-
近年来,尽管我国大气污染状况整体有所改善,但大部分城市细颗粒物(PM2.5)污染问题仍未解决[1],尤其是采暖季区域性重污染天气频发[2],二次成分污染严重[3-4]。文献研究表明,PM2.5主要受人为活动和工业生产的影响,在华中、华北、苏北地区污染程度较高[5]。2019年中国生态环境状况公报[6]表明,京津冀周边地区“2+26”城市空气质量超标天中,以PM2.5为首要污染物的天数占比42.9% 。因此,PM2.5仍是我国大中城市大气环境的主要污染物之一,PM2.5成分复杂,主要有水溶性离子Na+、K+、Mg2+、Ca2+、Cl−、硫酸盐(SO42−)、硝酸盐(NO3−)、有机碳(OC)、元素碳(EC)、重金属等。PM2.5不仅对环境、气候、人体健康造成危害[7-10],会引发人体呼吸系统和心脑血管疾病[11],而且会降低大气能见度[12],形成雾霾天气。
2020年1月新型冠状病毒(COVID-19)疫情开始在我国传播,为控制疫情和感染,全国各地启动实施一级响应措施,人们居家办公,人为污染源排放量、移动源和轻工业活动水平大幅削减[13]。为了解疫情管控政策对空气质量的影响[14-15],国内外学者对不同城市环境空气质量做了大量的研究,发现疫情管控政策对颗粒物(PM10和PM2. 5)、NO2、SO2及CO浓度削减较多,对Cl−、SO42−、Na +和Ca2 +的昼夜变化影响较大[16]。利用相关模式对空气质量影响的模拟研究表明,一次污染物对减排响应较敏感,二次污染物对减排响应有一定时滞性且易受气象因素影响[17],如疫情期间NOx向NO3−转化的能力并未削减,颗粒物减排在削减一次排放的同时也要控制组分的前体物[18]。目前大量研究主要围绕疫情减排情景下空气质量状况和6项常规污染物(PM10、PM2.5、NO2、SO2、CO、O3)浓度变化,但对于疫情管控影响下长时间序列PM2.5中的组分变化研究没有文献报道,且气象因素和人为因素对空气质量状况均有较大影响,因此需要结合气象因素对疫情管控影响下的PM2.5及组分浓度变化进行详细分析。
济南是“京津冀及周边2+26”重要通道城市之一,作为我国华北地区城市,济南市大气污染受采暖季燃煤取暖影响较大[19],采暖季灰霾天气频发,容易对周边地区造成影响,引起区域性重污染天气。本文基于济南市2019年11月1日—2020年3月31日的在线监测数据,通过对比疫情管控前(2019年11月1日—2020年1月24日)和疫情管控后(2020年1月25日—2020年3月31日)两个时段PM2.5中组分变化,结合气象因素分析2020年春节疫情管控下济南市PM2.5中组分变化,研究结果将对济南市PM2.5污染防控和减排方案提供理论指导意义。
济南市区2020年春节疫情管控前后PM2.5组分变化
Changes in contents of PM2.5 components over Jinan city before and after implementation of epidemic control measures during the 2020 Spring Festival
-
摘要: 为研究新型冠状病毒疫情管控政策对PM2.5组分的影响,基于在线监测数据对济南市2020年春节疫情管控前后的PM2.5及其组分浓度进行了研究,并运用标准化多元线性回归分析了气象因素对PM2.5浓度变化的贡献率。结果表明,疫情管控后,济南市区PM2.5浓度明显下降,日均值超标率下降了24.8%;PM2.5中各组分浓度均有不同程度的下降,其中微量元素(TE)、元素碳(EC)和硝酸盐(NO3−)浓度降幅较大,分别为50.3%、46.8%和31.5%。从组分占比来看,疫情管控后TE和EC占比减小,而铵盐(NH4+)、有机物(OM)、硫酸盐(SO42−)、矿物尘占比增大,NO3−占比变化不大,二次离子SNA (SO42-、NO3-、NH4+)占比之和增大14.3%。对比PM2.5中各组分占比发现,疫情管控后,轻度及以上污染等级PM2.5中NO3−和EC占比降低,而OM、SO42−和NH4+增加,说明受疫情管控影响,市民出行减少,机动车排放降低,施工工地停工,对NO3−削减较大,而疫情管控后,因颗粒物浓度降低,VOCs二次转化增强,使OM含量升高。对比疫情管控前,硫氧化率和氮氧化率值增大,NO2/SO2和NO3−/SO42−比值有明显降低,其均值分别下降了30.0%和14.0%,说明疫情管控期间汽车尾气等移动源对污染的贡献减少;受管控影响OC浓度在优、良和轻度污染等级下均下降,但二次有机碳(SOC)浓度升高,说明疫情管控下二次转化生成并未削减。气象因素标准化多元线性回归表明,疫情管控前边界层高度变化对PM2.5的贡献率最大(46.5%),疫情管控后相对湿度是促进PM2.5浓度升高的首要因素。Abstract: To understand the influence of coronavirus disease control policies on changes in characteristics of particulate matter smaller than 2.5 μm (PM2.5), concentrations of various PM2.5 components in Jinan city before and after implementation of the epidemic control measures during the 2020 Spring Festival were studied using online monitoring data. Standardized multiple linear regression was used to analyze the contribution