHs and oxygenated PAHs) and trace metals in fish species from Ghana (West Africa): Bioaccumulation and health risk assessment [J]. Environment International, 2014, 65: 135-146. doi: 10.1016/j.envint.2013.12.018 [52] WETZEL D L, van VLEET E S. Accumulation and distribution of petroleum hydrocarbons found in mussels (Mytilus galloprovincialis) in the canals of Venice, Italy [J]. Marine Pollution Bulletin, 2004, 48(9/10): 927-936. [53] ZHANG W F, ZHANG Y H, ZHANG G R, et al. Facile preparation of a cationic COF functionalized magnetic nanoparticle and its use for the determination of nine hydroxylated polycyclic aromatic hydrocarbons in smokers' urine [J]. The Analyst, 2019, 144(19): 5829-5841. doi: 10.1039/C9AN01188A [54] SUN L P, ZHU S Y, ZHENG Z J, et al. 9-Plex ultra high performance liquid chromatography tandem mass spectrometry determination of free hydroxyl polycyclic aromatic hydrocarbons in human plasma and urine [J]. Journal of Chromatography A, 2020, 1623: 461182. doi: 10.1016/j.chroma.2020.461182 [55] 王丽. 农产品中多环芳烃及卤代多环芳烃残留的检测方法和应用[D]. 重庆: 西南大学, 2013. WANG L. Study on analysis methodology of polycyclic aromatic hydrocarbons and halogenated polycyclic aromatic hydrocarbon residues in agricultural products and application[D]. Chongqing: Southwest University, 2013(in Chinese).
[56] DENG K L, CHAN W. Development of a QuEChERS-based method for determination of carcinogenic 2-nitrofluorene and 1-nitropyrene in rice grains and vegetables: A comparative study with benzo[a]Pyrene [J]. Journal of Agricultural and Food Chemistry, 2017, 65(9): 1992-1999. doi: 10.1021/acs.jafc.7b00051 [57] 马可婧, 张国祯, 李小燕. 弗罗里硅土净化和凝胶色谱净化在土壤苯并(a)芘测定中的应用 [J]. 环境监测管理与技术, 2017, 29(2): 41-44. doi: 10.3969/j.issn.1006-2009.2017.02.010 MA K J, ZHANG G Z, LI X Y. Application of florisil purification and GPC purification in determination of benzo(a) Pyrene in soil [J]. The Administration and Technique of Environmental Monitoring, 2017, 29(2): 41-44(in Chinese). doi: 10.3969/j.issn.1006-2009.2017.02.010
[58] 傅红雪, 王峰, 陈万勤. 食用油中多环芳烃的研究进展 [J]. 食品工业, 2020, 41(4): 272-276. FU H X, WANG F, CHEN W Q. Review on polycyclic aromatic hydrocarbons(PAHs) in edible oils [J]. The Food Industry, 2020, 41(4): 272-276(in Chinese).
[59] 佟玲, 周瑞泽, 吴淑琪, 等. 加速溶剂提取凝胶渗透色谱净化气相色谱质谱快速测定玉米中多环芳烃 [J]. 分析化学, 2009, 37(3): 357-362. doi: 10.3321/j.issn:0253-3820.2009.03.009 TONG L, ZHOU R Z, WU S Q, et al. Determination of polycyclic aromatic hydrocarbons in corn using accelerated solvent extraction and gel permeation chromatography with gas chromatography-mass spectrometry [J]. Chinese Journal of Analytical Chemistry, 2009, 37(3): 357-362(in Chinese). doi: 10.3321/j.issn:0253-3820.2009.03.009
[60] ANDERSON K A, SZELEWSKI M J, WILSON G, et al. Modified ion source triple quadrupole mass spectrometer gas chromatograph for polycyclic aromatic hydrocarbon analyses [J]. Journal of Chromatography A, 2015, 1419: 89-98. doi: 10.1016/j.chroma.2015.09.054 [61] 莫李桂, 马盛韬, 李会茹, 等. 气相色谱/三重四极杆串联质谱法检测土壤中氯代多环芳烃和溴代多环芳烃 [J]. 分析化学, 2013, 41(12): 1825-1830. MO L G, MA S T, LI H R, et al. Determination of chlorinated-and brominated-polycyclic aromatic hydrocarbons in soil samples by gas chromatography coupled with triple quadrupole mass spectrometry [J]. Chinese Journal of Analytical Chemistry, 2013, 41(12): 1825-1830(in Chinese).
