-
由于干旱和半干旱地区地表水资源稀缺且具有间歇性,地下水往往是支撑中国西北煤矿地区用水需求的主要水源[1]。然而,煤炭开采与水资源管理之间很难达到平衡。此外,煤层上覆多层含水层的存在使得这种情况更加复杂。一方面,采矿可能会以各种方式影响地下水质量,这取决于水文地质环境和相邻含水层的化学性质[2-3]。另一方面,多层含水层以下的深部煤层,在开采过程中工作面或巷道附近可能发生突水,会对开采构成威胁[4-5]。为了支持矿山水资源的可持续利用和突水预测,有必要阐明地下水的来源、循环和水-岩作用对水化学演化过程的影响[6-7]。
近年来,人们对地下水系统的水化学演化进行了广泛的研究,其中水-岩作用是地下水系统水化学演化的主要机制。简单的散点图,多元统计分析,同位素等方法已被应用于调查地下水系统的水化学过程[8-10]。此外,不同离子之间的相关性同样为获取水化学演化过程中水岩相互作用信息提供了有效途径[11-12]。然而,这些方法仅利用部分现有数据定性描述可能的水化学演化过程,难以量化这些过程中各组分的形式和物质转移量。相对于这些定性方法,水化学反向模拟是在多种理论和技术方法基础上发展起来的定量方法[13]。重要的是,反演模型可以计算各种组分的形式、地下水系统中的物质转移量和水-岩平衡状态,从而揭示地下水系统中的水化学过程[14]。
本文选取的研究区为我国西北地区的大海则井田,通过水化学图、离子比例分析、饱和指数等方法探讨了多层含水层地下水的水化学特征和演化规律,并且通过水化学反向模拟的方法定量解释了控制不同含水层地下水化学演化的水文地球化学过程。
大海则井田多层含水层系统水化学特征及演化规律
Hydrochemical characteristics and evolution of groundwater in multi-layer aquifer system in the Dahaize Coalfield
-
摘要: 研究多层含水层系统地下水化学特征及演化规律对于矿区水资源保护和突水灾害防治具有重要意义。本文运用Piper图解法、离子比值法和反向地球化学模拟研究了我国西北地区大海则井田多层含水层的水化学过程和水质特征。结果表明,不同含水层地下水的水化学类型差异明显,主要表现为浅层地下水水呈以HCO3型为主的淡水,而深层地下水呈以SO4型为主的微咸水和咸水。其中,矿井水和直罗组地下水的水化学类型接近,说明直罗组地下水是矿井水的主要水源,也是潜在的突水水源。此外,通过离子关系和水化学模拟得出,不同矿物的溶解和沉淀以及阳离子交换作用是导致不同含水层地下水水化学类型差异性特征的主要因素。Abstract: It is of great significance for water resources protection and water inrush prevention to study hydrochemical characteristics and evolution of coalfield groundwater in multi-layer aquifer system. The groundwater in Dahaize Coalfield in Northwest China was stored in typical multi-layer aquifers. To get better understanding of its hydrochemical characteristics, hydrogeological field investigations and tests were carried out in the Coalfield. The Piper diagram, ion ratios and inverse geochemical simulation were applied to identify the hydrochemical process and water quality in the multi-layer aquifer. The results showed that the hydrochemical types of the groundwater in the different layers of the aquifer system were significant different. The groundwater in the shallow layers was fresh water with a dominated hydrochemical type of HCO3. However, it was brackish or salty water in the deep layers with a dominated hydrochemical type of SO4. Meanwhile, the hydrochemical type of the mine water was approximately the same with that of the groundwater in Zhiluo group. This indicated that the groundwater in Zhiluo group could be the main source of the mine drainage and water inrush of the Coalfield. As a result of this, together with the ion relationships and hydrochemical simulation results, the dissolution and precipitation of the minerals and cation exchange could be the main factors that influenced the Coalfield hydrochemical types of the groundwater in the different layers of the aquifer system.
