-
重金属元素在土壤—植物系统中的迁移转化主要涉及物理、化学和生物过程,对植物也会产生生态效应问题[1]。这不仅关乎到土壤环境质量,而且也会影响土壤-植物-人体系统中的重金属元素含量。重金属污染与人体健康的相关性研究一直是研究的热点[2-3]。由于重金属不可生物降解和生物半衰期较长的性质,可能在生物体内积聚而危害健康[4]。目前国内外开展了大量关于重金属在土壤-植物-人体系统迁移转化和健康风险评价方面的研究,其中植物涉及谷物、蔬菜、水果等[5-7]。例如,王世玉等[8]探讨了9个污灌区的重金属在土壤及作物中的污染情况,评价了重金属对人体健康造成的风险;王峰等[9]探讨了闽中某矿区县茶园土壤和茶叶重金属含量特征及健康风险状况。重金属作为环境和人类的典型污染物,在农业土壤中的过量积累不仅会导致土壤污染,还会增加农作物对重金属的吸收,从而影响农产品的质量和安全性[10]。食物链是重金属进入人体的重要途径之一,有关食品中重金属含量及其膳食摄入量对于评估其对人类健康的风险非常重要[11]。
红枣由于其较高的营养及药用价值,具有增加国民经济和保护生态环境的双重效益,是新疆重要的特色林果之一。新疆红枣种植区主要分布在新疆南部的阿克苏地区、喀什地区、和田地区和巴音郭楞蒙古自治州(以下简称“巴州”),以及新疆东部的哈密地区等五大主产区。塔里木盆地东南缘的红枣种植区位于和田地区和巴州,其种植面积8.74×104 hm2,占新疆总种植面积的24.15%[12]。目前关于新疆红枣的研究主要围绕在种植技术、优化品质等方面[13-14],而对于新疆红枣重金属方面的研究较少;何伟忠[15-16]对新疆主产区红枣果实中的镍含量进行了来源分析,同时提出镉、铬、砷、铅、镍为危害新疆红枣质量安全主要重金属;Zhu等[17]对新疆红枣主要产区的红枣进行了健康风险评价。关于新疆红枣产地土壤重金属污染状况和在土壤-红枣系统中的富集程度,及其对人体的健康风险缺乏综合研究。
本文以塔里木盆地东南缘红枣产地为研究区,在红枣成熟期,采集红枣及对应的根系土壤样品,对镉(Cr)、汞(Hg)、砷(As)、铅(Pb)、铬(Cr)、铜(Cu)、镍(Ni)、锌(Zn)等8种重金属元素在土壤-红枣系统中的富集特征和健康风险进行探讨,以期为新疆红枣产地土壤重金属污染防控和绿色农产品开发提供科学依据,同时为农产品提质增效、乡村振兴提供技术支撑。
新疆塔里木盆地东南缘红枣产地土壤重金属污染及健康风险评价
Heavy metal pollution and health risk assessment of the jujube producing area on the southeastern margin of the Tarim Basin in Xinjiang
-
摘要: 以新疆塔里木盆地东南缘红枣产地为研究区,采集土样及对应红枣样品73组,分析了土壤-红枣系统中八种重金属元素(Cd、Hg、As、Pb、Cr、Cu、Ni、Zn)的含量特征、生物富集程度和土壤重金属污染现状;利用Crystal ball 软件拟合土壤和红枣中重金属含量分布模型,实现在经口摄入的暴露途径下的基于蒙特卡洛不确定性模拟的健康风险评价。结果表明,研究区8种土壤重金属含量未超过农用地土壤污染风险筛选值,Cd、Hg、As、Cr和Ni元素含量均值高于新疆土壤背景值。土壤重金属综合污染指数均值为0.38,属于安全状态,且末县土壤重金属污染综合指数最高。研究区8种重金属元素生物富集能力表现为Cu>Zn>Hg>Cd>Ni>Pb>As>Cr,其中Cu的平均富集系数为0.1242。研究区红枣重金属在经口摄入的暴露途径下的非致癌健康综合指数为0.01(HI<1),不存在非致癌风险,致癌因子As和Hg对人体没有构成致癌威胁。Abstract: 73 soil samples and corresponding jujube samples were collected from the jujube producing area in the southeastern margin of the Tarim Basin in Xinjiang. The content characteristics, bioaccumulation and soil heavy metal pollution status of eight heavy metal elements (Cd, Hg, As, Pb, Cr, Cu, Ni, Zn) were analyzed. The Crystal ball software was used to fit the distribution model of heavy metals in soil and jujube to realize the health risk assessment of heavy metals based on Monte Carlo uncertainty simulation under the exposure route of oral intake. Results showed that the average contents of eight soil heavy