-
《中国生态环境状况公报》2020年发布的数据显示,我国的城市大气污染状况相较于2019年有所好转,细颗粒物(PM2.5)、可吸入颗粒物(PM10)、二氧化硫(SO2)、二氧化氮(NO2)、一氧化碳(CO)、臭氧(O3)六项指标浓度超标比例呈现下降趋势,但空气质量状况仍十分严峻。目前细颗粒物(PM2.5)和臭氧(O3)仍是影响我国空气质量最主要的两大污染物。国内学者对京津冀、长江三角洲和珠江三角洲地区的PM2.5和O3展开了大量研究,结果表明,PM2.5的浓度主要由气象条件和污染源排放共同决定[1-2],而O3的浓度主要由前体物VOCs、NOx浓度及气象条件决定[3],不同地区的PM2.5和O3浓度分布具有不同的时空分布特征[4-5]。李名升等分析了中国大陆城市的PM2.5污染的时空分布规律[6],发现冬季污染较重,PM2.5的日变化呈现不太明显的双峰分布。周明卫等研究分析了中国城市O3的时空变化规律[7],发现O3浓度空间分布呈现北高南低的规律,O3浓度的高值主要出现在夏季。张亮等利用WRF-Chem空气质量模式对长江三角洲的一次O3高污染事件进行了模拟[8],研究发现长江三角洲地区O3的时空分布主要受气象场、地理位置、区域输送和化学生成所影响。余钟奇等使用WRF-Chem和WRF-FLEXPART模式定量研究了长江三角洲PM2.5来源贡献[9],发现长江三角洲内部排放及污染相互传输的影响比外部的跨区域输送贡献更大。近年来,利用后向轨迹分析模型来判断污染物的传输路径,并通过聚类分析对传输路径进行分类分析,再结合PSCF方法等来判断确定污染物的潜在来源,已经成为了研究某个区域大气污染输送特征及潜在源区的常用方法[10-11]。国内外学者利用此方法展开了许多研究,如高晋徽等利用后向轨迹模式分析了O3、NO2和SO2的区域传输对南京北郊地区污染的影响[12]。
洪泽湖,是中国第四大淡水湖,位于江苏省西部淮河下游,苏北平原中部西侧,淮安、宿迁两市境内。在正常水位12.5 m时,水面面积为1597 km2,平均水深1.9 m,最大水深4.5 m,湖底浅平,高出洪泽湖大堤以东地区3—5 m,由此称之为“悬湖”。辽阔的湖面形成的局地气候,如湖陆风环流等,将会显著影响周边城市的空气质量。淮安市洪泽区(东经118°28'-119°9'、北纬33°02'-34°24'间)位于洪泽湖东侧(如图1所示),主要工业格局为盐化新材料、机械制造、现代纺织以及电子信息等,年产值在2000万以上的规上企业约185家,其中盐化新材料约55户,为区内第一大产业,产品主要以元明粉、工业盐、纯碱、硝酸、合成氨、三氯氰胺、医药中间体等,其产值约占区内总产值的40%。独特的地理环境以及较大的盐化工业比重将会对本地的空气污染产生何种效应值得探究。
本研究基于2019年12月至2020年11月我国生态环境部空气质量自动监测站的PM2.5、O3数据、2020年多次洪泽区可挥发性有机物(VOCs)监测以及2020年12月洪泽区在线源解析数据,结合Hysplit后向轨迹聚类和PSCF的方法,洪泽湖东侧的洪泽区大气污染的时空变化特征以及PM2.5的潜势来源区以及行业来源。此外,还对比了洪泽区不同离湖区距离下空气质量的特征。该结果对洪泽湖东侧凹地的空气污染防治具有重要的指导意义,也将使我们更加深入地认识湖陆交接区以及湖畔凹地空气质量特征。
淮安市洪泽区细颗粒物及臭氧污染特征
Study on characteristics of fine particulate matter and ozone pollution in Hongze District of Huai 'an City
-
摘要: 本研究基于我国生态环境部空气质量自动监测站逐时监测数据分析了淮安市洪泽区细颗粒物(PM2.5)及臭氧(O3)时空变化特征及其来源特征。结果表明,该地区PM2.5浓度冬季高,夏季低;O3浓度春秋季高,冬季低;PM2.5和O3均呈现显著的日变化特征,PM2.5呈U型分布,15时浓度最低,O3呈单峰分布,15时达峰值,谷值出现在08时。与江苏省及淮安市区域平均值相比,洪泽区PM2.5浓度较低而O3浓度则较高。对比洪泽区内两测站PM2.5及O3表明,湖畔PM2.5浓度较低而O3浓度较高,两站差异在冬季,特别是2—3月差异最大,这很可能与工业园区一次排放、氮氧化物(NOx)的滴定作用以及湖陆风效应等有关。后向轨迹聚类和PSCF方法对洪泽区PM2.5潜在源的分析结果表明,污染物浓度在冬季受区域传输的影响较大,安徽北部、东北部为洪泽区最主要的潜在贡献源区。洪泽区内冬季细颗粒物在线源解析表明,监测期间PM2.5的上升主要受二次无机源、机动车尾气源、工业工艺源、燃煤源增多的影响;作为O3重要前体物的可挥发性有机物(VOCs),其监测结果表明,洪泽工业园区VOCs主要以芳香烃占比最高,为58%;新华书店站VOCs也主要为芳香烃,占比39%,其次为烷烃、卤代烃及含氧含氮烃,分别占比20%、17%及16%。