-
矿产资源的开发极大地带动了区域经济的发展,但矿山的长期开采和尾渣堆砌也成为经济繁荣之下的环境隐患来源[1-2],尤以其重金属在环境介质中的迁移、转化释放影响巨大,对周边土壤、水域、生境等造成严重污染,威胁生态平衡和人类安全[3-5],制约生态文明建设。锰作为重要的工业性和战略性资源,在当前的经济体系中作用日趋凸显,开采和提炼力度不断加大,与此同时,锰作为植被必需营养元素之一,其生物富集含量和毒性阈值往往偏高,导致锰矿区的生态风险容易被忽略和轻视。目前相关研究主要涉及锰矿区周边土壤、蔬菜及地表水中存在着一定程度的重金属污染及生态风险[6-8],但对于区域内锰及多种伴生性重金属在土壤中的赋存形态、生物有效性特征及与植被相应吸收形态含量关联却鲜有研究报道,因此,研究锰矿区植被生境及根际土壤中重金属的实际赋存形态和有效性迁移特征,对了解和治理该区域环境生态体系具有重要意义。
贵州锰矿资源量位居全国第二,储量巨大,而遵义铜锣井、湘江区域又是主要集中地区,资源储存量约5000万吨[9]。本研究选取湘江矿区流域作为分析区域,布点采集优势植物及根际土壤,采用BCR连续提取法[10]对重金属的赋存形态和含量分布特征进行了定量描述,而且就重金属在“植被-土壤”间生物有效性形态迁移特征和相关性作了定性分析,并以潜在生态风险指数法和风险评价指数法对区域土壤污染特征和重金属生物有效性进行了评价,为该区域环境治理与修复提供理论支撑。
贵州遵义锰矿区植物根际土壤中重金属形态迁移转化及风险评价
Heavy metal speciation migrationtransformation and risk assessement in plant rhizosphere soil of Zunyi manganese mineland, Guizhou
-
摘要: 通过野外采样与系统监测分析方法,研究了贵州遵义锰矿区优势植物及根际土壤中重金属含量、赋存形态及迁移转化相关性,并分别利用潜在生态风险指数法(RI)和风险评价指数法(RAC)对土壤污染特征和重金属生物有效性进行了评价。结果表明,研究区内Mn在野艾蒿、苎麻、酸模叶蓼和垂序商陆等植物生长区域含量分别超过背景值1.03—7.06倍,累积差异显著; Cd、Zn和Cr在小蓬草和垂序商陆根际区域存在显著性累积污染;根际环境中Mn、Pb主要以可还原态赋存,且受环境pH影响明显,Cu、Cd、Zn和Cr主要以氧化态和残渣态形式赋存,小蓬草和酸模叶蓼对Cd和Zn的吸收转化过程使根际土壤中Cd、Zn的生物有效性提升率达72.61%;植物体内Mn、Pb、Zn、Cr和Cd含量与根际土中相应元素的酸可提取态、可还原态和残渣态间部分呈显著正相关(P < 0.05),存在生物协同关联;根际土壤综合潜在生态风险指数评价显示Cd的很强和极强生态风险等级样本数占比分别达38.89%和11.11%,是该区域土壤潜在生态危害程度最大的元素;风险评价指数趋势为Mn>Pb>Zn>Cr>Cd>Cu,Mn、Cd、Pb、Cu和Zn分别在小蓬草、垂序商陆和酸模叶蓼等根际土壤中表现为极高、高或中风险等级,受富集型植物吸收转化影响显著。Abstract: A field sampling and systematic analysis were carried out in Zunyi Manganese mineland, Guizhou. The heavy metal concentrations in the main dominant plants and their associated rhizosphere soils were determined to evaluate the relationships between the heavy mental speciation in the soils and transformation rates in the plants. The heavy metal contamination and bioavailability of Mn mineland were assessed with the potential ecological risk index (RI) and risk assessment index code (RAC). The results showed the following: Mn concentrations in the rhizosphere soils of Artemisia lavandulaefolia, Boehmeria nivea, Polygonum lapathifolium and Phytolacca Americana were very high, being 1.03—7.06 times of the background value, respectively. The rhizosphere soils of Conyza canadensis and P. Americana were significantly contaminated by Cd, Zn and Cr. Mn, Pb mainly existed as the reducible forms in the rhizosphere soils, which were significantly affected by soil pH. Cu, Cd, Zn and Cr mainly existed as the oxidable and residual forms. Cd and Zn transformation in C.canadensis and P. lapathifolium significantly increased the bioavailability of Cd and Zn in the rhizosphere soils, reaching about 72.61%. The significant positive correlations were observed