-
近年来,随着一系列大气污染防治措施的实施,我国空气质量得到明显改善,颗粒物污染控制成效显著[1]. 与此同时,由于人民环保意识的增强,对于自身受到的污染物影响愈发关心. 细颗粒物(PM2.5)由于可以随呼吸进入人体肺部,甚至可以通过血液循环而在人体内长期聚集,从而严重影响人体健康,因此受到人们的广泛关注[2-3].
目前,我国已在城市地区建立了相对完善的空气质量监测网络,但由于空气质量监测站只能固定监测某一地区大气环境中的污染物浓度,不能针对个体进行监测,因此,当关注单一个体或某一群体受到PM2.5污染的影响时,空气质量监测网络作用则不太明显. 研究表明,不同室内环境中颗粒物浓度不同,并且室内室外不同环境颗粒物浓度也具有显著差别,从而导致在不同环境工作、生活的人群受到的颗粒物污染的影响不同[4-7]. 因此,为更好地评估不同行业人群受到颗粒物污染的影响,需要开展更具针对性的研究. 国内外针对颗粒物的个体暴露水平的研究工作主要利用手持式仪器进行个人实时测量或在特定微环境下观测颗粒物浓度[8-11]. 如针对城市街道、公交车站、地铁站等不同室内外环境下特定人群的受到的颗粒物污染的暴露情况,或是针对不同年龄段人群,如儿童、成年人、老年人等展开研究[12-15]. 这些研究在一定程度上增强了人们对于颗粒物暴露水平的理解,但是由于研究地域的不同以及生活习惯的差异,不同地区不同行业人群的颗粒物暴露水平仍然需要大量的研究.
PM2.5组分复杂,其中由于某些重金属元素会影响人体中枢神经系统和免疫系统等,对人体有较强的毒害作用,严重危害人体健康[2-3]. 近年来,我国针对PM2.5中金属元素的污染特征、来源及健康风险等进行了大量研究[16-19].研究表明,我国城市地区PM2.5中金属元素总体浓度高于国外城市,部分元素超过国家空气质量标准(GB 3095—2012)二级标准和WHO指导值. 一些重金属元素存在一定的致癌和非致癌风险,对人体健康存在着一定的危害[20-21]. 目前针对不同人群的颗粒物暴露水平及其组分健康风险的评估逐渐引起重视,研究结果表明不同地区,不同人群受到的影响差异明显[22-23]. 因此,准确评估不同行业人群受到的PM2.5中金属元素的健康影响,需要针对不同地区、不同人群开展更精细化的研究工作.
济南市作为华北地区中部的典型城市,其PM2.5污染较重. 以往对济南市大气颗粒物污染水平的相关研究大多集中在污染特征、污染物组成成分及来源解析上[24-28],对济南市不同行业人群细颗粒物暴露水平相关的研究较少,无法科学评估济南市不同人群的PM2.5暴露水平及健康风险. 因此,本研究选择济南市室内室外工作环境的人群作为研究对象,于2021年春季和夏季开展了济南市不同行业人群PM2.5个体暴露水平的研究,并针对各类人群主要的生活与工作场所进行PM2.5中15种金属元素的分析,进而评估金属元素的污染特征、来源以及健康风险. 以期为科学防控不同人群受到的颗粒物污染提供理论依据,同时对于了解济南市不同行业人群受到的颗粒物重金属污染及其健康风险具有一定的科学指导意义.