Abstract: Based on the hourly monitoring data of the air quality automatic monitoring station of the Ministry of ecological environment of China, this study analysed the temporal and spatial variation characteristics and source characteristics of fine particulate matter (PM2.5) and ozone (O3) in Hongze district on the east side of Hongze Lake. The results showed that the concentration of PM2.5 was higher in winter and lower in summer; the concentration of O3 was higher in spring and autumn, but lower in winter; both PM2.5 and O3 showed significant diurnal variation characteristics,PM2.5 showed a U-shaped distribution, the lowest concentration at 15:00, O3 showed a single peak distribution, reached the peak at 15:00, and the valley appeared at 08:00. Compared with the regional average of Jiangsu Province and Huai'an City, the concentration of PM2.5 in Hongze was lower, while the concentration of O3 was higher. The comparison of PM2.5 and O3 between the two sites in Hongze shows that PM2.5 concentration by the lakeside is lower while O3 concentration is higher. The difference between the two sites is greatest in winter, especially in February and March, which is probably related to primary emissions from the industrial zone, titration of nitrogen oxides (NOx) and lake-land wind effect. The analysis results of the potential sources of PM2.5 in Hongze by backward trajectory clustering and PSCF show that the pollutant concentration is greatly affected by the regional transport in winter, and the north and northeast of Anhui Province are the main potential sources of PM2.5 in Hongze. Online source analysis of PM2.5 in winter in Hongze shows that the increase of PM2.5 during the monitoring period is mainly affected by the increase of secondary inorganic sources, motor vehicle exhaust sources, industrial process sources and coal burning sources. As an important precursor of O3, volatile organic compounds (VOCs), the monitoring results show that VOCs in Hongze Industrial Zone mainly take up the highest proportion of aromatic hydrocarbons, accounting for 58%; VOCs at Xinhua Bookstore site also are mainly aromatic hydrocarbons, accounting for 39%, followed by alkanes, halogenated hydrocarbons and oxygen-containing nitrogen hydrocarbons, accounting for 20%, 17% and 16%, respectively.