of meteorological factors to the variations in concentrations of PM2.5 components. After the epidemic control measures were implemented, the concentrations of PM2.5 components in the area decreased significantly, and the rate at which the daily average concentration was exceeded decreased by 24.8%. The concentrations of all PM2.5 components decreased to various degrees, with those of trace elements (TE), elemental carbon (EC), and nitrate (NO3−) having decreased significantly by 50.3%, 46.8%, and 31.5%, respectively. In terms of component proportions, those of TE and EC decreased after the epidemic control measures were initiated whereas those of ammonium (NH4+), organic matter (OM), sulfate (SO42−), and mineral dust increased; the proportion of NO3− changed slightly, and the total proportion of secondary ions SO42−, NO3−, and NH4+ increased by 14.3%. Comparison of the proportions of PM2.5 components showed that after the epidemic control measures were implemented, the proportions of NO3− and EC in PM2.5 that cause a light pollution level decreased whereas those of OM, SO42−, and NH4+ increased. This indicated that people traveled less, motor vehicle emissions decreased, work at construction sites stopped, and NO3− proportion was greatly reduced while epidemic control measures were in place. However, afterward, decrease in concentrations of PM2.5 components and increase in secondary transformation of volatile organic compounds led to an increase in OM concentration. Compared with those before the epidemic control measures were implemented, the NO2/SO2 and NO3–/SO42− ratios fell significantly, and their average values decreased by 30.0% and 14.0%, respectively, indicating that the contribution of mobile sources (e.g., automobile exhaust) to pollution had decreased during the epidemic control period. Under the influence of the control measures, the OC concentration also decreased for excellent, good, and mild pollution levels; however, the secondary organic carbon concentration increased, indicating that secondary conversions did not decrease under the epidemic control conditions. Standardized multiple linear regression analyses of meteorological factors showed that changes in the height of the boundary layer contributed the most (46.5%) to changes in concentrations of PM2.5 components before the epidemic control measures were implemented; afterward, humidity was the primary factor governing the increase in these concentrations.
