-
作为一种新型的光催化材料,卤氧化铋(BiOX, X = Cl, Br, I)具有安全、无毒、稳定、高效等优点[1]。然而,由于BiOCl较大的禁带宽度(Eg=3.20—3.50 eV),仅对太阳光中的紫外光具有响应[2],BiOBr和BiOI虽然能够吸收可见光,但由于光生电子-空穴对的复合率高,其光催化活性不足以应对实际的环境污染[3-4]。BiOX的[Bi2O2]2+层与双卤离子层嵌套结构[1]可以形成BiOXxY1−x (X, Y = Cl, Br, I),如BiOBrxCl1−x[5]、BiOClxI1−x[6]、BiOBrxI1−x[7]。且研究发现,BiOXxY1−x固溶体的光催化活性普遍高于纯BiOX或BiOY。Yang等[1]通过乙二醇辅助水热法制备了花状BiOBrxCl1−x,发现BiOBr0.5Cl0.5光催化活性最高,结果显示50 mg BiOBr0.5Cl0.5在可见光照射50 min后完全降解50 mL 20 mg·L−1甲基橙溶液。因为BiOCl和BiOBr在水溶液中的热稳定性和化学稳定性比BiOI高,溶解度比BiOI低[8-9],所以本文选用BiOBrxCl1−x作为光催化剂。虽然BiOBrxCl1−x已成为可见光光催化剂的重要组成部分,但仍有必要通过增加反应活性位点、减少电子空穴复合率、增加可见光吸收率等手段提高其光催化效率。
近年来,为了提高Bi系材料的光催化效率,研究人员采用了很多研究方法。如调整结构或形态[10]、异质结的构建[11]、掺杂[12]等。其中,碳基材料是多相催化中具有前景的载体材料。生物炭(BC)具有大量的孔隙结构,因此其比表面积非常大,可为光催化剂提供负载位点,同时可以吸附目标污染物,使光催化产生的自由基与目标污染物充分接触[13]。生物炭的导电性能可以促进电子的分离和迁移,将低成本的生物炭与铋基光催化剂复合可以减少光生电子与空穴的复合率[14]。因此,光生电子的寿命延长,光催化效率得到提高。且生物炭可以由废弃生物资源制得,为农业废物的资源化提供了一条途径。在现有研究中,生物炭通常作为载体,很少有研究将其作为掺杂材料,Ji等[15]制备了负载苝二酰亚胺的生物炭二元光催化剂(PDI/BC, PB),其中PB-9 (PDI:BC = 1:9, W/W)在可见光照射2 h下可100%降解10 mg·L−1碘海醇,研究结果显示掺杂少量BC的二元光催化剂具有更高的光催化活性。
本文制备了不同Br、Cl比例的BiOBrxCl1−x,将竹叶生物炭掺入光催化效率最佳比例的BiOBr0.2Cl0.8中,并探究光催化活性最佳的复合材料。采用各种表征手段对制备的复合催化剂的形貌、结构及性质进行表征。在复合光催化剂可见光下降解罗丹明B溶液(RhB)的过程中设置不同催化剂投加量和反应pH,探究复合光催化剂的光催化性能,并探讨了生物炭/BiOBrxCl1−x在可见光下催化降解RhB的机理。
可见光下竹叶生物炭掺杂BiOBrxCl1-x光催化降解罗丹明B
Photocatalytic degradation of rhodamine B by bamboo leaf biochar doped with BiOBrxCl1-x under visible light
-
摘要: 利用共沉淀法合成不同Br、Cl比例的BiOBrxCl1−x,并掺杂不同质量的竹叶生物炭制备复合光催化剂。利用扫描电子显微镜、X射线衍射仪、傅里叶变换红外光谱仪、紫外-可见漫反射和Zeta电位对材料进行表征。结果表明,100 mg竹叶生物炭掺杂BiOBr0.2Cl0.8的光催化效果最佳,光催化100 min可降解96.1%的罗丹明B溶液(RhB, 10 mg·L-1),光照120 min后RhB的矿化率达到59.6%。探究了催化剂投加量和溶液pH等因素对复合光催化剂可见光下降解RhB的影响。自由基捕获实验和电子顺磁共振结果显示,在降解中起主要作用的活性物种为·O2-和h+。生物炭的掺杂能够减小光催化剂的禁带宽度,增加光吸收范围,构建电子传输通道,阻碍光生电子-空穴复合,进而提高光催化效率。
-
关键词:
- BiOBrxCl1-x /
- 竹叶生物炭 /
- 光催化 /
- 罗丹明B
Abstract: BiOBrxCl1−x photocatalysts with different ratios of Br and Cl were synthesized by a coprecipitation method, which were mixed with bamboo leaf biochar with different mass to prepare composite photocatalyst. The materials were characterized by scanning electron microscope, X-ray diffractometer, Fourier transform infrared spectrometer, UV-visible diffuse-reflectance spectra and Zeta potential. The results indicated that 100 mg bamboo leaf biochar doped BiOBr0.2Cl0.8 showed the best photocatalytic performance, which could degrade 96.1% of 10 mg·L-1 rhodamine B (RhB) solution in 100 min, and the mineralization rate of RhB reached 59.6% after 120 min illumination. The effects of catalyst dosage and pH of solution on the degradation of RhB under visible light were investigated. Based on the radical trapping experiment and electron paramagnetic resonance, it can be concluded that the main active species in the degradation process were ·O2- and h+. The doping of biochar can reduce the band gap of photocatalyst, increase the light absorption range, construct an electron transmission channel and hinder the photo-generated electron-hole recombination, then improve the photocatalytic efficiency.-
