-
城市地表灰尘主要来自大气沉降、城市交通、工程建设、工业生产等各种非点源所产生的颗粒物质,由于不透水地面在城市区域分布广泛,沉积于不透水层的地表灰尘易受所在地区人类生产生活影响和较为频繁的扰动和干扰,其物质组成和来源更为复杂[1-3]。同时,在外动力作用下,地表灰尘容易扬起悬浮于空气之中,在“扬起—沉降—扬起”这个交替循环过程中,影响环境质量,并通过手口间接摄入、呼吸和皮肤接触等途径被人体吸收、积累,从而对人体健康产生危害[4-5]。另外,在降雨的冲刷作用下,地表灰尘可以进入水循环系统,从而造成间接污染[6],成为影响城市环境质量和威胁居民健康的潜在因素。因此,对于城市地表灰尘的环境污染及人群暴露风险评价成为学术界长期的研究热点。
近几年来,国内外众多学者对于地表灰尘的中重金属污染研究已有大量报道,主要集中在重金属来源识别[7-9]、污染特征[10-11]、赋存形态[12-14]、生态风险及健康风险评价[15-17]等方面,空间污染分布涉及较少,且已有研究表明,绝大多数城市的地表灰尘具有重金属富集积累的趋势,污染特征与当地的自然地理、生产、生活等因素相关。银川市作为典型的内陆城市,干旱少雨、风大沙多,颗粒物污染一直是影响本地空气质量的重要因素,特别是在供暖季对银川市环境空气质量的影响最为显著[18]。部分学者关注到了银川市的重金属污染问题,认为银川市春季风沙期和冬季采暖期是银川市一年中PM2.5中重金属元素在的强污染期[19],宁东燃煤电厂周边表层土壤中Pb、Cd和Hg存在富集,其中Cd和Hg富集明显[20];银川湿地底泥中Cd富集程度最高,Hg的富集程度最低,总体上As、Cd、Cr、Cu、Hg、Ni、Pb、Zn元素平均含量均小于一级自然背景值[21],但关于地表灰尘中重金属污染还鲜研究。
地表灰尘分布范围广,污染物质大多来自区域内部短时间内的累积,可以起到更好的指示作用[2],为了解银川市地表尘中重金属的污染累积和空间分布特征,揭示生产生活对地表尘中重金属污染的影响,揭示其环境来源,评估健康风险,本研究采集银川市工业区、文教区、住宅区、商业区、交通区以及公园等不同功能区的41个地表灰尘样品,采用原子吸收分光光度法、原子荧光法测定不同功能区地表灰尘中Pb、Hg、As、Cr、Cd、Cu、Zn和Ni的含量,以期为银川市重金属污染防治及人群健康风险管理提供一定的理论和科学依据。
银川市城区地表灰尘重金属污染分布特征及健康风险评价
Pollution characteristics and health risk assessment of heavy metals of surface dust in urban areas of Yinchuan
-
摘要: 为了解银川市城区地表灰尘中重金属污染特征及其健康风险,采集不同功能区的41个地表灰尘样品,采用原子吸收分光光度法和原子荧光法测定了地表灰尘中八种重金属含量,应用地累积指数、GIS 空间分析、相关分析和主成分分析等方法对重金属的污染特征、空间分布、可能来源进行分析,利用美国国家环保局(US EPA)推荐的健康风险评价模型,对儿童和成人的致癌和非致癌健康风险进行评估。结果表明,银川市城区地表灰尘中重金属含量与宁夏土壤背景值比值排序为Cd(8.0)>Hg(7.9)>Zn(3.7)>Cu(2.3)>Pb(1.6)>Cr(1.3)>Ni(1.0)>As(0.9),除Ni和As外,各种重金属呈不同程度的富集,特别是Cd 和Hg富集较重。地累积指数范围为−0.627—2.146,其中,As、Ni和Cr呈现无污染水平,Cu和Pb为轻污染水平,Hg和Zn为偏中度污染,Cd为中度污染。不同功能区中,Zn、Cu、Cd和Pb在商业区的浓度较高,Ni、Cr 在交通区浓度最高,Hg在住宅、文教、交通区浓度较高,As除公园外,在各功能区的浓度相对较均匀。健康风险评价表明8种重金属的非致癌风险均小于1,未超过EPA推荐的非致癌水平,但Cr、As、Ni、Cd 4种重金属的致癌风险均超过EPA推荐的致癌水平,呈现出潜在的致癌风险,且相比成人,重金属更易对儿童产生健康风险。相关分析和主成分分析表明AS、Cu、Cd、Ni和Cr之间,Pb和Zn之间具有相似的来源,其中AS、Cu、Cd、Ni和Cr来源为自然源、工业源和交通源;Pb和Zn来源为交通源和煤炭燃烧,Hg来源为煤炭燃烧。Abstract: In order to understand the pollution characteristics and health risk of heavy metals in surface dust of Yinchuan city, a total of 41 surface dust samples were collected from different functional areas,AAS and AFS were used to measure the content of eight heavy metals in surface dust.The pollution characteristics,spatial distribution and possible sources of heavy metals were analyzed by means of Geo-accumulation index (Igeo),GIS spatial analysis and correlation analysis and principal component analysis.The carcinogenic and non-carcinogenic health risks for children and adults were assessed using health risk assessment models recommended by the US Environmental Protection Agency (USEPA).The