-
过氧化氢(H2O2)是当今世界100种重要的化学品之一[1],具有化学性质活泼、氧化能力强以及能量密度高等特点,在化工合成[2]、杀菌消毒[3]、废水处理[4]、纸张漂白[5]和燃料电池[6-7]等众多领域都有着广泛的应用。由于其分解产物只有水和氧气,符合可持续发展的需求,因此受到了广泛关注。
目前,H2O2的合成工艺主要有蒽醌法和氢氧直接化合法[8-9]。其中,蒽醌法是目前工业上生产H2O2的主要工艺,尽管通过该方法生产的H2O2占到了全球H2O2总产量的95%以上,但其生产过程中需经历蒽醌氢化、氧化以及后续的萃取、提纯、浓缩等一系列复杂工艺,具有能耗高、污染重、需要搭建大型生产设备等缺点[8]。此外,生产出的高浓度H2O2也为后续的储存和运输工作带来了极大的安全隐患。相较于传统的蒽醌法,氢氧直接化合法可在一定的反应条件下,利用贵金属催化H2和O2反应直接生成H2O2而不产生有毒有害的副产物,曾一度被认为是替代蒽醌法的理想工艺[10-12]。然而,由于该工艺存在氢氧直接接触带来的潜在爆炸风险以及氢气利用率低等问题,制约了其大规模工业应用。因此,开发节能环保且安全的新型H2O2合成技术仍然是H2O2合成领域的研究热点,具有非常重要的意义。
光催化法可在温和的反应条件下,利用太阳能驱动,将水和氧气转化为H2O2,因而被认为是实现安全、绿色和可持续性合成H2O2的一种潜在途径[13-15]。光催化合成H2O2的关键在于开发高效的光催化材料。目前,用于合成 H2O2的光催化材料主要包括TiO2[16-18]、BiVO4[19-20]、CdS[21]、rGO[22]等无机半导体和g-C3N4[23]、酚醛树脂(RF)[24]、三嗪共价有机框架(CTF)[25]等有机聚合物。其中,g-C3N4因具有独特的密勒胺(melem)结构,可在氧还原反应中催化氧气形成1, 4-内过氧化物中间态,利于O2分子按两电子路径被还原成H2O2而备受关注。研究表明,通过构建异质结[26-28]、修饰基团[29-30]、调控空间结构[31-32]、掺杂元素[33-34]以及制造缺陷[35]等方式进一步提升g-C3N4的两电子氧还原选择性和光生电荷分离性能后,获得的g-C3N4基材料会在氧还原反应中,对两电子产H2O2过程表现出更高的效率,从而在光催化产H2O2领域展现出更大的应用潜能。
本文以光催化产H2O2的基本原理为出发点,综述了g-C3N4 基材料在光催化产H2O2领域的研究进展,重点介绍了氧化还原双路径产H2O2的机理及提升g-C3N4光催化产H2O2性能的有效方法,旨在揭示该领域的机遇与挑战,为进一步推动光催化产H2O2技术的发展提供理论依据并指明新的方向。
g-C3N4基材料光催化产H2O2研究进展
Progress in photocatalytic production of H2O2 from g-C3N4-based materials
-
摘要: 开发节能环保的新型H2O2合成技术对解决蒽醌法存在的能耗高、污染重等问题具有重要意义,而基于半导体材料光催化水和氧气反应生成H2O2的方式被视为实现这一目标的潜在途径。本文从光催化产H2O2的基本原理出发,系统介绍了影响光催化材料产H2O2效率的因素及评价产H2O2性能的指标,并以g-C3N4为例重点解析了构建异质结、修饰基团、空间结构调控、掺杂元素以及制造缺陷等对提升光催化材料氧化还原产H2O2性能的积极影响,阐释了相关的作用机制并对g-C3N4基材料在光催化产H2O2领域的发展进行了总结和展望,旨在揭示光催化产H2O2领域的机遇与挑战,从而为推动该技术的发展提供理论和技术依据。Abstract: Development of new H2O2 synthesis technology with energy saving and environmental protection properties is of great significance for solving the problems of anthraquinone process, such as high energy cosumption and heavy pollution. Photocatalytic production of H2O2 from water and oxygen based on semiconductor is considered as a potential approach to achieve this goal. Herein, starting from the principle of phtocatalytic production of H2O2, we systematically introduced the impact factors that affecting the efficiency of photocatalysts for H2O2 production and the indexes for evaluating the performance of H2O2 production. Emphasis is followed by laid on analyzing the positive effects of constructing heterojunction, modifying groups, spatial structure regulation, doping elements and manufacturing defects on the performance of H2O2 production of g-C3N4 related materials. The relevant mechanism of reaction was illustrated, and the develoment of g-C3N4-based materials in the field of photocatalytic H2O2 production was also summarized and prospected, aiming to reveal the opportunities and challenges in the field of photocatalytic H2O2 production, so as to prvide theoretical and technical basis for promoting the development of the technology.