metals did not exceed the soil pollution risk screening values of agricultural land, and the average contents of Cd, Hg, As, Cr and Ni elements were higher than the background value of Xinjiang soil. The average pollution index of soil heavy metals was 0.38, which presented a security state, and the soil pollution comprehensive index in Qiemo County was the highest. The bioconcentration ability of eight heavy metal elements followed a descending order of Cu, Zn, Hg, Cd, Ni, Pb, As and Cr, and the average enrichment coefficient of Cu was 0.1242. The non-carcinogenic health risk index of heavy metal in jujube under the oral exposure route was 0.01, which was lower than 1. The eight soil heavy metals did not present non-carcinogenic risk to human health. The carcinogenic factors As and Pb did not pose a carcinogenic threat to the human.
-
表 1 土壤和红枣重金属元素全量测试方法及检出限(mg·kg−1)
Table 1. Detection method and detection limit of total amount of heavy metal elements in soil and jujube samples
测试项目
Items检测方法
Detection method土壤样品检出限
Detection limit of
soil samples红枣样品检出限
Detection limit of
jujube samplesCu 电感耦合等离子体原子
发射光谱法0.952 0.022 Ni 0.744 0.0028 Zn 电感耦合等离子体原子
发射光谱法0.644 0.594 Cd 0.002 0.0005 Pb 0.65 0.005 As 原子荧光法 0.112 0.0056 Hg 0.0003 0.00047 Cr 3.505 0.01 pH 电位计法 0.03 - 表 2 研究区土壤重金属含量描述性统计(mg·kg−1)
Table 2. Statistical analysis of heavy metals content in soil in study area (mg·kg−1)
县或团场名
Region特征值
ItemsCd Hg As Pb Cr Cu Ni Zn 36团
36th Regiment (n=11)最大值 0.17 0.02 14.1 19.25 64.33 29.16 32.51 71.48 最小值 0.10 0.01 8.50 15.89 45.90 18.55 21.35 47.33 平均值 0.13 0.02 10.52 17.18 52.77 22.47 26.27 58.01 标准差 0.02 0.003 1.77 1.14 6.51 3.44 3.80 8.38 变异系数 15.4 15.0 16.8 6.6 12.3 15.3 14.5 14.4 若羌县
Ruoqiang(n=30)最大值 0.19 0.03 17.18 21.93 96.25 41.18 40.34 78.56 最小值 0.10 0.01 5.80 16.68 39.08 13.12 17.30 41.11 平均值 0.15 0.02 11.19 18.72 67.14 27.75 30.65 63.65 标准差 0.02 0.005 2.01 1.31 16.66 7.60 5.89 8.34 变异系数 13.3 25.0 18.0 7.0 24.8 27.4 19.2 13.1 且末县
Qiemo(n=18)最大值 0.17 0.04 22.6 23.13 60.4 26.88 31.67 75.81 最小值 0.11 0.01 6.65 15.57 38.77 14.83 18.78 40.47 平均值 0.15 0.03 17.01 20.23 52.95 22.04 27.68 64.37 标准差 0.02 0.009 4.28 2.10 6.31 3.25 3.83 9.74 变异系数 13.3 30.0 25.2 10.4 11.9 14.7 13.8 15.1 民丰县