Key words:
- BiOBrxCl1-x /
- bamboo leaf biochar /
- photocatalysis /
- rhodamine B
-
图 3 不同Br、Cl比例的BiOBrxCl1-x对RhB的降解率(a);BiOBr0.2Cl0.8和CBi催化剂对RhB的降解曲线(b); 不同光照时间下BiOBr0.2Cl0.8、CBi-4的紫外全扫图谱(c); 不同时间段CBi-4对RhB的矿化率(d)
Figure 3. Removal rate of RhB by BiOBrxCl1-x with different ratios of Br and Cl(a); Degradation curves of RhB by BiOBr0.2Cl0.8 and CBi catalysts(b); Ultraviolet full scanning spectra of BiOBr0.2Cl0.8 and CBi-4 under different illumination time(c); Mineralization rate of CBi-4 to RhB in different time periods(d)
图 7 CBi-4可见光体系下不同猝灭剂对RhB降解的影响(a);DMPO-·OH(b)和DMPO-·O2-(c)的EPR信号;可见光下CBi-4对RhB的降解机理(d)
Figure 7. Effects of different inhibitors on the degradation of RhB in the visible light system of CBi-4(a); The EPR signals of DMPO-·OH(b)and DMPO-·O2-(c); The degradation mechanism of RhB by CBi-4 under visible light(d)
表 1 不同投加量的CBi-4催化剂对RhB降解的准一级动力学拟合参数
Table 1. Pseudo-first order kinetics fitting parameters of CBi-4 catalyst with different dosage for RhB degradation
投加量
Dosage/mg动力学拟合方程
First-order kinetic equationk/min−1 R2 5 y=0.00151x+0.03989 0.002 0.96 15 y=0.00811x+0.12643 0.008 1.00 25 y=0.02299x+0.16954 0.023 0.98 45 y=0.05432x-0.20754 0.054 0.94 表 2 不同pH下CBi-4催化剂对RhB降解的一级动力学拟合参数
Table 2. First-order kinetic fitting parameters of catalyst degradation of RhB under different pH conditions
pH 动力学拟合方程
First-order kinetic equationk/min−1 R2 3 y=0.08378x+0.1989 0.084 0.95 5 y=0.0691x-0.00715 0.069 0.98 7 y=0.00334x+0.0067 0.003 0.97 9 y=0.02207x+0.10236 0.022 0.97 11 y=0.00034x-0.0066 0.000 0.61 -
[1] YANG Y, ZHANG C, LAI C, et al. BiOX (X = Cl, Br, I) photocatalytic nanomaterials: Applications for fuels and environmental management [J]. Advances in Colloid and Interface Science, 2018, 254: 76-93. doi: 10.1016/j.cis.2018.03.004 [2] PARE B, SARWAN B, JONNALAGADDA S B. Photocatalytic mineralization study of malachite green on the surface of Mn-doped BiOCl activated by visible light under ambient condition [J]. Applied Surface Science, 2011, 258(1): 247-253. doi: 10.1016/j.apsusc.2011.08.040 [3] FU J, TIAN Y L, CHANG B B, et al. BiOBr-carbon nitride heterojunctions: Synthesis, enhanced activity and photocatalytic mechanism [J]. Journal of Materials Chemistry, 2012, 22(39): 21159-21166. doi: 