[62] 王金成, 樊芸, 卢宪波, 等. 固相萃取-高效液相色谱法同时测定自来水中氯代多环芳烃和多环芳烃 [J]. 环境化学, 2018, 37(9): 1987-1993. doi: 10.7524/j.issn.0254-6108.2017110703 WANG J C, FAN Y, LU X B, et al. Solid-phase extraction combined with HPLC for the determination of chlorinated polycyclic aromatic hydrocarbons and polycyclic aromatic hydrocarbons in tap water samples [J]. Environmental Chemistry, 2018, 37(9): 1987-1993(in Chinese). doi: 10.7524/j.issn.0254-6108.2017110703
[63] ROBB D B, BLADES M W. State-of-the-art in atmospheric pressure photoionization for LC/MS [J]. Analytica Chimica Acta, 2008, 627(1): 34-49. doi: 10.1016/j.aca.2008.05.077 [64] BAREK J, PUMERA M, MUCK A, et al. Polarographic and voltammetric determination of selected nitrated polycyclic aromatic hydrocarbons [J]. Analytica Chimica Acta, 1999, 393(1/2/3): 141-146. [65] 高占啟, 杨雪, 彭英. 新型有机污染物氯代多环芳烃分析方法及其污染现状研究进展 [J]. 环境化学, 2016, 35(2): 287-296. doi: 10.7524/j.issn.0254-6108.2016.02.2015080301 GAO Z Q, YANG X, PENG Y. Analytical methods and pollution status of a new class of organic contaminants-chlorinated polycyclic aromatic hydrocarbons [J]. Environmental Chemistry, 2016, 35(2): 287-296(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.02.2015080301
[66] HORII Y, OHURA T, YAMASHITA N, et al. Chlorinated polycyclic aromatic hydrocarbons in sediments from industrial areas in Japan and the United States [J]. Archives of Environmental Contamination and Toxicology, 2009, 57(4): 651-660. doi: 10.1007/s00244-009-9372-1 [67] HORII Y, OK G, OHURA T, et al. Occurrence and profiles of chlorinated and brominated polycyclic aromatic hydrocarbons in waste incinerators [J]. Environmental Science & Technology, 2008, 42(6): 1904-1909. [68] OHURA T, FUJIMA S, AMAGAI T, et al. Chlorinated polycyclic aromatic hydrocarbons in the atmosphere: Seasonal levels, gas-particle partitioning, and origin [J]. Environmental Science & Technology, 2008, 42(9): 3296-3302. [69] IEDA T, OCHIAI N, MIYAWAKI T, et al. Environmental analysis of chlorinated and brominated polycyclic aromatic hydrocarbons by comprehensive two-dimensional gas chromatography coupled to high-resolution time-of-flight mass spectrometry [J]. Journal of Chromatography A, 2011, 1218(21): 3224-3232. doi: 10.1016/j.chroma.2011.01.013 [70] BEZABEH D Z, BAMFORD H A, SCHANTZ M M, et al. Determination of nitrated polycyclic aromatic hydrocarbons in diesel particulate-related standard reference materials by using gas chromatography/mass spectrometry with negative ion chemical ionization [J]. Analytical and Bioanalytical Chemistry, 2003, 375(3): 381-388. doi: 10.1007/s00216-002-1698-8 [71] BAMFORD H A, BEZABEH D Z, SCHANTZ M M, et al. Determination and comparison of nitrated-polycyclic aromatic hydrocarbons measured in air and diesel particulate reference materials [J]. Chemosphere, 2003, 50(5): 575-587. doi: 10.1016/S0045-6535(02)00667-7 [72] 马丽新. 哈尔滨大气细颗粒物中PAHs及其衍生物污染特性与风险研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. MA L X. Pollution characteristics and risk assessment of polycyclic aromatic hydrocarbon and its derivatives in atmospheric fine particulate matter from Harbin[D]. Harbin: Harbin Institute of Technology, 2019(in Chinese).