between Mn, Pb, Zn, Cr and Cd concentrations in the plant tissues and their extractable and reducible and residual forms in the associated rhizosphere soils (P < 0.05), demonstrating synergistic correlations between organisms. The potential ecological risk index (RI) in the rhizosphere soils showed that Cd was the element with the highest potential ecological risk in Mn mineland, and its high and severely high ecological risk accounted for 38.89% and 11.11%, respectively. The order of the risk assessment index code was Mn > Pb > Zn > Cr > Cd > Cu. Mn, Cd, Pb,Cu and Zn in the rhizosphere soils of C. canadensis, P. americana and P. lapathifolium were extremely high, high or medium risk levels, which were significantly affected by absorption and transformation of the accumulated plants.
-
Key words:
- manganese mineland /
- heavy metal /
- existing form /
- bioavailability /
- risk assessment
-
表 1 研究区采集优势植物种类及样品数
Table 1. Dominant plant species and number of samples in study area
科
Family属
Genus种
Species采集部位
Collection sites样品数目/株
Number of samples荨麻科 苎麻属 苎麻(Boehmeria nivea) 根、茎、叶 5 蓼科 蓼属 酸模叶蓼(Polygonum lapathifolium) 根、茎、叶 6 姬蕨科 姬蕨属 姬蕨(Hypolepis punctata) 根、茎、叶 5 商陆科 商陆属 垂序商陆(Phytolacca americana) 根、茎、叶、花 6 菊科 白酒草属 小蓬草(Conyza canadensis) 根、茎、叶、花 4 蒿属 野艾蒿(Artemisia lavandulaefolia) 根、茎、叶 6 表 2 评价分级标准及污染程度[12]
Table 2. Evaluation criteria and pollution degree of soils
Ei 危害程度
Degree of hazardP 生态危害等级
Ecological hazard levelEi<40 低 P<150 轻微 40≤Ei<80 中 150≤P<300 中 80≤Ei<160 较高 300≤P<600 强 160≤Ei<320 高 600≤P<1200 很强 Ei≥320 严重 P≥1200 极强 表 3 根际土与优势植物重金属含量特征 (mg·kg-1)
Table 3. Characteristics of heavy metal concentrations in rhizosphere soils and dominant plants (mg·kg-1)
项目
ItemsMn Cd Pb Cu Zn Cr pH 范围
Range均值
Average范围
Range均值
Average范围
Range均值
Average范围
Range均值
Average范围
Range均值
Average范围
Range均值
Average范围
Range姬蕨 植被 1474.15—
1568.981515.89 14.06—
20.9216.72 16.93—
18.4917.58 3.00—
10.196.40 243.29—
284.95269.58 27.22—
46.3737.44 根际土 1108.01—
1603.891433.14 0.19—
0.710.42 32.63—
37.5334.84 63.99—
89.3678.27 198.17—
242.60217.29 119.11—
131.62127.07 5.09—
5.13垂序商陆 植被 3281.42—
3421.383361.33 12.34—
21.8816.57 17.97—
30.7423.07 4.74—
5.955.30 569.14—
585.51577.90 139.03—
173.60153.75 根际土 2153.82—
2199.532179.52 3.80—
4.454.14 56.51—
60.8758.77 63.67—
73.3867.98 251.17—
272.39259.55 413.73—
584.11516.59 4.26—
4.55小蓬草 植被 1671.77—
2719.502207.87 17.96—
29.0322.23 9.27—
11.6110.16 113.92—
176.81153.94 394.35—
415.96403.07 174.84—
199.30183.19 根际土 3114.52—
3308.693216.39 6.99—
7.637.32 12.12—
15.4513.31 82.93—
96.5691.44 316.48—
331.83326.56 355.61—