-
Key words:
- multi-layer aquifer /
- hydrochemical evolution /
- inverse modeling /
- Dahaize Coalfield
-
表 1 研究区水化学数据
Table 1. Hydrochemical data from the study area
编号
ID浓度(mg·L−1) 平衡
误差/%
Balance
errorTDS/
(mg·L−1)水温/℃
TemperaturepH SiO2/
(mg·L−1)总铁/
(mg·L−1)
Total
FeSI Na++K+ Ca2+ Mg2+ Cl– HCO3– SO42– 方解石
Calcite白云石
Dolomite石膏
GypsumQ1 26.4 61.10 4.30 5.30 195.3 57.60 0.29 252.35 14 7.5 10.7 <0.08 –0.04 –1.04 –1.83 Q2 14.5 44.04 12.6 6.04 199.2 20.37 0.45 197.15 13 7.47 7.2 0 –0.2 –0.76 –2.39 LH1 6.81 54.65 8.8 4.92 168.13 23.46 10.58 182.71 14 7.81 10. 6 0.17 0.18 –0.24 –2.24 LH2 18.54 33.95 5.2 6.89 133.98 21 2.76 152.57 15 8.2 10. 6 0.06 0.29 –0.02 –2.44 LH3 47.8 36.1 5.5 8.9 158.6 64.8 5.72 242.4 10 7.7 14.3 <0.08 –0.21 –1.12 –1.97 LH4 44.68 19.95 8.28 14.27 153.51 28.81 3.04 192.75 18 7.7 5 0.1 –0.34 –0.8 –2.55 AD1 211.78 65.41 6 26.02 83.52 513.15 1.07 864.12 13 8.57 14.08 0.18 0.46 0.07 –1.08 AD2 98.81 7.88 9 20.82 164.67 87.26 5.50 306.11 14 8.73 10.6 0.8 0.18 0.62 –2.53 AD3 17.5 53.1 12.2 12.4 210.5 28.8 3.96 229.25 16 7.8 5.4 0.4 0.27 0.12 –2.19 ZL1 539.27 405.5 22 36.43 66.12 2095.57 –0.63 3131.83 16 7.63 15.8 0.04 0.03 –0.99 –0.09 ZL2 537.81 226.46 27.24 41.33 110.56 1631.79 1.71 2519.91 19 7.08 18 0.08 –0.46 –1.58 –0.38 ZL3 535.70 457.88 17.00 44.40 87.00 2180.13 –1.25 3278.61 17 7.73 17.6 0.79 –0.32 –1.8 –0.05 ZL4 436.10 153.30 10.9 48.90 112.90 1176.70 –0.71 1882.35 17 7.9 17 <0.08 0.22 –0.46 –0.58 ZL5 371.80 222.40 4.9 44.30 134.20 1164.70 –0.04 1875.2 19 7.8 15.2 0 0.39 –0.61 –0.44 ZL6 574.80 192.40 13.40 42.50 137.30 1537.00 0.63 2428.75 22 8.5 — 0.17 0.98 1.1 –0.47 ZL7 554.00 80.20 7.30 37.20 91.50 1224.80 2.16 1949.25 23 8.77 — 0.06 0.73 0.73 –0.86 ZL8 398.00 116.20 8.50 39.00 143.40 946.20 2.67 1579.6 18 8.58 — <0.08 0.9 0.92 –0.75 ZL9 682.00 468.90 42.60 42.50 88.50 2617.60 –0.98 3897.85 18 8.49 — 0.1 1 1.22 –0.01 YA1 1086.17 473.24 40.80 42.80 71.34 3442.00 –0.09 5120.68 15 8.52 7.04 0.18 0.84 0.84 0.04 YA2 556.71 435.11 18.8 35.42 55.68 2190.12 –7.29 3264 17 7.7 10.6 0.8 0.05 –1.01 –0.06 YA3 215.94 98.78 8.91 26.67 106.14 605.88 –0.94 1009.25 15 8.18 10.6 0.4 0.37 –0.09 –0.89 YA4 112.6 29.1 6.1 20.2 131.2 194.5 1.29 428.1 13 7.8 4.8 0.04 –0.32 –1.14 –1.68 M1 1368.17 304.8 42.65 161.5 119.6 3436.9 3.18 5373.82 18 7.78 — 0.08 0.21 –0.17 –0.16 M2 1734.4 110.2 31.6 241.1 244.1 3472.6 0.52 5711.95 18 8.22 11.8 0.79 0.5 0.71 –0.6 表 2 不同含水层水化学组分统计(mg·L−1)
Table 2. Statistics of hydrochemical compositions in different aquifers (mg·L−1)
含水层
Aquifer统计量
StatisticsNa++K+ Ca2+ Mg2+ Cl− HCO3− SO42− TDS 第四系
Quaternary最大值 26.40 61.10 12.60 6.04 199.20 57.60 263.34 最小值 14.50 44.04 4.30 5.30 195.30 20.37 186.16 第四系
Quaternary平均值 20.45 52.57 8.45 5.67 197.25 38.99 224.75 标准差 5.95 8.53 4.15 0.37 1.95 18.62 38.59 洛河组
Luohe
group最大值 47.80 54.65 8.80 14.27 168.13 64.80 242.40 最小值 6.81 19.95 5.20 4.92 133.98 21.00 152.57 平均值 29.46 36.16 6.95 8.75 153.56 34.52 192.61 标准差 17.32 12.34 1.61 3.49 12.46 17.71 32.33 安定组
Anding
group最大值 211.78 65.41 12.20 26.02 210.50 513.15 864.12 最小值 17.50 7.88 6.00 12.40 83.52 28.80 229.25 平均值 109.36 42.13 9.07 19.75 153.63 209.74 466.86 标准差 79.66 24.73 2.53 5.61 52.68 215.87 282.70 直罗组