-
Key words:
- epidemic control /
- PM2.5 /
- secondary components /
- pollution grade /
- meteorological factors
-
表 1 疫情管控前后PM2.5中组分变化
Table 1. Changes of components in PM2.5 before and after the epidemic control
时间
PeriodKC TE OM EC SO42− NO3− NH4+ SNA 管控前/%
Before epidemic control5.4 0.4 23.0 5.2 16.2 28.8 11.8 56.9 管控后/%
After epidemic control5.9 0.3 29.8 4.1 19.2 29.6 16.2 65.0 占比变化率/%
Percentage change rate10.1 −27.5 29.7 −20.4 18.3 2.6 37.1 14.3 管控前/(μg·m−3)
Before epidemic control3.81 0.31 16.26 3.67 11.48 20.43 8.36 40.27 管控后/(μg·m−3)
After epidemic control2.80 0.15 14.07 1.95 9.06 13.99 7.65 30.70 浓度变化率/%
Concentration change rate−26.5 −50.3 −13.5 −46.8 −21.1 −31.5 −8.5 −23.8 表 2 疫情管控前后不同污染等级SOR、NOR变化
Table 2. Changes of SOR and NOR in different pollution levels before and after epidemic control
疫情管控前Before epidemic control 疫情管控后After epidemic control 空气质量级别
Air quality
level均值
Avera-ge优
Excellent良
Good轻度污染
Mild
pollution中度污染
Moderate
pollution重度污染
Heavy
pollution均值
Average优
Excellent良
Good轻度污染
Mild
pollution中度污染
Moderate
pollutionDays 2 44 29 6 4 10 43 13 1 SOR 0.41 0.24 0.32 0.49 0.63 0.78 0.40 0.24 0.39 0.50 0.70 NOR 0.26 0.14 0.21 0.31 0.42 0.41 0.29 0.19 0.28 0.40 0.58 NHR 0.48 0.29 0.51 0.49 0.30 0.38 0.44 0.28 0.46 0.53 0.18 RH/% 63.4 34.6 58.3 68.2 75.1 81.6 54.2 45.1 54.3 58.6 82.5 NO2/SO2 3.94 2.55 3.77 3.93 4.36 5.93 2.76 2.05 3.00 2.55 2.11 NO3−/SO42- 1.80 1.64 2.07 1.77 1.58 1.36 1.54 1.34 1.58 1.55 1.28 注:表中NO2/SO2和NO3−/SO42-均为质量浓度之比.
Note: in the table, NO2/SO2 and NO3−/SO42- are the ratio of mass concentration.表 3 疫情管控前后不同污染等级碳组分变化 (μg·m−3)
Table 3. Changes of carbon components in different pollution levels before and after epidemic (μg·m−3)
疫情管控前
Before epidemic control疫情管控后
After epidemic control空气质量级别
Air quality level优
Excellent良
Good轻度污染
Mild
pollution中度污染
Moderate
pollution重度污染
Heavy
pollution优
Excellent良
Good轻度污染
Mild
pollution中度污染
Moderate
pollutionOC 4.66 7.78 12.28 16.07 22.08 4.66 7.33 11.15 16.16 EC 1.51 2.70 4.20 6.08 7.69 1.12 1.91 2.60 3.50 OC/EC 3.10 2.97 2.97 2.76 2.89 4.31 3.82 4.40 4.62 SOC 2.14 3.27 5.27 5.92 9.23 2.78 4.14 6.81 10.32 注:表中OC/EC为质量浓度之比.
Note: in the table, OC/EC is the ratio of mass concentration.表 4 疫情管控前后不同气象因素标准化的回归系数及对PM2.5相对贡献率
Table 4. Regression coefficients of standardization of different meteorological factors before and after epidemic control and their relative contribution to PM2.5
Z1(RH) Z2(PBL) Z3(WS) a1 η/% a2 η/% a3 η/% 管控前
Before epidemic control0.29 40.8 −0.34 46.5 −0.09 12.6 管控后
After epidemic control0.43 50.2 −0.26 30.6 −0.16 19.2 注:a1、a2、a3分别为各气象因子序列标准化后对应的回归系数,ηi为Zi气象因子对PM2.5浓度的相对贡献率.