results showed that the ratio of heavy metal content in Yinchuan urban surface dust to soil background value in Ningxiawas Cd(8.0)>Hg(7.9)>Zn(3.7)>Cu(2.3)>Pb(1.6)>Cr(1.3) >Ni(1.0)>As(0.9), except for Ni and As, all kinds of heavy metals were enriched to different degrees, especially Cd and Hg.The Igeo ranged from −0.627 to 2.146, As, Ni and Cr showed nopollution level, Cu and Pb showed light pollution level, Hg and Zn showed light to moderate pollution level and Cd showed moderate pollution level. The contents of Zn, Cu, Cd and Pb were higher in the commercial areas, Cr and Ni were higher in the traffic areas, Hg was higher in the residential, cultural,educational and traffic areas, and As was relatively uniform in each functional area except parks. The human health risk assessment indicated that the non−carcinogenic risk of eight heavy metals in this study were less than 1, which did not exceed the non-carcinogenic level recommended by USEPA. However, the carcinogenic risks of Cr, As, Ni, Cd all exceed the carcinogenic levelsrecommended by the USEPA, presenting a potential carcinogenic risk. Compared with adults, heavy metals are more likely to cause health risks to children. Correlation and principal component analysis indicated that there may be similar sources between As, Cu, Cd, Ni and Cr, and between Pb and Zn, among which, the main sources of As, Cu, Cd, Ni and Cr were natural, industrial and traffic sources. The accumulation of Pb and Zn was mainly affected by traffic sources and coal combustion, while Hg was mainly originated from coal combustion.
-
Key words:
- surface dust /
- heavy metals /
- pollution characteristics /
- risk assessment /
- Yinchuan urban district
-
Cr Ni Cu Zn As Cd Pb Hg RfDoral 3.00×10−3 2.00×10−2 4.00×10−2 3.00×10−1 3.00×10−4 1.00×10−3 3.50×10−3 3.00×10−4 RfDinh 2.86×10−5 2.06×10−2 4.02×10−2 3.00×10−1 3.01×10−4 5.71×10−5 3.52×10−3 3.00×10−4 RfDder 6.00×10−5 5.40×10−3 1.20×10−2 6.00×10−2 1.23×10−4 2.50×10−5 5.25×10−4 2.40×10−5 表 2 健康风险评价模型参数取值
Table 2. Parameters values of health risk assessment model
参数
Parameter含义
Meaning单位
Unit成人
Adult儿童
ChildrenIRoral 经手口直接摄入灰尘速率Soil ingestion rate mg·d−1 100 200 IRinh 呼吸速率Respiratory rate m3·d−1 20 7.6 EF 接触频率Exposure frequency d·a−1 350 350 ED 暴露时间Exposure duration a 24 6 BW 平均体重Body weight kg 61.8 15.9 AT 平均寿命Average lifetime exposure d 非致癌风险为365×ED,致癌风险为365×70 PEF 颗粒排放因子Particles emission factor m3·kg−1 1.36×109 1.36×109 SA 皮肤暴露面积Skin surface area cm2·d−1 5700 2800 SL 皮肤黏着度Skin adhesion mg·(cm2·d)−1 0.07 0.2 ABS 皮肤吸收因子 Skin absorption factor — 砷(As),ABS=0.03,其他元素ABS=0.001 表 3 银川城区地表灰尘重金属的描述性统计(mg·kg−1)