Zhiluo group最大值 682.00 468.90 42.60 48.90 143.40 2617.60 3897.85 最小值 371.80 80.20 4.90 36.43 66.12 946.20 1579.60 平均值 514.39 258.14 17.09 41.32 107.94 1619.39 2504.29 标准差 91.25 139.62 11.29 3.71 25.11 532.93 736.86
延安组
Yan’an group最大值 1086.17 473.24 40.80 42.80 131.20 3442.00 5120.68 最小值 112.60 29.10 6.10 20.20 55.68 194.50 428.10 平均值 492.86 259.06 18.65 31.27 91.09 1608.13 2455.51 标准差 379.93 197.13 13.63 8.57 29.49 1294.67 1868.08
矿井水
Mine water最大值 1734.40 304.80 42.65 241.10 244.10 3472.60 5711.95 最小值 1368.17 110.20 31.60 161.50 119.60 3436.90 5373.82 平均值 1551.29 207.50 37.13 201.30 181.85 3454.75 5542.89 标准差 183.12 97.30 5.53 39.80 62.25 17.85 169.07 表 3 不同演化路径的主要矿物饱和指数
Table 3. Main mineral saturation index in different evolution paths
样品编号Sample ID 路径ⅠPath I 路径II Path II 路径III Path III ZL5 ZL3 LH2 LH4 AD2 AD1 SI(石膏Gypsum) −0.44 −0.05 −2.44 −2.55 −2.53 −1.08 SI(方解石Calcite) 0.39 0.32 0.29 0.34 0.18 0.46 SI(白云石Dolomite) −0.61 −1.8 −0.02 −0.8 0.62 0.07 SI(岩盐Halite) −6.43 −6.31 −8.42 −7.74 −7.23 −6.84 SI(CO2) −2.77 −2.25 −3.14 −2.56 −3.6 −3.77 SI(钠长石Albite) −0.68 −0.28 −2.69 −2.79 −2.78 −1.33 表 4 矿物转移量(mmol·L−1)
Table 4. Mineral transfer amount (mmol·L−1)
路径Path ZL5→ZL3 LH2→LH4 AD2→AD1 白云石Dolomite 0.48 0.13 –0.12 方解石Calcite –1.79 –0.09 –1.08 石膏Gypsum 10.62 0.08 4.44 CO2 0.06 0.15 — 岩盐Halite 0.005 0.2 0.13 钠长石Albite 0.26 — 1.18 阳离子交换Cation exchange 6.86 0.94 3.6 注:正值表示矿物发生溶解,进入地下水;负值表示矿物在地下水中沉淀析出离开地下水.
Note: positive value indicate mineral dissolution and enter groundwater; negative value indicate mineral precipitation and leave groundwater. -
[1] 柳凤霞, 史紫薇, 钱会, 等. 银川地区地下水水化学特征演化规律及水质评价 [J]. 环境化学, 2019, 38(9): 2055-2066. doi: 10.7524/j.issn.0254-6108.2019043003 LIU F X, SHI Z W, QIAN H, et al. Evolution of groundwater hydrochemical characteristics and water quality evaluation in Yinchuan area [J]. Environmental Chemistry, 2019, 38(9): 2055-2066(in Chinese). doi: 10.7524/j.issn.0254-6108.2019043003
[2] LIU P, HOTH N, DREBENSTEDT C, et al. Hydro-geochemical paths of multi-layer groundwater system in coal mining regions—Using multivariate statistics and geochemical modeling approaches [J]. Science of the Total Environment, 2017, 601/602: 1-14. doi: 10.1016/j.scitotenv.2017.05.146 [3] 吴耀国, 沈照理, 钟佐, 等. 淄博煤矿区矿井水的化学形成及其模拟 [J]. 环境科学学报, 2000, 20(4): 401-405. doi: 10.3321/j.issn:0253-2468.2000.04.004 WU Y G, SHEN Z L, ZHONG Z S, et al. Chemical origin of mine drainage and its simulation for Zibo coal mining district [J]. Acta Scientiae Circumstantiae, 2000, 20(4): 401-405(in Chinese). doi: 10.3321/j.issn:0253-2468.2000.04.004
[4] QIAO X J, LI G M, LI M, et al. Influence of coal mining on regional Karst groundwater system: A case study in West Mountain area of Taiyuan City, Northern China [J]. Environmental Earth Sciences, 2011, 64(6): 1525-1535. doi: 10.1007/s12665-010-0586-3 [5] SINGH A K, MAHATO M K, NEOGI B, et al. Hydrogeochemistry, elemental flux, and quality assessment of mine water in the pootkee-balihari mining area, jharia coalfield, India [J]. Mine Water and the Environment, 2011, 30(3): 197-207. doi: 10.1007/s10230-011-0143-7 [6] QU S, WANG G C, SHI Z M, et al. Using stable isotopes (δD, δ18O, δ34S and 87Sr/86Sr) to identify sources of water in abandoned mines in the Fengfeng coal mining district, Northern China [J]. Hydrogeology Journal, 2018, 26(5): 1443-1453. doi: 10.1007/s10040-018-1803-5 [7] 孙芳强, 侯光才, 窦妍, 等. 