Note: a1、a2 and a3 are the corresponding regression coefficients of each standardized meteorological factor sequence, and ηi is the relative contribution rate of Zi meteorological factor to PM2.5 concentration. -
[1] 王韵杰, 张少君, 郝吉明. 中国大气污染治理: 进展·挑战·路径 [J]. 环境科学研究, 2019, 32(10): 1755-1762. WANG Y J, ZHANG S J, HAO J M. Air pollution control in China: Progress, challenges and future pathways [J]. Research of Environmental Sciences, 2019, 32(10): 1755-1762(in Chinese).
[2] PANG N N, GAO J, CHE F, et al. Cause of PM2.5 pollution during the 2016-2017 heating season in Beijing, Tianjin, and Langfang, China [J]. Journal of Environmental Sciences, 2020, 95: 201-209. doi: 10.1016/j.jes.2020.03.024 [3] LIU Y Y, WANG J, ZHAO X Y, et al. Characteristics, secondary formation and regional contributions of PM2.5 pollution in Jinan during winter [J]. Atmosphere, 2020, 11(3): 273. doi: 10.3390/atmos11030273 [4] 刘倬诚, 牛月圆, 吴婧, 等. 山地型城市冬季大气重污染过程特征及成因分析 [J]. 环境科学, 2021, 42(3): 1306-1314. LIU Z C, NIU Y Y, WU J, et al. Characteristics and cause analysis of heavy air pollution in a mountainous city during winter [J]. Environmental Science, 2021, 42(3): 1306-1314(in Chinese).
[5] 刘清, 杨永春, 刘海洋. 中国366个城市空气污染综合程度的时空演变特征分析 [J]. 干旱区地理, 2020, 43(3): 820-830. LIU Q, YANG Y C, LIU H Y. Spatiotemporal evolution characteristics of air pollution degree in 366 cities of China [J]. Arid Land Geography, 2020, 43(3): 820-830(in Chinese).
[6] 中华人民共和国生态环境部, 2020. 2019年中国生态环境状况公报 [R/OL]. (2020-06-02) [2021-5-19]. www. mee. gov. cn/hjzl/sthjzk/zghjzkgb/202006/P020200602509464172096. pdf Ministry of Ecology and Environment, PRC, 2020. Bulletin on China's ecological environment in 2019[R/OL]. (2020-06-02) [2021-5-19]. www. mee. gov. cn/hjzl/sthjzk/zghjzkgb/202006/P020200602509464172096. pdf
[7] XIE J J, YUAN C G, XIE J, et al. Fraction distribution of arsenic in different-sized atmospheric particulate matters [J]. Environmental Science and Pollution Research, 2019, 26(30): 30826-30835. doi: 10.1007/s11356-019-06176-w [8] MO Y Z, BOOKER D, ZHAO S Z, et al. The application of land use regression model to investigate spatiotemporal variations of PM2.5 in Guangzhou, China: Implications for the public health benefits of PM2.5 reduction [J]. Science of the Total Environment, 2021, 778: 146305. doi: 10.1016/j.scitotenv.2021.146305 [9] SUN H, CHEN H, YAO L, et al. Sources and health risks of PM2.5-bound polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in a North China rural area [J]. Journal of Environmental Sciences, 2020, 95: 240-247. doi: 10.1016/j.jes.2020.03.051 [10] PANWAR P, PRABHU V, SONI A, et al. Sources and health risks of atmospheric particulate matter at Bhagwanpur, an industrial site along the Himalayan foothills [J]. SN Applied Sciences, 2020, 2(4): 1-12. [11] HOPKE P K, HILL E L. Health and charge benefits from decreasing PM2.5 concentrations in New York State: Effects of changing compositions [J]. Atmospheric Pollution Research, 2021, 12(3): 47-53. doi: 10.1016/j.apr.2021.01.018 [12] LI X, LI S S, XIONG Q L, et al. Characteristics of PM2.5 chemical compositions and their effect on atmospheric visibility in urban Beijing, China during the heating season [J]. International Journal of Environmental Research and Public Health, 2018, 15(9): 1924. doi: 10.3390/ijerph15091924 [13] 唐倩, 郑博, 薛文博, 等. 京津冀及周边地区秋冬季大气污染物排放变化因素解析 [J]. 环境科学, 2021, 42(4): 1591-1599. TANG Q, ZHENG B, XUE W B, et al. Contributors to air pollutant emission changes in autumn and winter in Beijing-Tianjin-Hebei and surrounding areas [J]. Environmental Science, 2021, 42(4): 1591-1599(in Chinese).