Table 3. Descriptive statistical results of heavy metals in surface dust in urban area of Yinchuan
金属元素
Element极小值
Minimum极大值
Maximum中值
Median均值
Mean标准偏差
SD变异系数/%
CV检出率/%
Detection rate中国背景值
Background value
of China宁夏背景值
Background value
of NingxiaHg 0.010 1.431 0.115 0.165 0.237 1.436 100 0.065 0.021 As 6.060 14.300 10.800 10.842 1.938 0.179 100 11.2 11.9 Cu 21.645 88.624 50.266 51.638 13.613 0.264 100 22.6 22.1 Pb 15.293 71.060 31.700 32.068 10.860 0.339 100 26 20.6 Cd 0.232 1.974 0.750 0.880 0.548 0.623 100 0.097 0.11 Cr 45.972 503.832 65.383 80.312 70.152 0.873 100 61 60.6 Zn 87.030 520.813 185.481 218.614 104.938 0.480 100 74.2 58.8 Ni 22.087 161.679 35.105 37.818 20.884 0.552 100 26.922 36.5 Note:Sample quantity n=41,Repeat each sample twice. 表 4 银川市不同功能区地表灰尘中重金属含量特征(mg·kg−1)
Table 4. Contents of heavy metal in surface dust from different functional areas of Yinchuan(mg·kg−1)
功能区
AreasHg As Cu Pb Cd Cr Zn Ni 文教区(n=7) 范围Range 0.036—
1.4319.160—
13.70038.000—
70.00016.900—
37.1000.360—
0.71062.000—
68.000162.300—
508.30026.000—
36.933均值±标准差Mean±SD 0.294±
0.46610.573±
1.44648.955±
10.42430.732±
6.2060.530±
0.10264.257±
1.957225.226±
115.81933.274±
3.324住宅区(n=9) 范围Range 0.010—
0.8308.820—
12.90033.800—
57.00026.041—
55.9000.547—
1.71059.707—
97.000110.417—
520.80025.533—
41.000均值±标准差Mean±SD 0.177±
0.23711.158±
1.18945.989±
7.40636.178±
8.2900.972±
0.39373.046±
12.794219.245±
113.56535.108±
4.213公园(n=6) 范围Range 0.035—
0.1227.940—
11.90021.645—
55.35015.293—
30.7920.244—
0.81450.466—
61.36387.030—
183.66725.475—
37.521均值±标准差Mean±SD 0.081±
0.0349.186±
1.34844.630±
11.32721.086±
5.1730.429±
0.19656.704±
4.112143.301±
39.13631.371±
4.824商业区(n=5) 范围Range 0.116—
0.19510.050—
14.30055.065—
70.44629.340—
71.0600.750—
1.85466.861—
78.405207.792—
470.16734.505—
38.650均值±标准差Mean±SD 0.160±
0.02612.710±
1.48363.201±
6.37844.127±
14.4251.390±
0.51271.724±
4.449355.585±
110.11036.899±
1.800交通区(n=8) 范围Range 0.089—
0.2278.410—
13.60029.507—
88.62415.923—
44.4350.258—
1.87546.717—
503.832123.775—
251.41625.500—
161.679均值±标准差Mean±SD 0.157±
0.04911.330±
1.82055.453±
20.64531.031±
9.0531.048±
0.608120.71±
145.306206.070±
44.05949.119±
42.763工业区(n=6) 范围Range 0.034—
0.1616.060—
13.80047.071—
66.63317.310—
39.7140.232—
1.97445.972—
146.671114.930—
244.41922.087—
59.854均值±标准差Mean±SD 0.098±
0.04010.130±
2.38855.528±
6.67029.776±
7.2770.955±
0.62186.840±
33.995187.851±
40.99839.332±
12.404表 5 银川城区地表灰尘重金属的Igeo及其不同污染程度样点百分数
Table 5.