济南市不同行业人群PM2.5暴露水平及金属元素健康风险评估
Personal PM2.5 exposure and the health risk assessment of metal elements in different occupational populations of Jinan
-
摘要: 为研究济南市不同行业人群的颗粒物暴露水平以及评估通过吸入颗粒物而受到的金属元素的健康风险,本研究利用手持式气溶胶检测仪与PM2.5中流量采样器,于2021年春季和夏季对济南市6类不同行业人群开展PM2.5暴露水平研究,分析不同微环境(学生宿舍、工厂车间、城市街道、学校大门以及住宅客厅)PM2.5金属元素的污染特征及健康风险. 6类人群包括大学生、铸造厂工人、餐厅员工、公交车司机、环卫工人、学校保安. 结果表明,6类人群的颗粒物暴露水平,日变化均呈现明显的行业特点,公交车司机与环卫工人的PM2.5平均暴露浓度达到87.7 μg·m−3和79.5 μg·m−3. PM2.5浓度在某一时段均会出现瞬时峰值的现象. 人群PM2.5小时暴露水平总体高于当地空气质量监测站公布数据,车间工人与保安则高出1倍以上. 不同微环境下PM2.5中15种金属元素浓度与元素成分占比均略有不同. 除Ca、Al、Mg和Fe等4类常量元素之外,Zn、Mn、Cu等元素占比相对较高.部分金属如Cd超过我国空气质量标准浓度限值. 富集因子分析表明,Cd、Cu、Zn、Pb、Cr、Ni、Sn、Sb等元素主要受到人为源的影响,As、Mg、Ca、Mn元素则同时受到人为源与自然源的影响. 健康风险评估表明,Cr元素的非致癌风险和致癌风险在所有元素中最高. 环卫工人的非致癌风险与学生和保安群体的致癌风险需要引起足够重视. 本研究为科学评估不同人群的颗粒物暴露水平及重金属健康风险具有一定的指导意义,并为科学防控颗粒物污染提供一定的理论依据.Abstract: Personal exposure to PM2.5 and health risk assessment of metal elements in different occupational populations were investigated in the spring and summer in Jinan by using a portable monitor and a PM2.5 sampler. The undergraduate student, foundryman, restaurant chefs are represented as indoor workers. Bus driver, sanitation worker and school security staff are represented as outdoor workers. We found that the exposure levels of particulate matters showed different occupational characteristics. The averaged PM2.5 exposure concentrations of bus drivers and sanitation workers reached 87.7 μg·m−3 and 79.5 μg·m−3. The PM2.5 concentration showed an instantaneous peak in different microenvironments. The PM2.5 exposure concentration is generally higher than the data released from air quality monitoring stations. The concentration and proportion of 15 elements of PM2.5 in different microenvironments showed slightly different characteristics. in addition to the four types of constant elements (Ca, Al, Mg and Fe), trace elements of Zn, Mn, Cu account for a relatively high proportion. The concentration of Cd exceeded the standard limits in GB 3095—2012 Ambient Air Quality Standard. The enrichment factor analysis showed that Cd, Cu, Zn, Pb, Cr, Ni, Sn and Sb of different microenvironment mainly came from natural sources. However As, Mg, Ca and Mn were affected by both anthropogenic and natural sources. The health risks assessment showed that the non-carcinogenic risk of Cr is the highest among all elements. We should pay more attention on the non-carcinogenic risk of sanitation workers and the carcinogenic risks of students and security staff. This study is helpful for scientific assessment of particulate matter exposure levels and heavy metal health risks in different occupational populations, and provides certain theoretical basis for scientific prevention and particulate matter pollution control.
-
Key words:
- PM2.5 /
- personal exposure levels /
- metal elements /
- health risks assessment /
- Jinan
-
表 1 暴露量公式计算参数
Table 1. Parameter of personal exposure formula