[14] CHU B W, ZHANG S P, LIU J, et al. Significant concurrent decrease in PM2.5 and NO2 concentrations in China during COVID-19 epidemic [J]. Journal of Environmental Sciences, 2021, 99: 346-353. doi: 10.1016/j.jes.2020.06.031 [15] NIU Z, HU T T, KONG L, et al. Air-pollutant mass concentration changes during COVID-19 pandemic in Shanghai, China [J]. Air Quality, Atmosphere & Health, 2021, 14(4): 523-532. [16] WANG H L, MIAO Q, SHEN L J, et al. Characterization of the aerosol chemical composition during the COVID-19 lockdown period in Suzhou in the Yangtze River Delta, China [J]. Journal of Environmental Sciences, 2021, 102: 110-122. doi: 10.1016/j.jes.2020.09.019 [17] 刘厚凤, 徐薇, 魏敏, 等. 2020年初疫情管控对山东省空气质量影响的模拟 [J]. 环境科学, 2021, 42(3): 1215-1227. LIU H F, XU W, WEI M, et al. Impact of pollutant emission reduction on air quality during the COVID-19 pandemic control in early 2020 based on RAMS-CMAQ [J]. Environmental Science, 2021, 42(3): 1215-1227(in Chinese).
[18] 陈楠, 张周祥, 李涛, 等. 武汉地区疫情管控期间空气质量变化及改善措施研究 [J]. 气候与环境研究, 2021, 26(2): 217-226. CHEN N, ZHANG Z X, LI T, et al. Air quality change and improvement measures during the COVID-19 epidemic in Wuhan [J]. Climatic and Environmental Research, 2021, 26(2): 217-226(in Chinese).
[19] 张亚茹, 陈永金, 郭庆春, 等. 济南市大气污染物时空变化及预测分析 [J]. 环境工程, 2020, 38(2): 114-121. ZHANG Y R, CHEN Y J, GUO Q C, et al. Analysis on tempo-spatial variation and prediction of air pollutants in Jinan [J]. Environmental Engineering, 2020, 38(2): 114-121(in Chinese).
[20] 魏小锋, 刘光辉, 闫学军, 等. 济南市冬季大气重污染过程PM2.5数浓度谱和组分分布特征 [J]. 生态环境学报, 2020, 29(9): 1847-1854. WEI X F, LIU G H, YAN X J, et al. Characteristics of PM2.5 number concentrations and compositions during heavy air pollution events in ji'nan [J]. Ecology and Environmental Sciences, 2020, 29(9): 1847-1854(in Chinese).
[21] 任娇, 尹诗杰, 郭淑芬. 太原市大气PM2.5中水溶性离子的季节污染特征及来源分析 [J]. 环境科学学报, 2020, 40(9): 3120-3130. REN J, YIN S J, GUO S F. Seasonal variation and source analysis of water-soluble ions in PM2.5 in Taiyuan [J]. Acta Scientiae Circumstantiae, 2020, 40(9): 3120-3130(in Chinese).
[22] 潘光, 丁椿, 孙友敏, 等. 德州市采暖季环境空气含氮/硫物质的污染及气-粒分配特征 [J]. 环境科学研究, 2020, 33(8): 1766-1775. PAN G, DING C, SUN Y M, et al. Pollution of ambient Nitrogen/Sulfur substances and associated gas-particle distribution characteristics during heating period in Dezhou city [J]. Research of Environmental Sciences, 2020, 33(8): 1766-1775(in Chinese).