Igeo of heavy metals in surface dust and the number of samples in different pollution categories in Yinchuan 元素
ElementIgeo 不同污染程度样点百分数
Percentage of sites at Different pollution levels/%范围
Range平均
Average无污染
Non轻污染
Light偏中污染
Partial moderate中污染
Moderate偏重污染
Strong重污染
Very strong极重污染
Extremely strongHg −1.655—5.506 1.837 2.44 9.76 48.87 34.15 — 2.44 2.44 As −1.559—−0.320 −0.743 100.00 — — — — — — Cu −0.615—1.419 0.590 4.88 80.49 14.63 — — — — Pb −1.015—1.201 0.025 46.34 51.22 2.44 — — — — Cd 0.493—3.581 2.146 — 9.75 34.15 31.71 24.39 — — Cr −0.984—2.471 −0.350 85.36 12.20 2.44 — — — — Zn −0.019—2.562 1.182 2.44 26.83 58.54 12.19 − — — Ni −1.310—1.562 −0.627 95.12 2.44 2.44 — — —
—Note:Sample quantity n=41,Repeat each sample twice 表 6 不同途径暴露下儿童和成人对重金属的日均摄入量(μg·(g·d)−1)
Table 6. Average daily intake of heavy metals for children and adults via different exposure pathway(μg·(g·d)−1)
途径
pathway手口摄入Smoke 呼吸吸入Breath 皮肤接触 Skin 儿童Children 成人Adult 儿童Children 成人Adult 儿童Children 成人Adult Hg 1.993×10−6 2.564×10−7 5.569×10−11 3.771×10−11 5.581×10−9 1.023×10−9 As 2.970×10−5 5.768×10−6 3.132×10−10 8.482×10−10 9.415×10−7 2.014×10−6 Cu 6.228×10−4 8.012×10−5 1.740×10−8 1.178×10−8 1.744×10−6 3.197×10−7 Pb 3.868×10−4 4.976×10−5 1.081×10−8 7.317×10−9 1.083×10−6 1.985×10−7 Cd 9.101×10−7 4.683×10−7 2.543×10−11 6.887×10−11 2.548×10−9 5.450×10−9 Cr 8.303×10−5 4.272×10−5 2.320×10−9 6.283×10−9 2.325×10−7 4.972×10−7 Zn 2.637×10−3 3.392×10−4 7.368×10−8 4.988×10−8 7.383×10−6 1.353×10−6 Ni 3.910×10−5 2.012×10−5 1.092×10−9 2.959×10−9 1.095×10−7 2.341×10−7 表 7 银川城区地表灰尘中重金属的相关分析
Table 7. Correlation analysis of the heavy metals in surface dust of Yinchuan
Hg As Cu Pb Cd Cr Zn Ni Hg 1 As 0.360* 1 Cu 0.214 0.492** 1 Pb 0.187 0.409** 0.385* 1 Cd 0.036 0.554** 0.405** 0.568** 1 Cr 0.029 0.203 0.451** 0.273 0.362* 1 Zn 0.394* 0.570** 0.444** 0.331* 0.315* 0.074 1 Ni 0.052 0.265 0.494** 0.279 0.411** 0.985** 0.13 1 注:*. 在0.05 水平(双侧)上显著相关P<0.05. **. 在 0.01 水平(双侧)上显著相关P<0.01. 表 8 银川城区地表灰尘中重金属的主成分分析
Table 8. Principal component analysis of heavy metals in surface dust of Yinchuan
PC1 PC2 PC3 Hg 0.344 0.146 0.592 As 0.730 0.413 −0.066 Cu 0.758 0.006 0.139 Pb 0.657 0.531 −0.436 Cd 0.727 0.004 −0.525 Cr 0.676 −0.678 0.233 Zn 0.589 0.559 0.144 Ni 0.721 −0.635 0.228 特征值 3.51 1.65 0.968 累计方差 43.874 64.501 76.602 -