人群/微环境
Population/
microenvironment暴露频率/(d·a−1)
Exposure factors暴露年限/a
Exposure duration体重/kg
Body weight
Male/Female平均暴露时间/d
Average exposure time致癌
Carcinogenic非致癌
Non-carcinogenic学生 265 4 69/57 70×365 30×365 铸造厂工人 365 30 69/57 70×365 30×365 环卫工人 365 30 69/57 70×365 30×365 保安 365 30 69/57 70×365 30×365 客厅 365 30 69/57 70×365 30×365 表 2 金属元素SF和RfD取值
Table 2. SF and RfD values of selected metal elements
元素
Element性质
Characteristic斜率因子/( kg·d·mg−1)
Slope factor最大参考剂量/( mg·kg−1·d−1)
Reference doseCu 非致癌 4.02×10−3 Zn 非致癌 3.00×10−1 Pb 非致癌 3.50×10−3 Mn 非致癌 1.4×10−5 Cr 致癌 42 3.00×10−5 Ni 致癌 1.19 5.00×10−2 Cd 致癌 8.4 1.00×10−4 As 致癌 15.1 3.00×10−4 Co 致癌 32 3.00×10−4 表 3 不同行业人群PM2.5和PM10暴露质量浓度(μg·m−3)
Table 3. Personal exposure of PM2.5 and PM10 concentrations in different occupational populations(μg·m−3)
监测人群
PopulationPM2.5 PM10 最小值
Minimum最大值
Maximum中位值
Median平均值
Mean最小值
Minimum最大值
Maximum中位值
Median平均值
Mean学生 22.0 139.3 39.0 46.6 46.1 886.1 73.9 108.6 铸造厂工人 30.6 155.8 52.0 51.2 61.5 352.5 88.7 95.9 餐厅员工 36.3 176.7 51.6 42.0 71.7 579.1 118.0 131.3 保安 32.4 158.1 41.2 45.7 96.5 507.8 121.2 135.0 环卫工人 17.6 165.5 67.2 79.5 31.0 358.7 147.1 128.8 公交车司机 33.6 527.8 87.1 87.7 59.1 600.6 209.1 217.4 表 4 不同行业人群工作环境PM2.5中重金属组分浓度(平均值±标准差; ng·m−3)
Table 4. Concentrations of metal element components of PM2.5 in different microenvironment of different occupational populations (mean±standard deviation; ng·m−3)
元素
Element学生宿舍
Student dormitory铸造厂
Foundry城市街道
Urban street学校大门
School gate住宅客厅
Living roomFe 1293±563 2968±2389 5361±5105 3553±3491 1876±2060 Al 3864±1207 2839±1434 11119±8720 6666±5344 4773±2959 Ca 8507±2818 6131±2330 19557±13789 11632±7256 10019±5337 Mg 4119±1225 2784±855 8377±5944 4137±2111 4578±1682 Cu 56.9±105 12.4±6.6 19.2±12.5 15.7±8.4 11.1±6.7 Zn 195±239 120±61.9 179±116 141±34.9 118±40.3 Pb 22.0±23.5 27.6±17.2 31.5±24.4 26.3±7.6 20.6±9.2 Mn 34.8±7.4 88.8±55.2 141±116 100±83.4 55.7±49.4 Cr 51.5±4.1 29.3±9.4 186±175 38.4±13.0 61.3±19.3 Ni 44.0±37.0 21.1±15.9 37.6±36.2 21.7±10.8 22.9±12.9 Sn 4.4±0.8 4.2±1.9 7.2±5.4 4.8±2.0 4.6±0.8 Sb 1.6±0.4 5.6±0.9 3.0±1.8 2.4±1.1 1.8±0.8 Cd 1.9±1.1 1.0±0.7 0.6±0.7 1.1±0.4 0.9±0.8 As 2.7±0.7 3.8±2.4 5.4±2.9 4.8±1.9 3.8±1.1 Co 0.7±0.3 0.6±0.4 2.1±2.0 1.5±1.4 0.7±0.8 表 5 有毒金属对不同行业人群的非致癌风险与致癌风险
Table 5. Non-carcinogenic risks and carcinogenic risks of toxic metal elements to people in different occupational populations
健康风险
Health risks元素
Element男性 Male 女性 Female 铸造工人
Foundryman环卫工人
Sanitation worker保安
Security staff学生
Student铸造工人
Foundryman环卫工人
Sanitation worker保安
Security staff学生
Student非致癌风险