[23] 张婷婷, 马文林, 亓学奎, 等. 北京城区PM2.5有机碳和元素碳的污染特征及来源分析 [J]. 环境化学, 2018, 37(12): 2758-2766. doi: 10.7524/j.issn.0254-6108.2018051701 ZHANG T T, MA W L, QI X K, et al. Characteristics and sources of organic carbon and element carbon in PM2.5 in the urban areas of Beijing [J]. Environmental Chemistry, 2018, 37(12): 2758-2766(in Chinese). doi: 10.7524/j.issn.0254-6108.2018051701
[24] 潘光, 李少洛, 朱丽, 等. 济南市降尘通量时空分布特征研究 [J]. 生态环境学报, 2019, 28(9): 1802-1809. PAN G, LI S L, ZHU L, et al. Study on spatial and temporal distribution of dust-fall flux in Jinan city [J]. Ecology and Environmental Sciences, 2019, 28(9): 1802-1809(in Chinese).
[25] 王申博, 范相阁, 和兵, 等. 河南省春节和疫情影响情景下PM2.5组分特征 [J]. 中国环境科学, 2020, 40(12): 5115-5123. doi: 10.3969/j.issn.1000-6923.2020.12.002 WANG S B, FAN X G, HE B, et al. Chemical composition characteristics of PM2.5 in Henan Province during the Spring Festival and COVID-19 outbreak [J]. China Environmental Science, 2020, 40(12): 5115-5123(in Chinese). doi: 10.3969/j.issn.1000-6923.2020.12.002
[26] LI X R, WANG Y S, GUO X Q, et al. Seasonal variation and source apportionment of organic and inorganic compounds in PM2.5 and PM10 particulates in Beijing, China [J]. Journal of Environmental Sciences, 2013, 25(4): 741-750. doi: 10.1016/S1001-0742(12)60121-1 [27] 冯小琼, 陈军辉, 尹寒梅, 等. 成都市冬季3次灰霾污染过程特征及成因分析 [J]. 环境科学, 2020, 41(10): 4382-4391. FENG X Q, CHEN J H, YIN H M, et al. Characteristics and formation mechanism of three haze pollution processes in Chengdu in winter [J]. Environmental Science, 2020, 41(10): 4382-4391(in Chinese).
[28] 张颖龙, 李莉, 宋刘明, 等. 嘉善冬季PM2.5化学组分特征及来源分析 [J]. 环境化学, 2021, 40(3): 754-764. doi: 10.7524/j.issn.0254-6108.2020062303 ZHANG Y L, LI L, SONG L M, et al. Chemical components characteristic and source apportionment of PM2.5 during winter in Jiaxing [J]. Environmental Chemistry, 2021, 40(3): 754-764(in Chinese). doi: 10.7524/j.issn.0254-6108.2020062303
[29] 胡清静. 大气中氨气、铵盐和有机胺盐的研究[D]. 中国海洋大学, 2015. HU Q J. The study of ammonia, ammonium salt and aminium salt in the atmosphere[D]. Ocean University of China, 2015(in Chinese).
[30] 刘学军, 沙志鹏, 宋宇, 等. 我国大气氨的排放特征、减排技术与政策建议 [J]. 环境科学研究, 2021, 34(1): 149-157. LIU X J, SHA Z P, SONG Y, et al. China's atmospheric ammonia emission characteristics, mitigation options and policy recommendations [J]. Research of Environmental Sciences, 2021, 34(1): 149-157(in Chinese).