Minfeng(n=7)最大值 0.34 0.03 10.45 18.46 62.58 24.93 31.92 82.36 最小值 0.14 0.02 9.40 15.16 55.66 21.03 27.69 56.63 平均值 0.19 0.03 10.01 16.85 57.94 22.42 29.52 62.59 标准差 0.06 0.003 0.34 1.04 2.11 1.17 1.27 8.16 变异系数 31.6 10.0 3.4 6.2 3.6 5.2 4.3 13.0 于田县
Yutian(n=2)最大值 0.16 0.03 16.00 19.12 63.58 24.46 31.69 68.46 最小值 0.13 0.02 8.35 16.13 51.04 18.4 24.78 56.83 平均值 0.14 0.02 12.18 17.62 57.31 21.43 28.23 62.65 标准差 0.01 0.006 3.83 1.49 6.27 3.03 3.46 5.81 变异系数 7.10 30.0 31.4 8.5 10.9 14.1 12.3 9.3 策勒县
Cele(n=5)最大值 0.17 0.02 10.00 18.23 51.00 19.77 25.63 63.96 最小值 0.09 0.01 5.20 16.39 43.87 13.75 20.12 50.37 平均值 0.13 0.01 8.01 17.35 47.75 17.96 23.17 56.44 标准差 0.02 0.002 1.13 0.68 2.34 1.03 1.41 5.22 变异系数 15.4 20.0 14.1 3.9 4.9 5.7 6.1 9.2 全部取样点
All samples (n=73)最大值 0.34 0.04 22.60 23.13 96.25 41.18 40.34 82.36 最小值 0.10 0.01 5.80 15.16 38.77 13.12 17.30 40.47 平均值 0.15 0.02 12.25 18.55 58.99 24.23 28.59 62.41 标准差 0.03 0.008 3.89 1.89 13.54 6.17 5.03 8.84 变异系数 20.0 40.0 31.8 10.2 23.0 25.5 17.6 14.2 新疆背景值
Background value for soils in Xinjiang0.12 0.017 11.2 19.4 49.3 26.7 26.6 68.8 风险筛选值
Risk control standard for soil contamination0.6 3.4 25 170 250 100 190 300 表 3 土壤重金属单项污染指数和综合污染指数均值统计表
Table 3. Statistical table of soil heavy metal pollution index and comprehensive pollution index
区域
RegionCd Hg As Pb Cr Cu Ni Zn Pz 36团 36th Regiment (n=11) 0.21 0.01 0.42 0.10 0.21 0.22 0.14 0.19 0.33 若羌县 Ruoqiang (n=30) 0.25 0.01 0.45 0.11 0.27 0.28 0.16 0.21 0.35 且末县 Qiemo (n=18) 0.25 0.01 0.71 0.12 0.21 0.22 0.15 0.21 0.51 民丰县 Minfeng (n=7) 0.31 0.01 0.40 0.10 0.23 0.22 0.16 0.21 0.33 于田县 Yutian (n=2) 0.24 0.01 0.49 0.10 0.23 0.21 0.15 0.21 0.37 策勒县 Cele (n=5) 0.22 0.01 0.34 0.10 0.19 0.19 0.12 0.19 0.27 全部取样点
All samples (n=73)0.25 0.01 0.49 0.11 0.24 0.24 0.15 0.21 0.38 表 4 土壤重金属指标间相关系数
Table 4. Correlative analysis of soil heavy metals
元素 Elements Cd Hg As Pb Cr Cu Ni Zn Cd 1.000 Hg 0.466** 1.000 As 0.410* 0.903** 1.000 Pb 0.355* 0.806** 0.802** 1.000 Cr 0.467** 0.252 0.087 0.120 1.000 Cu 0.541** 0.307 0.179 0.168 0.982** 1.000 Ni 0.569** 0.456** 0.347* 0.360* 0.942** 0.961** 1.000 Zn 0.684** 0.695** 0.691** 0.639** 0.620** 0.708** 0.811** 1.000 注:**表示在0.01级别(双尾),相关性显著;*表示在0.05级别(双尾),相关性显著.