[73] BONFANTI L, CARERI M, MANGIA A, et al. Simultaneous identification of different classes of hydrocarbons and determination of nitro-polycyclic aromatic hydrocarbons by means of particle beam liquid chromatography-mass spectrometry [J]. Journal of Chromatography A, 1996, 728(1/2): 359-369. [74] KAWANAKA Y, SAKAMOTO K, WANG N, et al. Simple and sensitive method for determination of nitrated polycyclic aromatic hydrocarbons in diesel exhaust particles by gas chromatography-negative ion chemical ionisation tandem mass spectrometry [J]. Journal of Chromatography A, 2007, 1163(1/2): 312-317. [75] TANG Y Y, IMASAKA T, YAMAMOTO S, et al. Multiphoton ionization mass spectrometry of nitrated polycyclic aromatic hydrocarbons [J]. Talanta, 2015, 140: 109-114. doi: 10.1016/j.talanta.2015.03.027 [76] DOMEÑO C, CANELLAS E, ALFARO P, et al. Atmospheric pressure gas chromatography with quadrupole time of flight mass spectrometry for simultaneous detection and quantification of polycyclic aromatic hydrocarbons and nitro-polycyclic aromatic hydrocarbons in mosses [J]. Journal of Chromatography A, 2012, 1252: 146-154. doi: 10.1016/j.chroma.2012.06.061 [77] HAVEY C D, DANE A J, ABBAS-HAWKS C, et al. Detection of nitro-polycyclic aromatic hydrocarbons in mainstream and sidestream tobacco smoke using electron monochromator-mass spectrometry [J]. Environmental Chemistry Letters, 2009, 7(4): 331-336. doi: 10.1007/s10311-008-0174-x [78] CAI S S, SYAGE J A, HANOLD K A, et al. Ultra performance liquid chromatography−Atmospheric pressure photoionization-tandem mass spectrometry for high-sensitivity and high-throughput analysis of US Environmental Protection Agency 16 priority pollutants polynuclear aromatic hydrocarbons [J]. Analytical Chemistry, 2009, 81(6): 2123-2128. doi: 10.1021/ac802275e [79] SCHLEMITZ S, PFANNHAUSER W. Analysis of nitro-PAHs in food matrices by on-line reduction and high performance liquid chromatography [J]. Food Additives & Contaminants, 1996, 13(8): 969-977. [80] DELHOMME O, HERCKES P, MILLET M. Determination of nitro-polycyclic aromatic hydrocarbons in atmospheric aerosols using HPLC fluorescence with a post-column derivatisation technique [J]. Analytical and Bioanalytical Chemistry, 2007, 389(6): 1953-1959. doi: 10.1007/s00216-007-1562-y [81] KUO C T, CHEN H W, LIN S T. Trace determination of nitrated polycyclic aromatic hydrocarbons using liquid chromatography with on-line electrochemical reduction and fluorescence detection [J]. Analytica Chimica Acta, 2003, 482(2): 219-228. doi: 10.1016/S0003-2670(03)00204-6 [82] AL-KINDY S M, MILLER J N. High-performance liquid chromatography determination of nitrated polycyclic aromatic hydrocarbons by indirect fluorescence detection [J]. Biomedical Chromatography, 2009, 23(2): 166-169. doi: 10.1002/bmc.1098 [83] LAN S H, LAN H X, YANG D, et al. Study of nitro-polycyclic aromatic hydrocarbons in particulate matter in Dongguan [J]. Environmental Science and Pollution Research, 2014, 21(12): 7390-7399. doi: 10.1007/s11356-014-2644-y [84] MIRIVEL G, RIFFAULT V, GALLOO J C. Simultaneous determination