[31] 王鑫, 安俊琳, 苏筱倩, 等. 南京北郊水溶性离子污染特征及其光学特性 [J]. 中国环境科学, 2020, 40(2): 506-512. doi: 10.3969/j.issn.1000-6923.2020.02.005 WANG X, AN J L, SU X Q, et al. Characteristics and optical properties of water-soluble ion pollution in the northern suburbs of Nanjing [J]. China Environmental Science, 2020, 40(2): 506-512(in Chinese). doi: 10.3969/j.issn.1000-6923.2020.02.005
[32] 黄含含, 王羽琴, 李升苹, 等. 西安市PM2.5中水溶性离子的季节变化特征 [J]. 环境科学, 2020, 41(6): 2528-2535. HUANG H H, WANG Y Q, LI S P, et al. Seasonal variation of water-soluble ions in PM2.5 in Xi'an [J]. Environmental Science, 2020, 41(6): 2528-2535(in Chinese).
[33] 赵孝囡, 王申博, 杨洁茹, 等. 郑州市PM2.5组分、来源及其演变特征[J]. 环境科学, 2021, 42(8): 3633-3643. ZHAO X N, WANG S B, YANG J R, et al. Chemical Component and Source of PM2.5 and Their Evolutive Characteristics in Zhengzhou []. Environmental Science, 2021, 42(8): 3633-3643.
[34] 邵玄逸, 王晓琦, 钟嶷盛, 等. 京津冀典型城市冬季人为源减排与气象条件对PM2.5污染影响[J]. 环境科学, 2021, 42(9): 4095-4103. SHAO X Y, WANG X Q, ZHONG N S, et al. Impacts of Anthropogenic Emission Reduction and Meteorological Conditions on PM2.5 Pollution in Typical Cities of Beijing-Tianjin-Hebei in Winter [J]. Environmental Science, 2021, 42(9): 4095-4103.
[35] CHEN K, WANG M, HUANG C H, et al. Air pollution reduction and mortality benefit during the COVID-19 outbreak in China [J]. The Lancet. Planetary Health, 2020, 4(6): 210-212. doi: 10.1016/S2542-5196(20)30107-8 [36] 黄炯丽, 陈志明, 莫招育, 等. 广西玉林市大气PM10和PM2.5中有机碳和元素碳污染特征分析 [J]. 环境科学, 2018, 39(1): 27-37. HUANG J L, CHEN Z M, MO Z Y, et al. Characteristics of organic and elemental carbon in PM10 and PM2.5 in Yulin city, Guangxi [J]. Environmental Science, 2018, 39(1): 27-37(in Chinese).
[37] 国纪良, 姬亚芹, 马妍, 等. 盘锦市夏冬季PM2.5中碳组分污染特征及来源分析 [J]. 中国环境科学, 2019, 39(8): 3201-3206. doi: 10.3969/j.issn.1000-6923.2019.08.009 GUO J L, JI Y Q, MA Y, et al. Pollution characteristics and sources of carbon components in PM2.5 during summer and winter in Panjin city [J]. China Environmental Science, 2019, 39(8): 3201-3206(in Chinese). doi: 10.3969/j.issn.1000-6923.2019.08.009
[38] 王建英, 崔洋, 史霖, 等. 银川市冬季两次典型持续大气污染过程对比分析 [J]. 环境科学研究, 2020, 33(3): 555-562. WANG J Y, CUI Y, SHI L, et al. Comparative study of two typical continuous air pollution processes in Yinchuan city in winter [J]. Research of Environmental Sciences, 2020, 33(3): 555-562(in Chinese).
[39] 魏煜, 徐起翔, 赵金帅, 等. 基于机器学习算法的新冠疫情管控对河南省空气质量影响的模拟分析[J]. 环境科学, 2021, 42(9): 4126-4139. WEI Y, XU Q X, ZHAO J S, et al. Simulation Analysis of the Impact of COVID-19 Pandemic Control on Air Quality in Henan Province based on Machine Learning Algorithm [J]. Environmental Science, 2021, 42(9): 4126-4139.