[1] ADACHI K, TAINOSHO Y. Single particle characterization of size-fractionated road sediments [J]. Applied Geochemistry, 2005, 20(5): 849-859. doi: 10.1016/j.apgeochem.2005.01.005 [2] 常静, 刘敏, 侯立军, 等. 城市地表灰尘的概念、污染特征与环境效应 [J]. 应用生态学报, 2007, 18(5): 1153-1158. doi: 10.3321/j.issn:1001-9332.2007.05.036 CHANG J, LIU M, HOU L J, et al. Concept, pollution character and environmental effect of urban surface dust [J]. Chinese Journal of Applied Ecology, 2007, 18(5): 1153-1158(in Chinese). doi: 10.3321/j.issn:1001-9332.2007.05.036
[3] 白泽琳, 赵梦竹, 李萍, 等. 兰州市城关区地表灰尘重金属污染健康风险评价 [J]. 环境污染与防治, 2014, 36(5): 54-58. doi: 10.3969/j.issn.1001-3865.2014.05.012 BAI Z L, ZHAO M Z, LI P, et al. Health risk assessment of heavy metals of urban dusts from the Chengguan district of Lanzhou [J]. Environmental Pollution and Control, 2014, 36(5): 54-58(in Chinese). doi: 10.3969/j.issn.1001-3865.2014.05.012
[4] 田华, 杨柳, 夏紫顿, 等. 西安市临潼区地表颗粒物重金属分布特征及生态风险评价 [J]. 生态环境学报, 2018, 27(2): 276-281. TIAN H, YANG L, XIA Z D, et al. Distribution and ecological risk assessment of heavy metals in road sediments of Lintong district, Xi'an [J]. Ecology and Environment Sciences, 2018, 27(2): 276-281(in Chinese).
[5] 柴育红, 王明新, 赵兴青. 重工业区户外灰尘重金属含量水平及其生态和健康风险评估 [J]. 环境化学, 2019, 38(6): 1375-1384. doi: 10.7524/j.issn.0254-6108.2018082802 CHAI Y H, WANG M X, ZHAO X Q. Levels, ecological and health risk assessments of heavy metals in outdoor dust of a heavy industrial area [J]. Environmental Chemistry, 2019, 38(6): 1375-1384(in Chinese). doi: 10.7524/j.issn.0254-6108.2018082802
[6] 江英辉, 张华, 丁明军, 等. 南昌市街道灰尘重金属时空分布特征及健康风险评估 [J]. 长江流域资源与环境, 2018, 27(4): 849-861. JIANG Y H, ZHANG H, DING M J, et al. Spatial-temporal distribution and health risk assessment of heavy metals in street dust of Nanchang [J]. Resources and Environment in the Yangtze Basin, 2018, 27(4): 849-861(in Chinese).
[7] 张一修, 王济, 张浩. 贵阳市区地表灰尘重金属污染分析与评价 [J]. 生态环境学报, 2011, 20(1): 169-174. doi: 10.3969/j.issn.1674-5906.2011.01.030 ZHANG Y X, WANG J, ZHANG H. Pollution analysis and evaluation of heavy metals in urban dust in Guiyang [J]. Ecology and Environment, 2011, 20(1): 169-174(in Chinese). doi: 10.3969/j.issn.1674-5906.2011.01.030
[8] MEN C, LIU R, XU F, et al. Pollution characteristics, risk assessment, and source apportionment of heavy metals in road dust in Beijing, China [J]. The Science of the Total Environment, 2018, 612: 138-147. doi: 10.1016/j.scitotenv.2017.08.123 [9] 姑力巴努·艾尼, 麦麦提吐尔逊·艾则孜, 李新国, 等. 乌鲁木齐市地表灰尘中微量元素空间分布与来源解析 [J]. 环境污染与防治, 2019, 41(5): 572-578. HINI G, EZIZ M, LI X G, et al. Spatial distribution and source identification of trace elements of surface dust in Urumqi [J]. Environmental Pollution and Control, 2019, 41(5): 572-578(in Chinese).