-
Key words:
- g-C3N4 /
- photocatalytic /
- H2O2 /
- oxygen reduction /
- water oxidation
-
表 1 g-C3N4基材料光催化产H2O2文献总结
Table 1. Summary of the photocatalytic H2O2 production with g-C3N4 based photocatalysts
材料
Material前驱体
Precursor牺牲剂
Sacrificial
Reagent催化剂浓度/
(mg·mL−1)
Concentration of photocatalyst照射条件
Irradiation
conditionsH2O2产量
H2O2 yields表观量子产率
AQY参考文献
ReferenceAu/g-C3N4 Dicyandiamide Ethanol 4.0 λ>420 nm 168.9 μmol·g−1·h−1 — [45] Ag@U-g-C3N4-NS Urea — 1.0 AM 1.5G 118.5 μmol·g−1·h−1 — [26] g-C3N4-CNTs Dicyandiamide Formic acid 1.0 λ≥420 nm 487 μmol·g−1·h−1 — [46] Ti3C2/g-C3N4 Urea Ethanol 1.0 λ>420 nm 560.7 mol·L−1·h−1 — [47] Ti3C2/porous g-C3N4 Dicyandiamide Isopropanol 1.0 λ>420 nm 131.7 μmol·g−1·h−1 — [48] Bi4O5Br2/g-C3N4 Melamine — 1.0 λ>420 nm 2.48 mmol·g−1·h−1 — [49] Cu2(OH)PO4/g-C3N4 Melamine — 1.0 AM 1.5G 1.2 mmol·g−1·h−1 — [27] ZnPPC-NBCN Melamine — 0.5 400-800 nm 114 mol·L−1·h−1 — [50] 3DOM g-C3N4-PW11 Cyanamide — 1.0 λ>320 nm 35 μmol·g−1·h−1 — [30] g-C3N4–SiW11 Cyanamide Methanol 1.0 AM 1.5G 152 μmol·g−1·h−1 6.5% at 420 nm [51] g-C3N4-PWO Dicyandiamide — 1.0 λ≥420 nm 630 μmol·g−1·h−1 — [52] ZIF-8/C3N4 Urea — 0.67 λ≥420 nm 2.46 mmol·g−1·h−1 19.57% at
420 nm[53] AQ/ g-C3N4 Melamine Isopropanol 0.5 AM 1.5G 361μmol·g−1·h−1 19.5% at 380 nm [54] g-C3N4/PDI/rGO Melamine — 1.67 λ>420 nm 24.17 μmol·g−1·h−1 6.1% at 420 nm [55] g-C3N4/BDI Melamine — 1.67 λ>420 nm 33.53 μmol·g−1·h−1 4.6% at 420 nm [29] g-C3N4/MTI Melamine — 1.67 λ>420 nm 22.47 μmol·g−1·h−1 6.1% at 420 nm [56] g-C3N4/PI Melamine — 1.0 λ>420 nm 1.24 mmol·g−1·h−1 — [28] g-C3N4/PEI Urea — 5.0 AM 1.5G 208.1μmol·g−1·h−1 2.12% at 420 nm [57] Mesoporous g-C3N4 Cyanamide Ethanol 4.0 λ>420 nm 183.5 μmol·g−1·h−1 — [35] g-C3N4 Aerogels Melamine — 1.67 λ>420 nm 28.24 μmol·g−1·h−1 — [31] Holey DCN Dicyandiamide Isopropanol 0.83 λ>420 nm 96.8 μmol·g−1·h−1 ~10% at
420 nm[58] g-C3N4/Co/AQ Melamine — 0.5 AM 1.5G 9.67 mmol·g−1·h−1 — [59] KTT g-C3N4 Melamine Isopropanol 1.0 λ>420 nm 40 mmol·g−1·h−1 20% at 400 nm [60] Cu-g-C3N4 Melamine — 1.0 λ>400 nm 1.35 mmol·g−1·h−1 — [61] MCN Melamine — 1.0 λ>400 nm 1.3 mmol·g−1·h−1 — [62] g-C3N4-Carbon Melamine Isopropanol 1.0 320—780 nm 10.6 mmol·g−1·h−1 — [39] Br-H/g-C3N4 Melamine EDTA 1.0 400—800 nm 1.99 mmol·g−1·h−1 — [63] OCN Dicyandiamide — 1.0 λ>420 nm 106 μmol·g−1·h−1 10.2% at 420 nm [34] KPF6/ g-C3N4 Melamine Ethanol 0.5 λ> 420 nm 600 μmol·g−1·h−1 24.3 % at
420 nm[64] KPD-CN Melamine Ethanol 0.5 λ>420 nm 6.0 mmol·g−1·h−1 8% at 420 nm [33] Cv-g-C3N4 Melamine — 1.0 λ>420 nm 900 μmol·g−1·h−1 — [65] CKCN Urea Ethanol 0.25 λ>420 nm 7.63 mol·g−1·h−1 11.8% at 420 nm [66] ACNN Urea Isopropanol 0.56 λ>420 nm 10.2 mmol·g−1·h−1 30.7% at 429 nm [67] BDCN Melamine Isopropanol 0.5 λ≥420 nm 5.74 mmol·g−1·h−1 27.8% at 420 nm [68] -