463.54415.78 6.03—
6.34野艾蒿 植被 198.21—
215.10208.74 8.73—
12.7610.211 6.32—
8.397.41 50.61—
90.2769.97 202.40—
335.01258.28 98.41—
137.13117.98 根际土 608.55—
644.75626.12 0.10—
0.380.17 10.14—
17.2612.78 48.99—
55.3952.77 189.58—
223.03206.81 192.70—
227.44205.02 7.64—
7.68苎麻 植被 639.03—
703.15668.24 0.25—
0.370.33 9.61—
25.0616.80 119.73—
226.66173.91 176.96—
179.90178.13 189.16—
246.83219.83 根际土 932.45—
1146.451007.84 2.63—
3.393.08 7.39—
11.529.81 62.13—
70.7766.49 233.43—
245.32238.07 203.52—
254.08226.92 7.18—
7.23酸模叶蓼 植被 1662.29—
1761.521717.77 0.13—
0.170.15 4.15—
11.386.97 23.98—
37.1229.1 143.14—
158.10148.37 203.59—
232.56214.75 根际土 1016.26—
1558.771199.73 3.88—
4.314.16 6.47—
16.4810.49 102.80—
124.19111.57 249.03—
281.45268.45 314.36—
378.95345.51 6.96—
7.15贵州省土壤背景值 794 0.66 35.2 32 99.5 95.9 表 4 根际土重金属形态含量与植物富集元素相关性分析
Table 4. Correlation analysis of heavy metal contents in rhizosphere soil forms and plants
根际土内对应重金属元素
Corresponding heavy metal elements in rhizosphere soils植物体内重金属元素
Heavy metal elements in plantsMn Cd Pb Cu Zn Cr 全量
酸可提取态
可还原态
可氧化态
残渣态0.705** 0.202 0.702** −0.093 0.305 0.475* 0.380 0.574* 0.570* −0.232 −0.076 −0.191 0.786** 0.646 0.524* 0.153 −0.024 0.132 0.102 0.634* −0.097 −0.213 −0.509 0.071 −0.164 −0.405 0.595** 0.295 0.472* 0.593** 注:*.在0.05水平上显著(双侧);**.在0.01水平上显著(双侧). 表 5 研究区土壤重金属潜在生态风险指数样本占比统计
Table 5. Statistics on the number of samples of potential ecological hazard index of soil heavy metal elements
危害指数
Hazard index指数分布范围
Index distribution
range指数均值
Index mean各危害等级样本数占比/%
Proportion of samples of each hazard level/%轻微 中 强 很强 极强 Ei Mn 0.76—4.15 2.02 100 0 0 0 0 Cd 4.55—346.73 164.24 33.33 0 16.67 38.89 11.11 Pb 0.92—8.65 3.31 100 0 0 0 0 Cu 7.66—49.41 22.20 94.44 5.56 0 0 0 Zn 1.91—3.33 2.54 100 0 0 0 0 Cr 2.48—12.18 6.38 100 0 0 0 0 P 26.85—377.72 183.11 38.89 44.44 16.67 0 0 -
[1] GHAYORANEH M, QISHLAQI A. Concentration, distribution and speciation of toxic metals in soils along a transect around a Zn/Pb smelter in the northwest of Iran [J]. Journal of Geochemical Exploration, 2017, 180: 1-14. doi: 10.1016/j.gexplo.2017.05.007 [2] AMUNO S, NIYOGI S, AMUNO M, et al. Heavy metal bioaccumulation and histopathological alterations in wild Arctic hares (Lepus arcticus) inhabiting a former lead-zinc mine in the Canadian high Arctic: A preliminary study [J]. Science of the Total Environment, 2016, 556: 252-263. doi: 10.1016/j.scitotenv.2016.03.007 [3] ESMAEILI A, MOORE F, KESHAVARZI B, et al. A geochemical survey of heavy metals in agricultural and background soils of the Isfahan industrial zone, Iran [J]. CATENA, 2014, 121: 88-98. doi: 10.1016/j.catena.2014.05.003 [4] KUANG J L, HUANG L N, CHEN L X, et al. Contemporary environmental variation determines microbial diversity patterns in acid mine drainage [J]. The ISME Journal, 2013, 7(5): 1038-1050. doi: 10.1038/ismej.2012.139 [5] 蔡立梅, 王秋爽, 罗杰, 等. 