Note: ** is signifcance at the 0.01 level; * is signifcance at the 0.05 level.表 5 红枣中重金属元素含量均值(以干果质量计,mg·kg−1)
Table 5. Average contents of heavy metal elements in jujube (by dry weight, mg·kg−1)
区域
RegionCd Hg As Pb Cr Cu Ni Zn 36团 36th Regiment (n=11) 0.00151 0.00070 0.035 0.052 0.088 3.241 0.398 6.876 若羌县 Ruoqiang (n=30) 0.00198 0.00065 0.019 0.045 0.098 2.872 0.336 5.354 且末县 Qiemo (n=18) 0.00189 0.00090 0.029 0.053 0.108 2.697 0.338 5.493 民丰县 Minfeng (n=7) 0.00154 0.00111 0.027 0.054 0.156 2.921 0.483 6.644 于田县 Yutian (n=2) 0.00298 0.00083 0.025 0.050 0.117 1.988 0.314 5.614 策勒县 Cele (n=5) 0.00231 0.00015 0.022 0.039 0.076 2.777 0.261 5.927 全部取样点 All samples (n=73) 0.00189 0.00073 0.025 0.049 0.104 2.859 0.354 5.788 表 6 健康风险评价中的模型参数
Table 6. Model parameters of health risk assessment
变量
Variables符号
Symbol单位
Unit分布类型
Distribution分布参数
Distribution parametersP(k-s) 土壤
Soil (n=73)Cd Cik mg·kg−1 正态分布
Normal(0.149,0.278) 0.124 Hg (0.023,0.009) 0.133 As (13.268,4.087) 0.179 Pb (19.208,1.853) 0.087 Cr (61.257,15.634) 0.124 Cu (25.403,7.219) 0.088 Ni (29.120,5.373) 0.101 Zn (63.486,9.434) 0.115 红枣可食部分
Jujubes (n=73)Cd Ci mg·kg−1 正态分布
Normal(0.002,0.001) 0.300 Hg (0.001,0.001) 0.438 As (0.023,0.009) 0.108 Pb (0.048,0.014) 0.231 Cr (0.102,0.046) 0.334 Cu (2.807,0.429) 0.079 Ni (0.337,0.077) 0.080 Zn (5.405,1.291) 0.142 人体对红枣的经口摄入的暴露
途径的日平均暴露量*
Daily average exposure of the human
diet to jujubes*CRi kg·d−1 点分布Point 0.05 — 人体体重** Body weight** BW kg 对数正态分布Log-normal (67.52,12.22) — 暴露频率** Exposure frequency** EF d·a−1 三角分布Triangular 350(335,365) — 暴露年限** Exposure duration** ED a 点分布Point 70 — 总平均暴露时间** Averaging time** AT d 点分布Point 25 550 — 注:*数据来源于实地访问调查;**数据来源于《中国人群暴露参数手册》(成人卷),2013,环境保护部。
Note: *was come from local field interview survey. **were as prescribed by the Chinese Exposure Factors Handbook (Adults) (MEP. 2014).表 7 研究区土壤重金属元素非致癌和致癌风险指数
Table 7. The non-carcinogenic and carcinogenic risk index of heavy metals in the study area
元素
ElementsRfDi ADIi HQi SFi CRi Cd 0.001 2.55×10−8 2.55×10−5 0.38 9.69×10−9 Hg 0.0003 5.49×10−8 1.83×10−4 — — As 0.0003 3.89×10−8 1.30×10−4 1.50 5.84×10−8 Pb 0.0035 9.69×10−8 2.77×10−5 — — Cr 0.003 1.60×10−7 5.63×10−5 — — Cu 0.04 2.67×10−4 6.67×10−3 — — Ni 0.02 3.19×10−6 1.59×10−4 — — Zn 0.3 3.67×10−4 1.22×10−3 — — 注:“—”表示非致癌,无SF数据。
Note: “—"means non-carcinogenic, no SF data. -
[1] ANDRÁŠ P, MATOS J X, TURISOVÁ I, et al. The interaction of heavy metals and metalloids in the soil-plant system in the São Domingos mining area (Iberian Pyrite Belt, Portugal) [J]. Environmental Science and Pollution Research, 2018, 25(21): 20615-20630. doi: 10.1007/s11356-018-2205-x [2] HU B F, JIA X L, HU J, et al. Assessment of heavy metal pollution and health risks in the soil-plant-human system in the Yangtze River Delta, China [J]. International Journal of Environmental Research and Public Health, 2017, 14(9): E1042. doi: 10.3390/ijerph14091042 [3] 张成丽, 张伟平, 程红丹, 等. 