[1] XIA C, XIA Y, ZHU P, et al. Direct electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyte [J]. Science, 2019, 366(6462): 226-231. doi: 10.1126/science.aay1844 [2] ZHAN W, JI L, GE Z M, et al. A continuous-flow synthesis of primary amides from hydrolysis of nitriles using hydrogen peroxide as oxidant [J]. Tetrahedron, 2018, 74(13): 1527-1532. doi: 10.1016/j.tet.2018.02.017 [3] RICHARDS T, HARRHY J H, LEWIS R J, et al. A residue-free approach to water disinfection using catalytic in situ generation of reactive oxygen species [J]. Nature Catalysis, 2021, 4(7): 575-585. doi: 10.1038/s41929-021-00642-w [4] BARAZESH J M, PRASSE C, WENK J, et al. Trace element removal in distributed drinking water treatment systems by cathodic H2O2 production and UV photolysis [J]. Environmental Science & Technology, 2018, 52(1): 195-204. [5] OROZCO S E, BISCHOF R H, BARBINI S, et al. Fate of lipophilic wood extractives in oxygen-based cellulose bleaching [J]. ACS Sustainable Chemistry & Engineering, 2021, 9(13): 4840-4849. [6] YANG Y, XUE Y S, HUANG F, et al. A facile microfluidic hydrogen peroxide fuel cell with high performance: Electrode interface and power-generation properties [J]. ACS Applied Energy Materials, 2018: acsaem.8b00943. doi: 10.1021/acsaem.8b00943 [7] YAN K, ZHU Y H, JI W H, et al. Visible light-driven membraneless photocatalytic fuel cell toward self-powered aptasensing of PCB77 [J]. Analytical Chemistry, 2018, 90(16): 9662-9666. doi: 10.1021/acs.analchem.8b02302 [8] GAO G H, TIAN Y N, GONG X X, et al. Advances in the production technology of hydrogen peroxide [J]. Chinese Journal of Catalysis, 2020, 41(7): 1039-1047. doi: 10.1016/S1872-2067(20)63562-8 [9] YANG S, VERDAGUER-CASADEVALL A, ARNARSON L, et al. Toward the decentralized electrochemical production of H2O2: A focus on the catalysis [J]. ACS Catalysis, 2018, 8(5): 4064-4081. doi: 10.1021/acscatal.8b00217 [10] RANGANATHAN S, SIEBER V. Recent advances in the direct synthesis of hydrogen peroxide using chemical catalysis—A review [J]. Catalysts, 2018, 8(9): 379. doi: 10.3390/catal8090379 [11] E FREITAS L F D L, PUÉRTOLAS B, ZHANG J, et al. Tunable catalytic performance of palladium nanoparticles for H2O2 direct synthesis via surface-bound ligands [J]. ACS Catalysis, 2020, 10(9): 5202-5207. doi: 10.1021/acscatal.0c01517 [12] LIU P, LIN Q, PAN H Y, et al. Direct synthesis of hydrogen peroxide from hydrogen and oxygen over yolk-shell nanocatalyst Pd@HCS with controlled Pd nanoparticle size [J]. Journal of Catalysis, 2019, 377: 511-523. doi: 10.1016/j.jcat.2019.07.044 [13] LIU J L, ZOU Y S, JIN B J, et al. Hydrogen peroxide production from solar water oxidation [J]. ACS Energy Letters, 2019, 4(12): 3018-3027. doi: 10.1021/acsenergylett.9b02199 [14] HAIDER Z, CHO H I, MOON G H, et al. Minireview: Selective production of hydrogen peroxide as a clean oxidant over structurally