-
Key words:
- PM2.5 /
- PSCF /
- online source analysis /
- VOCs measurement
-
图 6 冬季轨迹聚类结果(a)、冬季WPSCF结果(b)、春季轨迹聚类结果(c)、春季WPSCF结果(d)、夏季轨迹聚类结果(e)、夏季WPSCF结果(f)、秋季轨迹聚类结果(g)、秋季WPSCF(h)
Figure 6. Cluster-mean back trajectories in winter(a), weighted potential source contribution function(WPSCF)maps of PM2.5 in winter(b), Cluster-mean back trajectories in spring(c), WPSCF maps of PM2.5 in spring(d), Cluster-mean back trajectories in summer(e), WPSCF maps of PM2.5 in summer(f), Cluster-mean back trajectories in autumn (g), WPSCF maps of PM2.5 in autumn (h)
表 1 不同污染程度各污染源贡献率以及对应的PM2.5浓度
Table 1. Contribution rates of pollution sources and PM2.5 concentration at different pollution levels
组分
Component优
Excellent良
Good轻度污染
Light中度污染
Moderately重度污染
Severe二次无机源(Secondary inorganic source) 36.9% 31.7% 35.8% 44.3% 36.4% 扬尘源(Dust) 19.5% 23.6% 16.4% 12.8% 12.4% 机动车尾气源(Vehicle exhaust) 16.0% 14.3% 22.7% 17.3% 27.9% 工业工艺源(Industrial process) 12.9% 14.3% 9.9% 10.9% 8.6% 燃煤源(Fire coal) 5.5% 6.7% 6.2% 5.9% 7.7% 其它(Rest) 4.6% 3.7% 3.8% 4.1% 2.6% 餐饮源(Catering) 2.4% 3.6% 2.6% 2.1% 1.7% 生物质燃烧源(Biomass burning) 2.2% 2.1% 2.5% 2.5% 2.6% PM2.5 32 μg·m−3 61 μg·m−3 100 μg·m−3 132 μg·m−3 176 μg·m−3 表 2 洪泽区工业园区以及新华书店站周边VOCs各类源占比
Table 2. VOCs classfy source ratio of Hongze Industrial Zone and Xinhua Bookstore site
VOCs源
VOCs sources工业园区/%
Hongze industrial zone新华书店站/%
Xinhua bookstore site芳香烃(Arene) 58 39 含氧含氮烃(Oxygen-nitrogenous hydrocarbons) 13 16 烷烃(Alkane) 16 20 卤代烃(Halohydrocarbon) 8 17 有机硫(Organic sulfur) 2 4 烯烃(Olefin) 3 5 -
[1] 史旭荣, 逯世泽, 易爱华, 等. 全国2018—2019年秋冬季气象条件变化对PM2.5影响研究 [J]. 中国环境科学, 2020, 40(7): 2785-2793. doi: 10.3969/j.issn.1000-6923.2020.07.001 SHI X R, LU S Z, YI A H, et al. Impact of meteorological conditions on PM2.5 in autumn and winter of 2018-2019 in key areasFull text replacement [J]. China Environmental Science, 2020, 40(7): 2785-2793(in Chinese). doi: 10.3969/j.issn.1000-6923.2020.07.001
[2] WANG P, CAO J J, TIE X X, et al. Impact of meteorological parameters and gaseous pollutants on PM2.5 and PM10 mass concentrations during 2010 in xi’an, China [J]. Aerosol and Air Quality Research, 2015, 15(5): 1844-1854. doi: 10.4209/aaqr.2015.05.0380 [3] 黄小刚, 邵天杰, 赵景波, 等. 气象因素和前体物对中国东部O3浓度分布的影响 [J]. 中国环境科学, 2019, 39(6): 2273-2282. doi: 10.3969/j.issn.1000-6923.2019.06.005 HUANG X G, SHAO T J, ZHAO J B, et al. Impact of meteorological factors and precursors on spatial distribution of ozone concentration in Eastern China [J]. China Environmental Science, 2019, 39(6): 2273-2282(in Chinese). doi: 10.3969/j.issn.1000-6923.2019.06.005