10.1039/c2jm34778d [4] XIAO X, ZHANG W D. Facile synthesis of nanostructured BiOI microspheres with high visible light-induced photocatalytic activity [J]. Journal of Materials Chemistry, 2010, 20(28): 5866-5870. doi: 10.1039/c0jm00333f [5] GU Y Y, XIONG Y Q, ZHANG X X, et al. Facile synthesis of hierarchical BiOClxBr1-x solid solution with enhanced photocatalytic activity [J]. Journal of Central South University, 2018, 25(7): 1619-1627. doi: 10.1007/s11771-018-3854-0 [6] XIAN D S, YANG J J, YU X, et al. In situ grown hierarchical 50%BiOCl/BiOI hollow flowerlike microspheres on reduced graphene oxide nanosheets for enhanced visible-light photocatalytic degradation of rhodamine B [J]. Applied Surface Science, 2018, 433: 502-512. doi: 10.1016/j.apsusc.2017.09.258 [7] CAI L, ZHANG G Q, ZHANG Y F, et al. Mediation of band structure for BiOBrxI1–x hierarchical microspheres of multiple defects with enhanced visible-light photocatalytic activity [J]. CrystEngComm, 2018, 20(26): 3647-3656. doi: 10.1039/C8CE00700D [8] ZHANG W D, ZHANG Q, DONG F. Visible-light photocatalytic removal of NO in air over BiOX (X = cl, br, I) single-crystal nanoplates prepared at room temperature [J]. Industrial & Engineering Chemistry Research, 2013, 52(20): 6740-6746. [9] KANDANAPITIYE M S, GAO M, MOLTER J, et al. Synthesis, characterization, and X-ray attenuation properties of ultrasmall BiOI nanoparticles: Toward renal clearable particulate CT contrast agents [J]. Inorganic Chemistry, 2014, 53(19): 10189-10194. doi: 10.1021/ic5011709 [10] YAN X D, ZHAO H M, LI T F, et al. In situ synthesis of BiOCl nanosheets on three-dimensional hierarchical structures for efficient photocatalysis under visible light [J]. Nanoscale, 2019, 11(21): 10203-10208. doi: 10.1039/C9NR02304F [11] LIU F Y, JIANG Y R, CHEN C C, et al. Novel synthesis of PbBiO2Cl/BiOCl nanocomposite with enhanced visible-driven-light photocatalytic activity [J]. Catalysis Today, 2018, 300: 112-123. doi: 10.1016/j.cattod.2017.04.030 [12] AGGARWAL R, SAINI D, SINGH B, et al. Bitter apple peel derived photoactive carbon dots for the sunlight induced photocatalytic degradation of crystal violet dye [J]. Solar Energy, 2020, 197: 326-331. doi: 10.1016/j.solener.2020.01.010 [13] MATOS I, BERNARDO M, FONSECA I. Porous carbon: A versatile material for catalysis [J]. Catalysis Today, 2017, 285: 194-203. doi: 10.1016/j.cattod.2017.01.039 [14] LI M, HUANG H W, YU S X, et al. Simultaneously promoting charge separation and photoabsorption of BiOX (X = Cl, Br) for efficient visible-light photocatalysis and photosensitization by compositing low-cost biochar [J]. Applied Surface Science, 2016, 386: 285-295. doi: 10.1016/j.apsusc.2016.05.171 [15] JI Q Y, CHENG X Y, SUN D Y, et al. Persulfate enhanced visible light photocatalytic degradation of iohexol by surface-loaded perylene diimide/acidified biochar [J]. Chemical Engineering Journal, 2021, 414: 128793. doi: 10.1016/j.cej.2021.128793 [16] NA Y, KIM Y I, WON CHO D, et al. Adsorption/photocatalytic performances of hierarchical flowerlike BiOBrxCl1−x nanostructures for methyl orange, Rhodamine B and methylene blue [J]. Materials Science in Semiconductor Processing, 2014, 27: 181-190. doi: 10.1016/j.mssp.2014.06.043 [17] ZHU N Y, YAN T M, QIAO J, et al. Adsorption of arsenic, phosphorus and chromium by bismuth impregnated biochar: Adsorption mechanism and depleted adsorbent utilization [J]. Chemosphere, 2016, 164: 32-40. doi: 10.1016/j.chemosphere.2016.08.036 [18] BERA K K, MAJUMDAR R, CHAKRABORTY M, et al. Phase control synthesis of α, β and α/β Bi2O3 hetero-junction with enhanced and synergistic photocatalytic activity on degradation of toxic dye, Rhodamine-B under natural sunlight [J]. Journal of Hazardous Materials, 2018, 352: 182-191. doi: 10.1016/j.jhazmat.2018.03.029 [19] AHMED I, JHUNG S H. Applications of metal-organic frameworks in adsorption/separation processes via hydrogen bonding interactions [J]. Chemical Engineering Journal, 2017, 310: 197-215. doi: 10.1016/j.cej.2016.10.115 [20] 卢涛, 刘国, 李春雪, 等. BiOCl/SiO2/Fe3O4复合材料可见光催化去除水中亚甲基蓝 [J]. 环境科学学报, 2019, 39(2): 352-358. LU T, LIU G, LI C X, et al. Photocatalytic degradation of methylene blue in water by BiOCl/SiO2/Fe3O4 composites [J]. Acta Scientiae Circumstantiae, 2019, 39(2): 352-358(in Chinese).
[21] 盛寒祯, 尤宏, 柳锋, 等. 可见光驱动下氧掺杂氮化碳活化过硫酸盐降解罗丹明B [J]. 环境科学学报, 2020, 40(8): 2708-2714. doi: 10.13671/j.hjkxxb.2020.0143 SHENG H Z, YOU H, LIU F, et al. Degradation of Rhodamine B by persulfate activated by oxygen-doped carbon nitride under visible light irradation [J]. Acta Scientiae Circumstantiae, 2020, 40(8): 2708-2714(in Chinese). doi: 10.13671/j.hjkxxb.2020.0143
[22] JIANG Y R, LIN H P, CHUNG W H, et al. Controlled hydrothermal synthesis of BiOxCly/BiOmIn composites exhibiting visible-light photocatalytic degradation of crystal violet [J]. Journal of Hazardous Materials, 2015, 283: 787-805. doi: 10.1016/j.jhazmat.2014.10.025 [23] XIAO X, XING C L, HE G P, et al. Solvothermal synthesis of novel hierarchical Bi4O5I2 nanoflakes with highly visible light photocatalytic performance for the degradation of 4-tert-butylphenol [J]. Applied Catalysis B:Environmental, 2014, 148/149: 154-163. doi: 10.1016/j.apcatb.2013.10.055