Non-carcinogenic risksCu 6.3×10−4 8.1×10−4 7.2×10−4 8.2×10−4 5.6×10−4 7.3×10−4 6.4×10−4 7.3×10−4 Zn 4.8×10−5 7.0×10−5 5.6×10−5 8.9×10−5 4.3×10−5 6.3×10−5 5.0×10−5 8.0×10−5 Pb 1.2×10−3 1.3×10−3 1.2×10−3 1.3×10−3 1.1×10−3 1.2×10−3 1.0×10−3 1.2×10−3 Mn 3.6×10−2 5.5×10−2 4.1×10−2 3.7×10−2 3.3×10−2 5.0×10−2 3.7×10−2 3.4×10−2 Cr 0.15 0.72 0.18 0.42 0.13 0.65 0.16 0.37 Ni 6.9×10−5 10.6×10−5 7.1×10−5 9.8×10−5 6.2×10−5 9.5×10−5 6.4×10−5 8.8×10−5 Cd 1.3×10−2 1.2×10−2 1.3×10−2 0.3×10−2 1.1×10−2 1.1×10−2 1.1×10−2 1.9×10−2 As 5.2×10−3 5.8×10−3 5.6×10−3 2.7×10−3 4.7×10−3 5.2×10−3 5.1×10−3 2.4×10−3 Co 4.0×10−3 4.6×10−3 4.4×10−3 0.5×10−3 3.6×10−3 4.1×10−3 3.9×10−3 0.5×10−3 致癌风险
carcinogenic risksCr 2.0×10−5 8.3×10−6 2.0×10−4 2.2×10−4 1.8×10−5 7.5×10−6 1.8×10−4 2.0×10−4 Ni 4.9×10−7 8.1×10−8 1.9×10−6 2.5×10−6 4.3×10−7 7.3×10−8 1.7×10−6 2.2×10−6 Cd 1.5×10−7 2.6×10−8 6.2×10−7 7.9×10−7 1.3×10−7 2.3×10−8 5.6×10−7 7.1×10−7 As 3.7×10−7 2.0×10−7 4.7×10−6 5.3×10−6 3.4×10−7 1.8×10−7 4.2×10−6 4.7×10−6 Co 2.1×10−7 7.7×10−8 1.8×10−6 2.1×10−6 1.8×10−7 6.9×10−8 1.6×10−6 1.9×10−6 -
[1] ZHAI S X, JACOB D J, WANG X, et al. Fine particulate matter (PM2.5) trends in China, 2013–2018: Separating contributions from anthropogenic emissions and meteorology [J]. Atmospheric Chemistry and Physics, 2019, 19(16): 11031-11041. doi: 10.5194/acp-19-11031-2019 [2] KAUR S, NIEUWENHUIJSEN M J. Determinants of personal exposure to PM2.5, ultrafine particle counts, and CO in a transport microenvironment [J]. Environmental Science & Technology, 2009, 43(13): 4737-4743. [3] VALAVANIDIS A, FIOTAKIS K, VLACHOGIANNI T. Airborne particulate matter and human health: Toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms [J]. Journal of Environmental Science and Health, Part C, 2008, 26(4): 339-362. doi: 10.1080/10590500802494538 [4] 许悦, 王可, 刘雪梅, 等. 室内外PM2.5中金属元素的污染特征及来源 [J]. 中国环境科学, 2018, 38(4): 1257-1264. XU Y, WANG K, LIU X M, et al. Pollution characteristics and sources of metal elements in indoor and outdoor PM2.5 [J]. China Environmental Science, 2018, 38(4): 1257-1264(in Chinese).
[5] LI X Y, CLARK S, FLOESS E, et al. Personal exposure to PM2.5 of indoor and outdoor origin in two neighboring Chinese communities with contrasting household fuel use patterns [J]. Science of the Total Environment, 2021, 800: 149421. doi: 10.1016/j.scitotenv.2021.149421 [6] FANG B, ZENG H, ZHANG L, et al. Toxic metals in outdoor/indoor airborne PM2.5 in port city of Northern, China: Characteristics, sources, and personal exposure risk assessment [J]. Environmental Pollution, 2021, 279: 116937. doi: 10.1016/j.envpol.2021.116937 [7] 冉铮, 杨柳, 韩坤, 等. 2012—2019年天津市公交站微环境空气质量改善 [J]. 中国环境科学, 2021, 41(10): 4549-4555. doi: 10.3969/j.issn.1000-6923.2021.10.009 RAN Z, YANG L, HAN K, et al. Improvement of microenvironmental air quality in Tianjin bus stations from 2012 to 2019 [J]. China Environmental Science, 2021, 41(10): 4549-4555(in Chinese). doi: 10.3969/j.issn.1000-6923.2021.10.009
[8] 柯钊跃, 王佳, 郑君瑜, 等. 广州市学龄儿童在校期间PM2.5暴露水平评价 [J]. 中国环境科学, 2011, 31(10): 1618-1624. KE Z Y, WANG J, ZHENG J Y, et al. PM2.5 exposure assessment of school children at a primary school in Guangzhou, China [J]. China Environmental Science, 2011, 31(10): 1618-1624(in Chinese).