湖北大冶铜绿山矿区蔬菜重金属污染特征及健康风险研究 [J]. 长江流域资源与环境, 2018, 27(4): 873-881. CAI L M, WANG Q S, LUO J, et al. Contamination characteristics and health risk for heavy metals via consumption of vegetables grown in regions affected by tonglvshan mine in Hubei, China [J]. Resources and Environment in the Yangtze Basin, 2018, 27(4): 873-881(in Chinese).
[6] 唐文杰, 黄江波, 余谦, 等. 锰矿区农作物重金属含量及健康风险评价[J]. 环境科学与技术, 2015, 38(增刊1): 464-468, 473. TANG W J, HUANG J B, YU Q, et al. Analysis on the content of heavy metal in the food crops and assessment on human health risk of manganese mine[J]. Environmental Science & Technology, 2015, 38(Sup 1): 464-468, 473(in Chinese).
[7] 任伯帜, 马宏璞, 郑谐, 等. 锰矿区雨水径流中重金属含量及污染水平的空间结构特征 [J]. 环境科学学报, 2014, 34(7): 1730-1737. REN B Z, MA H P, ZHENG X, et al. Spatial structure characteristics of heavy metal content and pollution levels of rainfall runoff in manganese ore zone [J]. Acta Scientiae Circumstantiae, 2014, 34(7): 1730-1737(in Chinese).
[8] 黄小娟, 江长胜, 郝庆菊. 重庆溶溪锰矿区土壤重金属污染评价及植物吸收特征 [J]. 生态学报, 2014, 34(15): 4201-4211. HUANG X J, JIANG C S, HAO Q J. Assessment of heavy metal pollutions in soils and bioaccumulation of heavy metals by plants in Rongxi Manganese mineland of Chongqing [J]. Acta Ecologica Sinica, 2014, 34(15): 4201-4211(in Chinese).
[9] 刘德华, 吕绍玉. 贵州省锰矿资源开发利用现状及建议 [J]. 资源信息与工程, 2016, 31(4): 80-81. LIU D H, LYU S Y. Present situation and suggestions on development and utilization of manganese resources in Guizhou Province [J]. Resource Information and Engineering, 2016, 31(4): 80-81(in Chinese).
[10] 袁浩, 王雨春, 顾尚义, 等. 黄河水系沉积物重金属赋存形态及污染特征 [J]. 生态学杂志, 2008, 27(11): 1966-1971. YUAN H, WANG Y C, GU S Y, et al. Chemical forms and pollution characteristics of heavy metals in Yellow River sediments [J]. Chinese Journal of Ecology, 2008, 27(11): 1966-1971(in Chinese).
[11] YU R L, HU G R, WANG L J. Speciation and ecological risk of heavy metals in intertidal sediments of Quanzhou Bay, China [J]. Environmental Monitoring and Assessment, 2010, 163(1/2/3/4): 241-252. [12] 周亚龙, 郭志娟, 王成文, 等. 云南省镇雄县土壤重金属污染及潜在生态风险评估 [J]. 物探与化探, 2019, 43(6): 1358-1366. ZHOU Y L, GUO Z J, WANG C W, et al. Assessment of heavy metal pollution and potential ecological risks of soils in Zhenxiong County, Yunnan Province [J]. Geophysical and Geochemical Exploration, 2019, 43(6): 1358-1366(in Chinese).