[4] ZHANG Y L, CAO F. Fine particulate matter (PM2.5) in China at a city level [J]. Scientific Reports, 2015, 5: 14884. doi: 10.1038/srep14884 [5] 程麟钧, 王帅, 宫正宇, 等. 中国臭氧浓度的时空变化特征及分区 [J]. 中国环境科学, 2017, 37(11): 4003-4012. doi: 10.3969/j.issn.1000-6923.2017.11.001 CHENG L J, WANG S, GONG Z Y, et al. Spatial and seasonal variation and regionalization of ozone concentrations in China [J]. China Environmental Science, 2017, 37(11): 4003-4012(in Chinese). doi: 10.3969/j.issn.1000-6923.2017.11.001
[6] 李名升, 任晓霞, 于洋, 等. 中国大陆城市PM2.5污染时空分布规律 [J]. 中国环境科学, 2016, 36(3): 641-650. doi: 10.3969/j.issn.1000-6923.2016.03.001 LI M S, REN X X, YU Y, et al. Spatiotemporal pattern of ground-level fine particulate matter(PM2.5) pollution in China's mainland [J]. China Environmental Science, 2016, 36(3): 641-650(in Chinese). doi: 10.3969/j.issn.1000-6923.2016.03.001
[7] 周明卫, 康平, 汪可可, 等. 2016—2018年中国城市臭氧浓度时空聚集变化规律 [J]. 中国环境科学, 2020, 40(5): 1963-1974. doi: 10.3969/j.issn.1000-6923.2020.05.013 ZHOU M W, KANG P, WANG K K, et al. The spatio-temporal aggregation pattern of ozone concentration in China from 2016 to 2018 [J]. China Environmental Science, 2020, 40(5): 1963-1974(in Chinese). doi: 10.3969/j.issn.1000-6923.2020.05.013
[8] 张亮, 朱彬, 高晋徽, 等. 长江三角洲夏季一次典型臭氧污染过程的模拟 [J]. 环境科学, 2015, 36(11): 3981-3988. ZHANG L, ZHU B, GAO J H, et al. Modeling study of A typical summer ozone pollution event over Yangtze River Delta [J]. Environmental Science, 2015, 36(11): 3981-3988(in Chinese).
[9] 余钟奇, 瞿元昊, 周广强, 等. 2018年秋冬季长江三角洲区域PM2.5污染来源数值研究 [J]. 中国环境科学, 2020, 40(10): 4237-4246. doi: 10.3969/j.issn.1000-6923.2020.10.006 YU Z Q, QU Y H, ZHOU G Q, et al. Numerical simulations of PM2.5 pollution source in the Yangtze River Delta region in fall and winter in 2018 [J]. China Environmental Science, 2020, 40(10): 4237-4246(in Chinese). doi: 10.3969/j.issn.1000-6923.2020.10.006
[10] 刘慧, 夏敦胜, 陈红, 等. 2017年兰州市大气污染物输送来源及传输特征模拟分析 [J]. 环境科学研究, 2019, 32(6): 993-1000. LIU H, XIA D S, CHEN H, et al. Simulation analysis of sources and transmission characteristics of air pollutants in Lanzhou City in 2017 [J]. Research of Environmental Sciences, 2019, 32(6): 993-1000(in Chinese).
[11] 武高峰, 王丽丽, 董洁, 等. 国庆前后北京城区PM2.5组分污染及来源特征分析 [J]. 环境化学, 2021, 40(12): 3721-3732. doi: 10.7524/j.issn.0254-6108.2020072702 WU G F, WANG L L, DONG J, et al. Pollution and source characteristics of PM2.5 components in Beijing urban area around National Day [J]. Environmental Chemistry, 2021, 40(12): 3721-3732(in Chinese). doi: 10.7524/j.issn.0254-6108.2020072702
[12] 高晋徽, 朱彬, 王东东, 等. 南京北郊O3、NO2和SO2浓度变化及长/近距离输送的影响 [J]. 环境科学学报, 2012, 32(5): 1149-1159. GAO J H, ZHU B, WANG D D, et al. The variation of air pollutants and the impact of long-range transport in the northern suburb of Nanjing [J]. Acta Scientiae Circumstantiae, 2012, 32(5): 1149-1159(in Chinese).