[9] 邓芙蓉, 王欣, 苏会娟, 等. 北京市某城区儿童大气PM2.5个体暴露水平及影响因素研究 [J]. 环境与健康杂志, 2009, 26(9): 762-765. DENG F R, WANG X, SU H J, et al. Personal exposure to PM2.5 of children living near traffic road and the influencing factors in Beijing [J]. Journal of Environment and Health, 2009, 26(9): 762-765(in Chinese).
[10] STEINLE S, REIS S, SABEL C E, et al. Personal exposure monitoring of PM2.5 in indoor and outdoor microenvironments [J]. Science of the Total Environment, 2015, 508: 383-394. doi: 10.1016/j.scitotenv.2014.12.003 [11] 李友平, 范忠雨, 李坤, 等. 不同出行方式PM2.5个体暴露及其影响因素 [J]. 环境化学, 2015, 34(8): 1408-1416. doi: 10.7524/j.issn.0254-6108.2015.08.2015012610 LI Y P, FAN Z Y, LI K, et al. Commuter exposure to PM2.5 and its influencing factors in different commuting modes [J]. Environmental Chemistry, 2015, 34(8): 1408-1416(in Chinese). doi: 10.7524/j.issn.0254-6108.2015.08.2015012610
[12] LIU M, GUO W T, CAI Y Y, et al. Personal exposure to fine particulate matter and renal function in children: A panel study [J]. Environmental Pollution, 2020, 266: 115129. doi: 10.1016/j.envpol.2020.115129 [13] CHEN X C, CHUANG H C, WARD T J, et al. Indoor, outdoor, and personal exposure to PM2.5 and their bioreactivity among healthy residents of Hong Kong [J]. Environmental Research, 2020, 188: 109780. doi: 10.1016/j.envres.2020.109780 [14] LIN C, HU D Y, JIA X, et al. The relationship between personal exposure and ambient PM2.5 and black carbon in Beijing [J]. Science of the Total Environment, 2020, 737: 139801. doi: 10.1016/j.scitotenv.2020.139801 [15] LI Y Q, XU H M, WANG J H, et al. Personal exposure to PM2.5-bound organic species from domestic solid fuel combustion in rural Guanzhong Basin, China: Characteristics and health implication [J]. Chemosphere, 2019, 227: 53-62. doi: 10.1016/j.chemosphere.2019.04.010 [16] LI F, YAN J J, WEI Y C, et al. PM2.5-bound heavy metals from the major cities in China: Spatiotemporal distribution, fuzzy exposure assessment and health risk management [J]. Journal of Cleaner Production, 2021, 286: 124967. doi: 10.1016/j.jclepro.2020.124967 [17] 何瑞东, 张轶舜, 陈永阳, 等. 郑州市某生活区大气PM2.5中重金属污染特征及生态、健康风险评估 [J]. 环境科学, 2019, 40(11): 4774-4782. HE R D, ZHANG Y S, CHEN Y Y, et al. Heavy metal pollution characteristics and ecological and health risk assessment of atmospheric PM2.5 in a living area of Zhengzhou City [J]. Environmental Science, 2019, 40(11): 4774-4782(in Chinese).
[18] 胡月琪, 郭建辉, 张超, 等. 北京市道路扬尘重金属污染特征及潜在生态风险 [J]. 环境科学, 2019, 40(9): 3924-3934. HU Y Q, GUO J H, ZHANG C, et al. Pollution characteristics and potential ecological risks of heavy metals in road dust in Beijing [J]. Environmental Science, 2019, 40(9): 3924-3934(in Chinese).
[19] 徐映如, 凌利民, 沈俊毅, 等. 上海市虹口区PM2.5中重金属和类重金属污染特征及健康风险评价 [J]. 职业与健康, 2021, 37(15): 2100-2105. XU Y R, LING L M, SHEN J Y, et al. Pollution characteristics and health risk assessment of heavy metals and metalloids in atmospheric PM2.5 in Hongkou District of Shanghai [J]. Occupation and Health, 2021, 37(15): 2100-2105(in Chinese).