by ultra-performance liquid chromatography-atmospheric pressure chemical ionization time-of-flight mass spectrometry of nitrated and oxygenated PAHs found in air and soot particles [J]. Analytical and Bioanalytical Chemistry, 2010, 397(1): 243-256. doi: 10.1007/s00216-009-3416-2 [85] LUNG S C C, LIU C H. Fast analysis of 29 polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs with ultra-high performance liquid chromatography-atmospheric pressure photoionization-tandem mass spectrometry [J]. Scientific Reports, 2015, 5: 12992. doi: 10.1038/srep12992 [86] TIDWELL L G, BLAIR PAULIK L, ANDERSON K A. Air-water exchange of PAHs and OPAHs at a superfund mega-site [J]. Science of the Total Environment, 2017, 603/604: 676-686. doi: 10.1016/j.scitotenv.2017.01.185 [87] TORIBA A, HOMMA C, KITA M, et al. Simultaneous determination of polycyclic aromatic hydrocarbon quinones by gas chromatography-tandem mass spectrometry, following a one-pot reductive trimethylsilyl derivatization [J]. Journal of Chromatography A, 2016, 1459: 89-100. doi: 10.1016/j.chroma.2016.06.034 [88] BANDOWE B A, WILCKE W. Analysis of polycyclic aromatic hydrocarbons and their oxygen-containing derivatives and metabolites in soils [J]. Journal of Environmental Quality, 2010, 39(4): 1349-1358. doi: 10.2134/jeq2009.0298 [89] LAYSHOCK J A, WILSON G, ANDERSON K A. Ketone and quinone-substituted polycyclic aromatic hydrocarbons in mussel tissue, sediment, urban dust, and diesel particulate matrices [J]. Environmental Toxicology and Chemistry, 2010, 29(11): 2450-2460. doi: 10.1002/etc.301 [90] 胡慧琳. 重庆城区大气中多环芳烃、含氧及含氮多环芳烃的污染特征与来源[D]. 重庆: 中国科学院大学(中国科学院重庆绿色智能技术研究院), 2019. HU H L. The characteristics and sources of atmospheric PAHs and their nitrated and oxygenated derivatives in an urban area of Chongqing[D]. Chongqing: University of Chinese Academy of Sciences, 2019 (in Chinese).
[91] 马英歌, 戴海夏, 李莉, 等. GC-MS/MS法测定PM2.5中的氧基多环芳烃含量 [J]. 环境化学, 2017, 36(8): 1883-1885. MA Y G, DAI H X, LI L, et al. Determination of oxygenous polycyclic aromatic hydrocarbons in PM2.5 using GC-MSMS [J]. Environmental Chemistry, 2017, 36(8): 1883-1885(in Chinese).
[92] MACARRON R, BANKS M N, BOJANIC D, et al. Impact of high-throughput screening in biomedical research [J]. Nature Reviews Drug Discovery, 2011, 10(3): 188-195. doi: 10.1038/nrd3368 [93] AVAGYAN R, WESTERHOLM R. Target and suspect screening of OH-PAHs in air particulates using liquid chromatography-orbitrap high resolution mass spectrometry [J]. Talanta, 2017, 165: 702-708. doi: 10.1016/j.talanta.2017.01.014 [94] AVAGYAN R, ÅBERG M, WESTERHOLM R. Suspect screening of OH-PAHs and non-target screening of other organic compounds in wood smoke particles using HR-Orbitrap-MS [J]. Chemosphere, 2016, 163: 313-321. doi: 10.1016/j.chemosphere.2016.08.039 [95] HOGENBOOM A C, van LEERDAM J A, de VOOGT P. Accurate mass screening and identification of emerging contaminants in environmental samples by liquid chromatography-hybrid linear ion trap Orbitrap mass spectrometry [J]. Journal of Chromatography A, 2009, 1216(3): 510-519. doi: 10.1016/j.chroma.2008.08.053