鄂尔多斯盆地白垩系地下水循环特征的水化学证据: 以查布水源地为例 [J]. 吉林大学学报(地球科学版), 2009, 39(2): 269-275,293. SUN F Q, HOU G C, DOU Y, et al. Hydrogeochemistry evidence of groundwater circulation features in Ordos Cretaceous basin—A case study in chabu well field [J]. Journal of Jilin University (Earth Science Edition), 2009, 39(2): 269-275,293(in Chinese).
[8] 陈晨, 高宗军, 李伟, 等. 泰莱盆地地下水化学特征及其控制因素 [J]. 环境化学, 2019, 38(6): 1339-1347. doi: 10.7524/j.issn.0254-6108.2018090504 CHEN C, GAO Z J, LI W, et al. Characteristics and possible factors of hydrochemistry in the groundwater in Tailai basin [J]. Environmental Chemistry, 2019, 38(6): 1339-1347(in Chinese). doi: 10.7524/j.issn.0254-6108.2018090504
[9] 韩佳君, 周训, 姜长龙, 等. 柴达木盆地西部地下卤水水化学特征及其起源演化 [J]. 现代地质, 2013, 27(6): 1454-1464. doi: 10.3969/j.issn.1000-8527.2013.06.025 HAN J J, ZHOU X, JIANG C L, et al. Hydrochemical characteristics, origin and evolution of the subsurface brines in western Qaidam basin [J]. Geoscience, 2013, 27(6): 1454-1464(in Chinese). doi: 10.3969/j.issn.1000-8527.2013.06.025
[10] 华琨, 李洲, 李志. 黄土区长武塬地下水水化学特征及控制因素分析 [J]. 环境化学, 2020, 39(8): 2065-2073. doi: 10.7524/j.issn.0254-6108.2019052703 HUA K, LI Z, LI Z. The hydrochemical characteristics and controlling factors of groundwater in the Changwu loess tableland [J]. Environmental Chemistry, 2020, 39(8): 2065-2073(in Chinese). doi: 10.7524/j.issn.0254-6108.2019052703
[11] ANDRÉ L, FRANCESCHI M, POUCHAN P, et al. Using geochemical data and modelling to enhance the understanding of groundwater flow in a regional deep aquifer, Aquitaine Basin, south-west of France [J]. Journal of Hydrology, 2005, 305(1/2/3/4): 40-62. [12] 林永生, 裴建国, 杜毓超, 等. 基于多元统计方法的岩溶地下水化学特征及影响因素分析 [J]. 环境化学, 2016, 35(11): 2394-2401. doi: 10.7524/j.issn.0254-6108.2016.11.2016032801 LIN Y S, PEI J G, DU Y C, et al. Hydrochemical characteristics of Karst groundwater and their influencing factors based on multiple statistical analysis [J]. Environmental Chemistry, 2016, 35(11): 2394-2401(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.11.2016032801
[13] SOUMYA B S, SEKHAR M, RIOTTE J, et al. Inverse models to analyze the spatiotemporal variations of chemical weathering fluxes in a granito-gneissic watershed: Mule Hole, South India [J]. Geoderma, 2011, 165(1): 12-24. doi: 10.1016/j.geoderma.2011.06.015 [14] SHARIF M U, DAVIS R K, STEELE K F, et al. Inverse geochemical modeling of groundwater evolution with emphasis on arsenic in the Mississippi River Valley alluvial aquifer, Arkansas (USA) [J]. Journal of Hydrology, 2008, 350(1/2): 41-55. [15] 张丽, 陈永金, 刘加珍, 等. 东平湖水化学特征及成因分析 [J]. 环境化学, 2021, 40(5): 1490-1502. doi: 10.7524/j.issn.0254-6108.2019122502 ZHANG L, CHEN Y J, LIU J Z, et al. Analysis on hydrochemical characteristics and causes of Dongping Lake [J]. Environmental Chemistry, 2021, 40(5): 1490-1502(in Chinese). doi: 10.7524/j.issn.0254-6108.2019122502