[13] ZHENG B, TONG D, LI M, et al. Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions [J]. Atmospheric Chemistry and Physics, 2018, 18(19): 14095-14111. doi: 10.5194/acp-18-14095-2018 [14] 吴礼裕, 何涛, 王振. 环太湖城市夏季臭氧的潜在影响分析 [J]. 污染防治技术, 2018(6): 61-65. WU L Y, HE T, WANG Z. Analysis of the potential impact of the Taihu Lake on summer ozone of the surrounding cities [J]. Pollution Control Technology, 2018(6): 61-65(in Chinese).
[15] DRAXLER R, STUNDER B, ROLPH G, et al. Hysplit4 User’S Guide [Z]. [16] 沈学勇, 翟崇治, 许丽萍, 等. 利用轨迹模式研究重庆主城区冬季PM2.5污染特征 [J]. 环境污染与防治, 2016, 38(3): 72-76. SHEN X Y, ZHAI C Z, XU L P, et al. Study on pollution characteristics of PM2.5 in Chongqing urban area in winter with backward trajectories [J]. Environmental Pollution & Control, 2016, 38(3): 72-76(in Chinese).
[17] 王爱平, 朱彬, 银燕, 等. 黄山顶夏季气溶胶数浓度特征及其输送潜在源区 [J]. 中国环境科学, 2014, 34(4): 852-861. WANG A P, ZHU B, YIN Y, et al. Aerosol number concentration properties and potential sources areas transporting to the top of mountain Huangshan in summer [J]. China Environmental Science, 2014, 34(4): 852-861(in Chinese).
[18] 黄乾, 王海波. 南京北郊污染物来源及跨区域输送过程研究 [J]. 大气科学学报, 2019, 42(4): 531-541. HUANG Q, WANG H B. Sources and transregional transport process of air pollutant in northern suburbs of Nanjing [J]. Transactions of Atmospheric Sciences, 2019, 42(4): 531-541(in Chinese).
[19] 杨俊超, 陈志明, 支国瑞, 等. 百色市冬季PM2.5传输路径及来源分析 [J]. 环境监测管理与技术, 2020, 32(1): 23-27. YANG J C, CHEN Z M, ZHI G R, et al. Transmission path and potential sources of PM2.5 during the winter in Baise [J]. The Administration and Technique of Environmental Monitoring, 2020, 32(1): 23-27(in Chinese).
[20] 刘迎云, 姜雨, 宗梁, 等. 基于HYSPLIT模型的衡阳市大气PM2.5潜在源分析 [J]. 南华大学学报(自然科学版), 2019, 33(6): 12-17. LIU Y Y, JIANG Y, ZONG L, et al. Potential source analysis of PM2.5 based on HYSPLIT model in Hengyang [J]. Journal of University of South China (Science and Technology), 2019, 33(6): 12-17(in Chinese).
[21] 姜雨, 刘迎云, 宗梁, 等. 衡阳市冬季PM2.5外来输送特征及潜在源分析 [J]. 环境工程, 2019, 37(7): 142-147. JIANG Y, LIU Y Y, ZONG L, et al. Analysis of characteristics and potential sources of pm2.5 external transportation in Hengyang in winter [J]. Environmental Engineering, 2019, 37(7): 142-147(in Chinese).
[22] WANG Y Q, ZHANG X Y, ARIMOTO R. The contribution from distant dust sources to the atmospheric particulate matter loadings at Xi’an, China during spring [J]. Science of the Total Environment, 2006, 368(2/3): 875-883. [23] 刘建, 吴兑, 范绍佳, 等. 前体物与气象因子对珠江三角洲臭氧污染的影响 [J]. 中国环境科学, 2017, 37(3): 813-820. LIU J, WU D, FAN S J, et al. Impacts of precursors and meteorological factors on ozone pollution in Pearl River Delta [J]. China Environmental Science, 2017, 37(3): 813-820(in Chinese).