tailored carbon nitride photocatalysts [J]. Catalysis Today, 2019, 335: 55-64. doi: 10.1016/j.cattod.2018.11.067 [15] HOU H L, ZENG X K, ZHANG X W. Production of hydrogen peroxide by photocatalytic processes [J]. Angew. Chem. Int. Edit, 2020, 59(40): 17356-17376. doi: 10.1002/anie.201911609 [16] MOON G H, KIM W, BOKARE A D, et al. Solar production of H2O2on reduced graphene oxide–TiO2hybrid photocatalysts consisting of earth-abundant elements only [J]. Energy Environ Sci, 2014, 7(12): 4023-4028. doi: 10.1039/C4EE02757D [17] HONG Y, CHO Y, GO E M, et al. Unassisted photocatalytic H2O2 production under visible light by fluorinated polymer-TiO2 heterojunction [J]. Chemical Engineering Journal, 2021, 418: 129346. doi: 10.1016/j.cej.2021.129346 [18] CAO S, CHAN T S, LU Y R, et al. Photocatalytic pure water splitting with high efficiency and value by Pt/porous brookite TiO2 nanoflutes [J]. Nano Energy, 2020, 67: 104287. doi: 10.1016/j.nanoen.2019.104287 [19] FUKU K, TAKIOKA R, IWAMURA K, et al. Photocatalytic H2O2 production from O2 under visible light irradiation over phosphate ion-coated Pd nanoparticles-supported BiVO4 [J]. Applied Catalysis B:Environmental, 2020, 272: 119003. doi: 10.1016/j.apcatb.2020.119003 [20] SHI X J, ZHANG Y R, SIAHROSTAMI S, et al. Light-driven BiVO4 –C fuel cell with simultaneous production of H2O2 [J]. Advanced Energy Materials, 2018, 8(23): 1801158. doi: 10.1002/aenm.201801158 [21] GHOREISHIAN S M, RANJITH K S, PARK B, et al. Full-spectrum-responsive Bi2S3@CdS S-scheme heterostructure with intimated ultrathin RGO toward photocatalytic Cr(VI) reduction and H2O2 production: Experimental and DFT studies [J]. Chemical Engineering Journal, 2021, 419: 129530. doi: 10.1016/j.cej.2021.129530 [22] THAKUR S, KSHETRI T, KIM N H, et al. Sunlight-driven sustainable production of hydrogen peroxide using a CdS-graphene hybrid photocatalyst [J]. Journal of Catalysis, 2017, 345: 78-86. doi: 10.1016/j.jcat.2016.10.028 [23] SHIRAISHI Y, KANAZAWA S, KOFUJI Y, et al. Sunlight-driven hydrogen peroxide production from water and molecular oxygen by metal-free photocatalysts [J]. Angewandte Chemie (International Ed. in English), 2014, 53(49): 13454-13459. doi: 10.1002/anie.201407938 [24] SHIRAISHI Y, TAKII T, HAGI T, et al. Resorcinol–formaldehyde resins as metal-free semiconductor photocatalysts for solar-to-hydrogen peroxide energy conversion [J]. Nature Materials, 2019, 18(9): 985-993. doi: 10.1038/s41563-019-0398-0 [25] CHEN L, WANG L, WAN Y Y, et al. Acetylene and diacetylene functionalized covalent triazine frameworks as metal-free photocatalysts for hydrogen peroxide production: A new two-electron water oxidation pathway [J]. Advanced Materials (Deerfield Beach, Fla. ), 2020, 32(2): e1904433. doi: 10.1002/adma.201904433 [26] CAI J S, HUANG J Y, WANG S C, et al. Crafting