[20] NIU Y Y, WANG F, LIU S M, et al. Source analysis of heavy metal elements of PM2.5 in canteen in a university in winter [J]. Atmospheric Environment, 2021, 244: 117879. doi: 10.1016/j.atmosenv.2020.117879 [21] LI P H, YU J, BI C L, et al. Health risk assessment for highway toll station workers exposed to PM2.5-bound heavy metals [J]. Atmospheric Pollution Research, 2019, 10(4): 1024-1030. doi: 10.1016/j.apr.2019.01.011 [22] WANG F, ZHOU Y Y, MENG D, et al. Heavy metal characteristics and health risk assessment of PM2.5 in three residential homes during winter in Nanjing, China [J]. Building and Environment, 2018, 143: 339-348. doi: 10.1016/j.buildenv.2018.07.011 [23] 刘建伟, 晁思宏, 陈艳姣, 等. 北京市不同年龄人群PM2.5载带重金属的健康风险 [J]. 中国环境科学, 2018, 38(4): 1540-1549. doi: 10.3969/j.issn.1000-6923.2018.04.042 LIU J W, CHAO S H, CHEN Y J, et al. Health risk of PM2.5-bound heavy metals for different age population in Beijing, China [J]. China Environmental Science, 2018, 38(4): 1540-1549(in Chinese). doi: 10.3969/j.issn.1000-6923.2018.04.042
[24] 刘素萍, 肖冻, 黄居梅, 等. 2014—2017年济南市城区细颗粒物中致癌金属元素季节性特征及来源分析 [J]. 预防医学论坛, 2019, 25(3): 226-228,231. LIU S P, XIAO D, HUANG J M, et al. PM2.5 Analysis on seasonal variation and source analysis of carcinogenic heavy metals in PM2.5, Jinan city, 2014-2017 [J]. Preventive Medicine Tribune, 2019, 25(3): 226-228,231(in Chinese).
[25] 张晓凯, 于蕾, 孙苗苗, 等. 济南市春季大气中PM2.5、PM10颗粒物分布状态及元素分析 [J]. 科学技术与工程, 2018, 18(25): 278-285. doi: 10.3969/j.issn.1671-1815.2018.25.044 ZHANG X K, YU L, SUN M M, et al. Distribution and elemental analysis of particulate matter PM2.5, PM10 in the atmosphere of spring in Jinan City [J]. Science Technology and Engineering, 2018, 18(25): 278-285(in Chinese). doi: 10.3969/j.issn.1671-1815.2018.25.044
[26] 孙湛, 刘素萍, 张谊, 等. 济南市PM2.5中金属及类金属元素季节性变化及相关性分析 [J]. 环境卫生学杂志, 2017, 7(5): 403-407. SUN Z, LIU S P, ZHANG Y, et al. Seasonal variation and correlation of metals and metalloids elements in PM2.5 in Jinan City [J]. Journal of Environmental Hygiene, 2017, 7(5): 403-407(in Chinese).
[27] CHENG M T, TANG G Q, LV B, et al. Source apportionment of PM2.5 and visibility in Jinan, China [J]. Journal of Environmental Sciences, 2021, 102: 207-215. doi: 10.1016/j.jes.2020.09.012 [28] LI Y Y, YANG L X, CHEN X F, et al. Indoor/outdoor relationships, sources and cancer risk assessment of NPAHs and OPAHs in PM2.5 at urban and suburban hotels in Jinan, China [J]. Atmospheric Environment, 2018, 182: 325-334. doi: 10.1016/j.atmosenv.2018.03.058 [29] 张伟, 姬亚芹, 张军, 等. 辽宁省典型城市道路尘PM2.5成分谱研究 [J]. 中国环境科学, 2018, 38(2): 412-417. doi: 10.3969/j.issn.1000-6923.2018.02.002 ZHANG W, JI Y Q, ZHANG J, et al. Study on the road dust source profile of PM2.5 in Liaoning Province typical cities [J]. China Environmental Science, 2018, 38(2): 412-417(in Chinese). doi: 10.3969/j.issn.1000-6923.2018.02.002
[30] U. S. EPA. Exposure Factors Handbook 2011 Edition (Final Report). U. S. Environmental Protection Agency, Washington, DC, EPA/600/R-09/052F, 2011[R]. [2022-03-05].https://cfpub.epa.gov/ncea/efp/recordisplay.cfm?deid=236252. [31] 环境保护部. 中国人群暴露参数手册(成人卷)[M]. 北京: 中国环境出版社, 2013. Ministry of Environmental Protection. Exposure factors handbook of Chinese population[M]. Beijing, China Environmental Science Press, 2013(in Chinese).