[13] 唐振平, 马如莉, 陈亮, 等. 湘江衡阳段地表水体重金属污染及生态风险评价[J]. 环境科学与技术, 2020, 43(增刊1): 190-197. TANG Z P, MA R L, CHEN L, et al. The pollution characteristics and ecological risk assessments for the heavy metals of surface water-bodies in Hengyang section of Xiangjiang river[J]. Environmental Science & Technology, 2020, 43(Sup 1): 190-197(in Chinese).
[14] 国家环境保护局主持中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990. Environmental Monitoring of China. Background values of soil elements in China [M]. Beijing: China Environment Science Press, 1990(in Chinese).
[15] 张江华, 徐友宁, 吴耀国. 小秦岭金矿区小麦和玉米重金属的健康风险评价 [J]. 地质学报, 2019, 93(2): 501-508. doi: 10.3969/j.issn.0001-5717.2019.02.016 ZHANG J H, XU Y N, WU Y G. Health risk assessment of heavy metals in wheat and maize in the Xiaoqinling gold mining Area [J]. Acta Geologica Sinica, 2019, 93(2): 501-508(in Chinese). doi: 10.3969/j.issn.0001-5717.2019.02.016
[16] 徐向华, 李仁英, 刘翠英, 等. 超积累植物垂序商陆(Phytolacca americana L. )吸收锰机制的初步探讨 [J]. 环境科学, 2013, 34(11): 4460-4465. XU X H, LI R Y, LIU C Y, et al. Preliminary analysis of manganese uptake mechanism in the hyperaccumulator Phytolacca americana L [J]. Environmental Science, 2013, 34(11): 4460-4465(in Chinese).
[17] 梁文斌, 薛生国, 沈吉红, 等. 锰胁迫对垂序商陆生长发育的影响 [J]. 生态学杂志, 2011, 30(8): 1632-1636. LIANG W B, XUE S G, SHEN J H, et al. Effects of manganese stress on Phytolacca americana growth and development [J]. Chinese Journal of Ecology, 2011, 30(8): 1632-1636(in Chinese).
[18] 杨贤均, 刘可慧, 李艺, 等. 锰污染土壤对酸模叶蓼氮素代谢的影响 [J]. 生态环境学报, 2017, 26(10): 1776-1781. YANG X J, LIU K H, LI Y, et al. Effects of manganese contaminated soil on nitrogen metabolism of manganese hyperaccumulator Polygonum lapathifolium L [J]. Ecology and Environmental Sciences, 2017, 26(10): 1776-1781(in Chinese).
[19] ADAMO P, IAVAZZO P, ALBANESE S, et al. Bioavailability and soil-to-plant transfer factors as indicators of potentially toxic element contamination in agricultural soils [J]. Science of the Total Environment, 2014, 500/501: 11-22. doi: 10.1016/j.scitotenv.2014.08.085 [20] 韩春梅, 王林山, 巩宗强, 等. 土壤中重金属形态分析及其环境学意义 [J]. 生态学杂志, 2005, 24(12): 1499-1502. doi: 10.3321/j.issn:1000-4890.2005.12.025 HAN C M, WANG L S, GONG Z Q, et al. Chemical forms of soil heavy metals and their environmental significance [J]. Chinese Journal of Ecology, 2005, 24(12): 1499-1502(in Chinese). doi: 10.3321/j.issn:1000-4890.2005.12.025
[21] 钟晓兰, 周生路, 黄明丽, 等. 土壤重金属的形态分布特征及其影响因素 [J]. 生态环境学报, 2009, 18(4): 1266-1273. doi: 10.3969/j.issn.1674-5906.2009.04.013 ZHONG X L, ZHOU S L, HUANG M L, et al. Chemical form distribution characteristic of soil heavy metals and its influencing factors [J]. Ecology and Environmental Sciences, 2009, 18(4): 1266-1273(in Chinese). doi: 10.3969/j.issn.1674-5906.2009.04.013
[22] 童非, 顾雪元. 重金属离子与典型离子型有机污染物的络合效应研究 [J]. 中国环境科学, 2014, 34(7): 1776-1784. TONG F, GU X Y. Study on complexation effect between heavy metal cations and typical ionic organic pollutants [J]. China Environmental Science, 2014, 34(7): 1776-1784(in Chinese).