mussel-inspired metal nanoparticle-decorated ultrathin graphitic carbon nitride for the degradation of chemical pollutants and production of chemical resources [J]. Advanced Materials (Deerfield Beach, Fla. ), 2019, 31(15): e1806314. doi: 10.1002/adma.201806314 [27] WANG X W, HAN Z, YU L H, et al. Synthesis of full-spectrum-response Cu2(OH)PO4/g-C3N4 photocatalyst with outstanding photocatalytic H2O2 production performance via a “two channel route” [J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 14542-14553. [28] YANG L P, DONG G H, JACOBS D L, et al. Two-channel photocatalytic production of H2O2 over g-C3N4 nanosheets modified with perylene imides [J]. Journal of Catalysis, 2017, 352: 274-281. doi: 10.1016/j.jcat.2017.05.010 [29] KOFUJI Y, OHKITA S, SHIRAISHI Y, et al. Graphitic carbon nitride doped with biphenyl diimide: Efficient photocatalyst for hydrogen peroxide production from water and molecular oxygen by sunlight [J]. ACS Catalysis, 2016, 6(10): 7021-7029. doi: 10.1021/acscatal.6b02367 [30] ZHAO S, ZHAO X, ZHANG H, et al. Covalent combination of polyoxometalate and graphitic carbon nitride for light-driven hydrogen peroxide production [J]. Nano Energy, 2017, 35: 405-414. doi: 10.1016/j.nanoen.2017.04.017 [31] OU H H, YANG P J, LIN L H, et al. Carbon nitride aerogels for the photoredox conversion of water [J]. Angewandte Chemie (International Ed. in English), 2017, 56(36): 10905-10910. doi: 10.1002/anie.201705926 [32] ZHOU L, FENG J R, QIU B C, et al. Ultrathin g-C3N4 nanosheet with hierarchical pores and desirable energy band for highly efficient H2O2 production [J]. Applied Catalysis B:Environmental, 2020, 267: 118396. doi: 10.1016/j.apcatb.2019.118396 [33] MOON G H, FUJITSUKA M, KIM S, et al. Eco-friendly photochemical production of H2O2 through O2 reduction over carbon nitride frameworks incorporated with multiple heteroelements [J]. ACS Catalysis, 2017, 7(4): 2886-2895. doi: 10.1021/acscatal.6b03334 [34] WEI Z, LIU M L, ZHANG Z J, et al. Efficient visible-light-driven selective oxygen reduction to hydrogen peroxide by oxygen-enriched graphitic carbon nitride polymers [J]. Energy & Environmental Science, 2018, 11(9): 2581-2589. [35] SHIRAISHI Y, KOFUJI Y, SAKAMOTO H, et al. Effects of surface defects on photocatalytic H2O2 production by mesoporous graphitic carbon nitride under visible light irradiation [J]. ACS Catalysis, 2015, 5(5): 3058-3066. doi: 10.1021/acscatal.5b00408 [36] ZHU C, ZHU M M, SUN Y, et al. Carbon-supported oxygen vacancy-rich Co3O4 for robust photocatalytic H2O2 production via coupled water oxidation and oxygen reduction reaction [J]. ACS Applied Energy Materials, 2019, 2(12): 8737-8746. doi: 10.1021/acsaem.9b01712 [37] CAO J J, WANG H, ZHAO Y J, et al. Phosphorus-doped porous carbon nitride for efficient sole production of hydrogen