[32] US EPA. Integrated Risk Information System[R]. [2022-03-05]. http://www.epa.gov/iris/. [33] GAO P, LEI T T, JIA L M, et al. Exposure and health risk assessment of PM2.5-bound trace metals during winter in university campus in Northeast China [J]. Science of the Total Environment, 2017, 576: 628-636. doi: 10.1016/j.scitotenv.2016.10.126 [34] WU D L, LIN M, CHAN C Y, et al. Influences of commuting mode, air conditioning mode and meteorological parameters on fine particle (PM2.5) exposure levels in traffic microenvironments [J]. Aerosol and Air Quality Research, 2013, 13(2): 709-720. doi: 10.4209/aaqr.2012.08.0212 [35] LI T T, BAI Y H, LIU Z R, et al. Air quality in passenger cars of the ground railway transit system in Beijing, China [J]. Science of the Total Environment, 2006, 367(1): 89-95. doi: 10.1016/j.scitotenv.2006.01.007 [36] KAUR S, NIEUWENHUIJSEN M, COLVILE R. Personal exposure of street canyon intersection users to PM2.5, ultrafine particle counts and carbon monoxide in Central London, UK [J]. Atmospheric Environment, 2005, 39(20): 3629-3641. doi: 10.1016/j.atmosenv.2005.02.046 [37] 项琳琳, 刘东, 左鑫. 上海市五类公共建筑室内PM2.5浓度的实测研究 [J]. 建筑热能通风空调, 2016, 35(5): 6-11. doi: 10.3969/j.issn.1003-0344.2016.05.002 XIANG L L, LIU D, ZUO X. Test study on PM2.5 concentration distribution and influence factors of five types of public buildings in Shanghai [J]. Building Energy & Environment, 2016, 35(5): 6-11(in Chinese). doi: 10.3969/j.issn.1003-0344.2016.05.002
[38] 崔小波, 牛丕业, 郭伟, 等. 北京市10家医院室内空气PM2.5监测报告 [J]. 心肺血管病杂志, 2011, 30(1): 67-70. doi: 10.3969/j.issn.1007-5062.2011.01.019 CUI X B, NIU P Y, GUO W, et al. Indoor air concentrations of PM2.5 in 10 hospitals in Beijing [J]. Journal of Cardiovascular and Pulmonary Diseases, 2011, 30(1): 67-70(in Chinese). doi: 10.3969/j.issn.1007-5062.2011.01.019
[39] 郑德生, 滕克强, 冯月明, 等. 不同场所室内外PM2.5浓度水平及其气象特征研究 [J]. 中国公共卫生管理, 2017, 33(1): 28-31. ZHENG D S, TENG K Q, FENG Y M, et al. Research on level of PM2.5 fine particles concentration and meteorological characteristics in different places [J]. Chinese Journal of Public Health Management, 2017, 33(1): 28-31(in Chinese).
[40] 李凤华, 吴琳, 张静, 等. 典型道路路边空气颗粒物及无机元素特征分析 [J]. 中国环境科学, 2017, 37(7): 2460-2469. doi: 10.3969/j.issn.1000-6923.2017.07.007 LI F H, WU L, ZHANG J, et al. Characteristic analysis of inorganic elements in PM2.5 and PM10 at urban roadside environment [J]. China Environmental Science, 2017, 37(7): 2460-2469(in Chinese). doi: 10.3969/j.issn.1000-6923.2017.07.007
[41] World Health Organization. Air quality guidelines: global update 2005: particulate matter, ozone, nitrogen dioxide and sulfur dioxide [M]. World Health Organization. Regional Office for Europe, 2006, https://apps.who.int/iris/handle/10665/107823.