[10] 李如忠, 周爱佳, 童芳, 等. 合肥市城区地表灰尘重金属分布特征及环境健康风险评价 [J]. 环境科学, 2011, 32(9): 2661-2668. LI R Z, ZHOU A J, TONG F, et al. Distribution of metals in urban dusts of Hefei and health risk assessment [J]. Chinese Journal of Environmental Science, 2011, 32(9): 2661-2668(in Chinese).
[11] 张桂芹, 谭路遥, 张怀成, 等. 济南城市主干道降尘重金属污染特征及生态风险评价 [J]. 生态环境学报, 2020, 29(1): 156-164. ZHANG G Q, TAN L Y, ZHANG H C, et al. Heavy metal pollution characteristics and ecological risk assessment of dust falling on urban main road in Jinan [J]. Ecology and Environment Sciences, 2020, 29(1): 156-164(in Chinese).
[12] 袁宏林, 张恒, 李星星, 等. 西安市街尘中重金属赋存形态和污染特征分析 [J]. 生态环境学报, 2015, 24(10): 1682-1688. YUAN H L, ZHANG H, LI X X, et al. Chemical forms and pollution characteristics of heavy metals in urban street dust of Xi'an, China [J]. Ecology and Environment Sciences, 2015, 24(10): 1682-1688(in Chinese).
[13] YILDIRIM G, TOKALIOĞLUŞ. Heavy metal speciation in various grain sizes of industrially contaminated street dust using multivariate statistical analysis [J]. Ecotoxicology and Environmental Safety, 2016, 124: 369-376. doi: 10.1016/j.ecoenv.2015.11.006 [14] 赵一莎, 赵梦竹, 刘冲, 等. 兰州市城关区街尘重金属的分布特征、赋存形态及环境风险评价 [J]. 兰州大学学报(自然科学版), 2016, 52(5): 605-610. ZHAO Y S, ZHAO M Z, LIU C, et al. Distribution character, chemical speciation and environmental risks of heavy metals in the surface dusts taken from Chengguan District of Lanzhou City [J]. Journal of Lanzhou University (Natural Sciences), 2016, 52(5): 605-610(in Chinese).
[15] HUANG J H, LI F, ZENG G M, et al. Integrating hierarchical bioavailability and population distribution into potential eco-risk assessment of heavy metals in road dust: A case study in Xiandao District, Changsha city, China [J]. The Science of the Total Environment, 2016, 541: 969-976. doi: 10.1016/j.scitotenv.2015.09.139 [16] 耿雅妮, 梁青芳, 杨宁宁, 等. 宝鸡市城区灰尘重金属空间分布、来源及健康风险 [J]. 地球与环境, 2019, 47(5): 696-706. GENG Y N, LIANG Q F, YANG N N, et al. Distribution, sources and health risk assessment of heavy metals industsoftheurbanareaoftheBaojicity [J]. Earth and Environment, 2019, 47(5): 696-706(in Chinese).
[17] SONG Y X, LI H M, LI J Z, et al. Multivariate linear regression model for source apportionment and health risk assessment of heavy metals from different environmental media [J]. Ecotoxicology and Environmental Safety, 2018, 165: 555-563. [18] 银川市环境监测站. 银川市环境质量概况(2018)[R]. 银川: 银川市环境监测站, 2019. Yinchuan City Environmental Monitoring Station, Overview of environmental quality in Yinchuan city. 2018 [R]. Yinchuan: Yinchuan City Environmental Monitoring station, 2019
[19] 樊曙先, 樊韬, 严培君, 等. 银川市PM2.5重金属元素的环境污染特征分析 [J]. 中国沙漠, 2006, 26(2): 291-294. doi: 10.3321/j.issn:1000-694X.2006.02.025 FAN S X, FAN T, YAN P J, et al. Environmental pollution characteristics of heavy metal elements of PM2.5 in Yinchuan [J]. Journal of Desert Research, 2006, 26(2): 291-294(in Chinese). doi: 10.3321/j.issn:1000-694X.2006.02.025
[20] 罗成科, 张佳瑜, 肖国举, 等. 宁东基地不同燃煤电厂周边土壤5种重金属元素污染特征及生态风险 [J]. 生态环境学报, 2018, 27(7): 1285-1291. LUO C K, ZHANG J Y, XIAO G J, et al. Pollution characteristics and ecological assessment of heavy metals in soil around different coal-fired power plants of ningdong base [J]. Ecology and Environment Sciences, 2018, 27(7): 1285-1291(in Chinese).