禹州市煤矿区周边土壤和农作物重金属污染状况及健康风险评价 [J]. 环境化学, 2019, 38(4): 805-812. doi: 10.7524/j.issn.0254-6108.2018060502 ZHANG C L, ZHANG W P, CHENG H D, et al. Heavy metal contamination and health risk assessment of farmland soil around coal mines in Yuzhou City [J]. Environmental Chemistry, 2019, 38(4): 805-812(in Chinese). doi: 10.7524/j.issn.0254-6108.2018060502
[4] ARORA M, KIRAN B, RANI S, et al. Heavy metal accumulation in vegetables irrigated with water from different sources [J]. Food Chemistry, 2008, 111(4): 811-815. doi: 10.1016/j.foodchem.2008.04.049 [5] RAI P K, LEE S S, ZHANG M, et al. Heavy metals in food crops: Health risks, fate, mechanisms, and management [J]. Environment International, 2019, 125: 365-385. doi: 10.1016/j.envint.2019.01.067 [6] WAHEED H, ILYAS N, IQBAL RAJA N, et al. Heavy metal Phyto-accumulation in leafy vegetables irrigated with municipal wastewater and human health risk repercussions [J]. International Journal of Phytoremediation, 2019, 21(2): 170-179. doi: 10.1080/15226514.2018.1540547 [7] NIE J Y, KUANG L X, LI Z X, et al. Assessing the concentration and potential health risk of heavy metals in China's main deciduous fruits [J]. Journal of Integrative Agriculture, 2016, 15(7): 1645-1655. doi: 10.1016/S2095-3119(16)61342-4 [8] 王世玉, 吴文勇, 刘菲, 等. 典型污灌区土壤与作物中重金属健康风险评估 [J]. 中国环境科学, 2018, 38(4): 1550-1560. doi: 10.3969/j.issn.1000-6923.2018.04.043 WANG S Y, WU W Y, LIU F, et al. Assessment of human health risks of heavy metals in the typical sewage irrigation areas [J]. China Environmental Science, 2018, 38(4): 1550-1560(in Chinese). doi: 10.3969/j.issn.1000-6923.2018.04.043
[9] 王峰, 单睿阳, 陈玉真, 等. 闽中某矿区县茶园土壤和茶叶重金属含量及健康风险 [J]. 中国环境科学, 2018, 38(3): 1064-1072. doi: 10.3969/j.issn.1000-6923.2018.03.033 WANG F, SHAN R Y, CHEN Y Z, et al. Concentrations and health risk assessment of heavy metals in tea garden soil and tea-leaf from a mine County in central Fujian Province [J]. China Environmental Science, 2018, 38(3): 1064-1072(in Chinese). doi: 10.3969/j.issn.1000-6923.2018.03.033
[10] WANG X L, SATO T, XING B S, et al. Health risks of heavy metals to the general public in Tianjin, China via consumption of vegetables and fish [J]. The Science of the Total Environment, 2005, 350(1/2/3): 28-37. [11] TRIPATHI R M, RAGHUNATH R, KRISHNAMOORTHY T M. Dietary intake of heavy metals in Bombay city, India [J]. Science of the Total Environment, 1997, 208(3): 149-159. doi: 10.1016/S0048-9697(97)00290-8 [12] 吴翠云, 常宏伟, 林敏娟, 等. 新疆枣产业发展现状及其问题探讨 [J]. 北方果树, 2016(6): 41-44. WU C Y, CHANG H W, LIN M J, et al. Discussion on the development status and problems of Jujube industry in Xinjiang [J]. Northern Fruits, 2016(6): 41-44(in Chinese).