[23] 张玮萍, 许超, 夏北成, 等. 尾矿区污染土壤中重金属的形态分布及其生物有效性 [J]. 湖南农业科学, 2010(1): 54-56,59. doi: 10.3969/j.issn.1006-060X.2010.01.017 ZHANG W P, XU C, XIA B C, et al. Species distribution and biological effectiveness of heavy metals in contaminated soils of mine tailing area [J]. Hunan Agricultural Sciences, 2010(1): 54-56,59(in Chinese). doi: 10.3969/j.issn.1006-060X.2010.01.017
[24] 陈勇, 王清森, 张浩凡. 铬污染土壤处理中的铬含量及形态变化 [J]. 化工环保, 2017, 37(3): 335-339. doi: 10.3969/j.issn.1006-1878.2017.03.015 CHEN Y, WANG Q S, ZHANG H F. Content and speciation changes of chromium in treatment of contaminated soil [J]. Environmental Protection of Chemical Industry, 2017, 37(3): 335-339(in Chinese). doi: 10.3969/j.issn.1006-1878.2017.03.015
[25] 韦壮绵, 陈华清, 张煜, 等. 湘南柿竹园东河流域农田土壤重金属污染特征及风险评价 [J]. 环境化学, 2020, 39(10): 2753-2764. doi: 10.7524/j.issn.0254-6108.2019073103 WEI Z M, CHEN H Q, ZHANG Y, et al. Pollution characteristics and risk assessment of heavy metals in farmland soils at Shizhuyuan Donghe River basin of Southern Hunan [J]. Environmental Chemistry, 2020, 39(10): 2753-2764(in Chinese). doi: 10.7524/j.issn.0254-6108.2019073103
[26] 王莉, 张旭, 赵刘义, 等. 清潩河流域沉积物重金属形态分布特征及风险评价 [J]. 生态环境学报, 2020, 29(6): 1225-1234. WANG L, ZHANG X, ZHAO L Y, et al. Speciation distribution and risk assessment of heavy metals in sediments from the qingyi river basin [J]. Ecology and Environmental Sciences, 2020, 29(6): 1225-1234(in Chinese).
[27] 刘芳枝, 胡俊良, 刘劲松, 等. 南岭泡金山矿产集采区土壤重金属空间分布及风险评价 [J]. 农业环境科学学报, 2018, 37(1): 86-95. doi: 10.11654/jaes.2017-1136 LIU F Z, HU J L, LIU J S, et al. Spatial distribution and risk assessment of heavy metals in soil in the metal mining area of Paojinshan, Hunan, China [J]. Journal of Agro-Environment Science, 2018, 37(1): 86-95(in Chinese). doi: 10.11654/jaes.2017-1136
[28] SCHMITT D, TAYLOR H E, AIKEN G R, et al. Influence of natural organic matter on the adsorption of metal ions onto clay minerals [J]. Environmental Science & Technology, 2002, 36(13): 2932-2938. [29] 高太忠, 张昊, 周建伟. 溶解性有机物对土壤中重金属环境行为的影响 [J]. 生态环境学报, 2011, 20(4): 652-658. doi: 10.3969/j.issn.1674-5906.2011.04.011 GAO T Z, ZHANG H, ZHOU J W. Effect of dissolved organic matter on the environmental behaviors of heavy metals in soils [J]. Ecology and Environmental Sciences, 2011, 20(4): 652-658(in Chinese). doi: 10.3969/j.issn.1674-5906.2011.04.011