[21] 朱嵬, 李志刚, 李健, 等. 宁夏黄河流域湖泊湿地底泥重金属污染特征及生态风险评价 [J]. 中国农学通报, 2013, 29(35): 281-288. doi: 10.11924/j.issn.1000-6850.2013-1449 ZHU W, LI Z G, LI J, et al. Pollution characteristics and potential ecological risk assessment of heavy metals in the lake wetlands in the Yellow River valleys of Ningxia [J]. Chinese Agricultural Science Bulletin, 2013, 29(35): 281-288(in Chinese). doi: 10.11924/j.issn.1000-6850.2013-1449
[22] AELIONC M, DAVIS H T, MCDERMOTT S, et al. Metal concentrations in rural topsoil in South Carolina: Potential for human health impact [J]. Science of the Total Environment, 2008, 402(2-3): 149-156. doi: 10.1016/j.scitotenv.2008.04.043 [23] MÜLLER G. Index of geoaccumulation in sediments of the Rhine River [J]. GeologyJournal, 1969, 2: 108-118. [24] 中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国科学出版社. 1990. China Environmental Monitoring Station. Background values of Chinese soil elements[M]. Beijing: China Science Press, 1990.
[25] 朱兰保, 盛蒂, 马莉, 等. 安徽省城市地表灰尘重金属污染及人体健康风险评价 [J]. 地球与环境, 2019, 47(1): 97-104. ZHU L B, SHENG D, MA L, et al. Heavy metal pollution and human health risk assessment of surface dust in urban areas of Anhui [J]. Earth and Environment, 2019, 47(1): 97-104(in Chinese).
[26] US EPA. Risk assessment guidance for Superfund, Vol. Ⅰ: human health evaluation manual[R]. Washington, D. C. : Office of Emergence and Response, 1989. [27] US EPA. Supplemental guidance for developing soil screening levels for superfund sites[R]. Washington, D. C. : Office of Emergence and Response. 2002. [28] 杨忠平, 王雷, 翟航, 等. 长春市城区近地表灰尘重金属健康风险评价 [J]. 中国环境科学, 2015, 35(4): 1247-1255. YANG Z P, WANG L, ZHAI H, et al. Study on health risk of potentially toxic metals in near-surface urban dust in Changchun City [J]. China Environmental Science, 2015, 35(4): 1247-1255(in Chinese).
[29] 蔡云梅, 黄涵书, 任露陆, 等. 珠三角某高校室内灰尘重金属含量水平、来源及其健康风险评价 [J]. 环境科学, 2017, 38(9): 3620-3627. CAI Y M, HUANG H S, REN L L, et al. Levels, sources, and health risk assessments of heavy metals in indoor dust in a college in the Pearl River Delta [J]. Environmental Science, 2017, 38(9): 3620-3627(in Chinese).
[30] 王利军, 卢新卫, 雷凯. 宝鸡市街尘重金属元素含量及其环境风险分析 [J]. 土壤通报, 2012, 43(1): 200-205. WANG L J, LU X W, LEI K. Analysis of content and environmental risk of heavy metal elements in street dust of Baoji city [J]. Chinese Journal of Soil Science, 2012, 43(1): 200-205(in Chinese).
[31] 阿迪莱·伊斯马伊力, 麦麦提吐尔逊·艾则孜, 阿里木江·卡斯木, 等. 克拉玛依市地表灰尘重金属空间分布特征与来源解析 [J]. 地球与环境, 2020, 48(5): 544-551. ADILAI, MAMATTURSUNE, ALIMUJIANGK, et al. Spatial distribution and source apportionment of heavy metals in road dust of Karamay city [J]. Earth and Environment, 2020, 48(5): 544-551(in Chinese).