[13] 刘孟军, 李宪松, 刘志国, 等. 一种适于高度密植枣园的简化整形方法 [J]. 中国果树, 2015(3): 68-70. LIU M J, LI X S, LIU Z G, et al. A simplified shaping method suitable for highly densely planted jujube orchards [J]. China Fruits, 2015(3): 68-70(in Chinese).
[14] 何伟忠, 赵多勇, 范盈盈, 等. 新疆红枣营养品质与稳定同位素及矿物元素特征产地溯源比较 [J]. 核农学报, 2021, 35(5): 1099-1112. doi: 10.11869/j.issn.100-8551.2021.05.1099 HE W Z, ZHAO D Y, FAN Y Y, et al. Comparison of the nutrient quality, stable isotope and multi-element characteristics of Xinjiang jujube for origin traceability [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(5): 1099-1112(in Chinese). doi: 10.11869/j.issn.100-8551.2021.05.1099
[15] 何伟忠, 闫巧俐, 郑力, 等. 新疆红枣镍含量差异分析及来源 [J]. 食品与机械, 2019, 35(5): 111-115. HE W Z, YAN Q L, ZHENG L, et al. The analyses of nickel pollution in different source of jujube in Xinjiang [J]. Food & Machinery, 2019, 35(5): 111-115(in Chinese).
[16] 何伟忠, 王成, 杨莲, 等. 危害新疆红枣质量安全的主要重金属研究 [J]. 新疆农业科学, 2016, 53(1): 156-162. HE W Z, WANG C, YANG L, et al. Study and analysis of the major heavy metals influencing quality and safety of jujube in Xinjiang [J]. Xinjiang Agricultural Sciences, 2016, 53(1): 156-162(in Chinese).
[17] ZHU F K, YANG S K, FAN W X, et al. Heavy metals in jujubes and their potential health risks to the adult consumers in Xinjiang Province, China [J]. Environmental Monitoring and Assessment, 2014, 186(10): 6039-6046. doi: 10.1007/s10661-014-3838-y [18] U. S. EPA. Exposure Factors Handbook 2011 Edition (Final Report) [R]. U. S. Environmental Protection Agency, Washington, DC, EPA/600/R-09/052F, 2011. [19] USEPA. Risk Assessment Guidance for Superfund. Human Health Evaluation Manual, (Part E) Vol. 1 [R]. Washington, DC: Office of Solid Waste Emergency Response, 2009. [20] LEI L M, LIANG D L, YU D S, et al. Human health risk assessment of heavy metals in the irrigated area of Jinghui, Shaanxi, China, in terms of wheat flour consumption [J]. Environmental Monitoring and Assessment, 2015, 187(10): 1-13. [21] GU Y G, LIN Q, GAO Y P. Metals in exposed-lawn soils from 18 urban Parks and its human health implications in Southern China's largest city, Guangzhou [J]. Journal of Cleaner Production, 2016, 115: 122-129. doi: 10.1016/j.jclepro.2015.12.031 [22] 海米提·依米提, 祖皮艳木·买买提, 李建涛, 等. 焉耆盆地土壤重金属的污染及潜在生态风险评价 [J]. 中国环境科学, 2014, 34(6): 1523-1530. HAMID Y, ZULPIYA M, LI J T et al. Sources explanation, pollution and assessment of potential ecological hazards of heavy metals in the soils of Yanqi basin, China [J]. China Environmental Science, 2014, 34(6): 1523-1530(in Chinese).