[16] GAMMONS C H, BROWN A, POULSON S R, et al. Using stable isotopes (S, O) of sulfate to track local contamination of the Madison Karst aquifer, Montana, from abandoned coal mine drainage [J]. Applied Geochemistry, 2013, 31: 228-238. doi: 10.1016/j.apgeochem.2013.01.008 [17] HAN Y, WANG G C, CRAVOTTA C A III, et al. Hydrogeochemical evolution of Ordovician limestone groundwater in Yanzhou, North China [J]. Hydrological Processes, 2013, 27(16): 2247-2257. doi: 10.1002/hyp.9297 [18] HUANG X J, WANG G C, LIANG X Y, et al. Hydrochemical and stable isotope (δD and δ18O) characteristics of groundwater and hydrogeochemical processes in the ningtiaota coalfield, northwest China [J]. Mine Water and the Environment, 2018, 37(1): 119-136. doi: 10.1007/s10230-017-0477-x [19] LI P Y, WU J H, TIAN R, et al. Geochemistry, hydraulic connectivity and quality appraisal of multilayered groundwater in the hongdunzi coal mine, northwest China [J]. Mine Water and the Environment, 2018, 37(2): 222-237. doi: 10.1007/s10230-017-0507-8 [20] 沈照理. 水文地球化学基础[M]. 北京: 地质出版社, 1993. SHEN Z L. Fundamental hydrogeochemistry [M]. Beijing: Geological Publishing House, 1993(in Chinese).
[21] EDMUNDS W M, GUENDOUZ A H, MAMOU A, et al. Groundwater evolution in the continental intercalaire aquifer of southern Algeria and Tunisia: Trace element and isotopic indicators [J]. Applied Geochemistry, 2003, 18(6): 805-822. doi: 10.1016/S0883-2927(02)00189-0 [22] 栾风娇, 周金龙, 贾瑞亮, 等. 新疆巴里坤-伊吾盆地地下水水化学特征及成因 [J]. 环境化学, 2017, 36(2): 380-389. doi: 10.7524/j.issn.0254-6108.2017.02.2016062001 LUAN F J, ZHOU J L, JIA R L, et al. Hydrochemical characteristicsand formation mechanism of groundwater in plain areas of Barkol-Yiwu Basin, Xinjiang [J]. Environmental Chemistry, 2017, 36(2): 380-389(in Chinese). doi: 10.7524/j.issn.0254-6108.2017.02.2016062001
[23] 马庆伟, 杨晨光. 陕北地区砂岩的技术指标特性 [J]. 筑路机械与施工机械化, 2019, 36(2): 83-86. doi: 10.3969/j.issn.1000-033X.2019.02.015 MA Q W, YANG C G. Technical characteristics of sandstone in northern Shaanxi [J]. Road Machinery & Construction Mechanization, 2019, 36(2): 83-86(in Chinese). doi: 10.3969/j.issn.1000-033X.2019.02.015
[24] QU S, SHI Z M, LIANG X Y, et al. Multiple factors control groundwater chemistry and quality of multi-layer groundwater system in Northwest China coalfield—Using self-organizing maps (SOM) [J]. Journal of Geochemical Exploration, 2021, 227: 106795. doi: 10.1016/j.gexplo.2021.106795 [25] 刘瑞平, 徐友宁, 亢文婷. 基于phreeqci和netpath联合反演水文地球化学过程: 以小秦岭太峪水库为例 [J]. 西北地质, 2019, 52(1): 239-243. LIU R P, XU Y N, KANG W T. Based on phreeqci and netpath joint inversion hydrology geochemistry process: Example from the Xiaoqinling Tianyu reservoir [J]. Northwestern Geology, 2019, 52(1): 239-243(in Chinese).
[26] GASTMANS D, HUTCHEON I, MENEGÁRIO A A, et al. Geochemical evolution of groundwater in a basaltic aquifer based on chemical and stable isotopic data: Case study from the Northeastern portion of Serra Geral Aquifer, São Paulo state (Brazil) [J]. Journal of Hydrology, 2016, 535: 598-611. doi: 10.1016/j.jhydrol.2016.02.016