[32] 梁青芳, 杨宁宁, 高煜, 等. 宝鸡市不同功能区灰尘重金属污染特征与评价 [J]. 环境工程, 2019, 37(10): 216-221. LIANG Q F, YANG N N, GAO Y, et al. Characteristics and assessment of heavy metals in dust of different functional areas in Baoji, China [J]. Environmental Engineering, 2019, 37(10): 216-221(in Chinese).
[33] 李一蒙, 马建华, 刘德新, 等. 开封城市土壤重金属污染及潜在生态风险评价 [J]. 环境科学, 2015, 36(3): 1037-1044. LI Y M, MA J H, LIU D X, et al. Assessment of heavy metal pollution and potential ecological RisKs of urban soils in Kaifeng city, China [J]. Environmental Science, 2015, 36(3): 1037-1044(in Chinese).
[34] 钱建平, 张力, 张爽, 等. 桂林市汽车尾气汞污染 [J]. 生态学杂志, 2011, 30(5): 944-950. QIAN J P, ZHANG L, ZHANG S, et al. Mercury pollution from automobile exhaust in Guilin City [J]. Chinese Journal of Ecology, 2011, 30(5): 944-950(in Chinese).
[35] 孙阳昭, 陈扬, 蓝虹, 等. 中国汞污染的来源、成因及控制技术路径分析 [J]. 环境化学, 2013, 32(6): 937-942. doi: 10.7524/j.issn.0254-6108.2013.06.003 SUN Y Z, CHEN Y, LAN H, et al. Study on pollution sources, cause of mercury pollution and its control technical roadmap in China [J]. Environmental Chemistry, 2013, 32(6): 937-942(in Chinese). doi: 10.7524/j.issn.0254-6108.2013.06.003
[36] 段恒轶, 吴亚涛, 王珏, 等. 北京市幼儿园地面尘中有毒金属浓度及其健康风险 [J]. 环境科学, 2014, 35(8): 3060-3065. DUAN HY, WU YT, WANG J, et al. Concentrations and health risks of toxic metals in surface dust in kindergartens of Beijing [J]. Environmental Science, 2014, 35(8): 3060-3065(in Chinese).
[37] CHEN X, LU X, YANG G. Sources identification of heavy metals in urban topsoil from inside the Xi′an Second Ringroad, NW China using multivariate statistical methods [J]. Catena, 2012, 98: 73-78. doi: 10.1016/j.catena.2012.06.007 [38] 陈秀端, 卢新卫. 基于受体模型与地统计的城市居民区土壤重金属污染源解析 [J]. 环境科学, 2017, 38(6): 2513-2521. CHEN X D, LU X W. Source apportionment of soil heavy metals in city residential areas based on the receptor model and geostatistics [J]. Environmental Science, 2017, 38(6): 2513-2521(in Chinese).
[39] WANG S, CAI L M, WEN H H, et al. Spatial distribution and source apportionment of heavy metals in soil from a typical County-level city of Guangdong Province, China [J]. The Science of the Total Environment, 2019, 655: 92-101. doi: 10.1016/j.scitotenv.2018.11.244 [40] MONACI F, MONI F, LANCIOTTI E, et al. Biomonitoring of airborne metals in urban environments: new tracers of vehicle emission in place of lead [J]. Environmental Pollution, 2000, 107(3): 321-327. doi: 10.1016/S0269-7491(99)00175-X [41] CHEN X D, LU X W. Contamination characteristics and source apportionment of heavy metals in topsoil from an area in Xi'an city, China [J]. Ecotoxicology and Environmental Safety, 2018, 151: 153-160. doi: 10.1016/j.ecoenv.2018.01.010 [42] ARDITSOGLOU A, SAMARA C. Levels of total suspended particulate matter and major trace elements in Kosovo: A source identification and apportionment study [J]. Chemosphere, 2005, 59(5): 669-678. doi: 10.1016/j.chemosphere.2004.10.056 [43] 刘凤玲, 卢霞, 吴梦龙, 等. 南京大气细粒子中重金属污染特征及来源解析 [J]. 环境工程学报, 2014, 8(2): 652-658. LIU F L. LU X, WU M L, et al. Pollution characters and source apportionment of heavy metals in PM2.1 in Nanjing [J]. Chinese Journal of Environmental Engineering, 2014, 8(2): 652-658(in Chinese).