[23] 宁承江, 李静, 雷永斌, 等. 阿拉尔枣园土壤重金属含量测定及污染评价 [J]. 环境保护与循环经济, 2017, 37(8): 52-56,60. doi: 10.3969/j.issn.1674-1021.2017.08.012 NING C J, LI J, LEI Y B, et al. Soil heavy metal content determination and pollution evaluation in the Alar jujube field [J]. Environmental Protection and Circular Economy, 2017, 37(8): 52-56,60(in Chinese). doi: 10.3969/j.issn.1674-1021.2017.08.012
[24] 任力民, 贾登泉, 王飞. 新疆农田土壤重金属含量调查与评价 [J]. 新疆农业科学, 2014, 51(9): 1760-1764. REN L M, JIA D Q, WANG F. Preliminary survey and evaluation of heavy metal content in farmland soil [J]. Xinjiang Agricultural Sciences, 2014, 51(9): 1760-1764(in Chinese).
[25] LV J, LIU Y, ZHANG Z L, et al. Identifying the origins and spatial distributions of heavy metals in soils of Ju country (Eastern China) using multivariate and geostatistical approach [J]. Journal of Soils and Sediments, 2015, 15(1): 163-178. doi: 10.1007/s11368-014-0937-x [26] 曾妍妍, 周金龙, 王松涛, 等. 新疆若羌县农田土壤重金属分布特征及污染评价 [J]. 干旱区资源与环境, 2017, 31(9): 87-91. ZENG Y Y, ZHOU J L, WANG S T, et al. Distribution characteristics and assessment for farmland soil heavy metals pollution in Ruoqiang County of Xinjiang [J]. Journal of Arid Land Resources and Environment, 2017, 31(9): 87-91(in Chinese).
[27] 李想, 江雪昕, 高红菊. 太湖流域土壤重金属污染评价与来源分析[J]. 农业机械学报, 2017, 48(增刊1): 247-253. LI X, JIANG X X, GAO H J. Pollution assessment and source analysis of soil heavy metals in Taihu lake basin[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(Sup 1): 247-253(in Chinese).
[28] 肖武, 隋涛, 王鑫, 等. 巢湖流域典型农田土壤重金属污染评价与地理探测分析 [J]. 农业机械学报, 2018, 49(7): 144-152. doi: 10.6041/j.issn.1000-1298.2018.07.018 XIAO W, SUI T, WANG X, et al. Assessment and geographical detection of heavy metal pollution in typical farmland soil in Chaohu lake basin [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(7): 144-152(in Chinese). doi: 10.6041/j.issn.1000-1298.2018.07.018
[29] DUDKA S, MILLER W P. Accumulation of potentially toxic elements in plants and their transfer to human food chain [J]. Journal of Environmental Science and Health, Part B, 1999, 34(4): 681-708. doi: 10.1080/03601239909373221 [30] SPASIC JOKIC V, ZUPUNSKI L, ZUPUNSKI I. Measurement uncertainty estimation of health risk from exposure to natural radionuclides in soil [J]. Measurement, 2013, 46(8): 2376-2383. doi: 10.1016/j.measurement.2013.04.019 [31] SCHUHMACHER M, MENESES M, XIFRÓ A, et al. The use of Monte-Carlo simulation techniques for risk assessment: Study of a municipal waste incinerator [J]. Chemosphere, 2001, 43(4/5/6/7): 787-799. [32] SAHA N, RAHMAN M S, AHMED M B, et al. Industrial metal pollution in water and probabilistic assessment of human health risk [J]. Journal of Environmental Management, 2017, 185: 70-78. [33] CHEN G Z, WANG X M, WANG R W, et al. Health risk assessment of potentially harmful elements in subsidence water bodies using a Monte Carlo approach: An example from the Huainan coal mining area, China [J]. Ecotoxicology and Environmental Safety, 2019, 171: 737-745. doi: 10.1016/j.ecoenv.2018.12.101