peroxide via photocatalytic water splitting with a two-channel pathway [J]. Journal of Materials Chemistry A, 2020, 8(7): 3701-3707. doi: 10.1039/C9TA13929J [38] LI X H, ZHANG J, ZHOU F, et al. Preparation of N-vacancy-doped g-C3N4 with outstanding photocatalytic H2O2 production ability by dielectric barrier discharge plasma treatment [J]. Chinese Journal of Catalysis, 2018, 39(6): 1090-1098. doi: 10.1016/S1872-2067(18)63046-3 [39] WANG R R, ZHANG X, LI F, et al. Energy-level dependent H2O2 production on metal-free, carbon-content tunable carbon nitride photocatalysts [J]. Journal of Energy Chemistry, 2018, 27(2): 343-350. doi: 10.1016/j.jechem.2017.12.014 [40] WANG R R, PAN K C, HAN D D, et al. Solar-driven H2O2 generation from H2O and O2 using earth-abundant mixed-metal Oxide@Carbon nitride photocatalysts [J]. ChemSusChem, 2016, 9(17): 2470-2479. doi: 10.1002/cssc.201600705 [41] KISCH H, BAHNEMANN D. Best practice in photocatalysis: Comparing rates or apparent quantum yields? [J]. The Journal of Physical Chemistry Letters, 2015, 6(10): 1907-1910. doi: 10.1021/acs.jpclett.5b00521 [42] SASAKI Y, NEMOTO H, SAITO K, et al. Solar water splitting using powdered photocatalysts driven by Z-schematic interparticle electron transfer without an electron mediator [J]. The Journal of Physical Chemistry C, 2009, 113(40): 17536-17542. doi: 10.1021/jp907128k [43] ASTM G173-03(2020), Standard tables for reference solar spectral irradiances: Direct normal and hemispherical on 37° tilted surface, ASTM International, West Conshohocken, PA, 2020, www. astm. org. [44] 张金水, 王博, 王心晨. 氮化碳聚合物半导体光催化 [J]. 化学进展, 2014, 26(1): 19-29. doi: 10.7536/PC130519 ZHANG J S, WANG B, WANG X C. Carbon nitride polymeric semiconductor for photocatalysis [J]. Progress in Chemistry, 2014, 26(1): 19-29(in Chinese). doi: 10.7536/PC130519
[45] ZUO G F, LIU S S, WANG L, et al. Finely dispersed Au nanoparticles on graphitic carbon nitride as highly active photocatalyst for hydrogen peroxide production [J]. Catalysis Communications, 2019, 123: 69-72. doi: 10.1016/j.catcom.2019.02.011 [46] ZHAO S, GUO T, LI X, et al. Carbon nanotubes covalent combined with graphitic carbon nitride for photocatalytic hydrogen peroxide production under visible light [J]. Applied Catalysis B:Environmental, 2018, 224: 725-732. doi: 10.1016/j.apcatb.2017.11.005 [47] YANG Y, ZENG Z T, ZENG G M, et al. Ti3C2 Mxene/porous g-C3N4 interfacial Schottky junction for boosting spatial charge separation in photocatalytic H2O2 production [J]. Applied Catalysis B:Environmental, 2019, 258: 117956. doi: 10.1016/j.apcatb.2019.117956 [48] LIN S F, ZHANG N, WANG F C, et al. Carbon vacancy mediated incorporation of Ti3C2 quantum dots in a 3D inverse opal g-C3N4 Schottky junction catalyst for photocatalytic H2O2 production [J]. ACS Sustainable Chemistry & Engineering, 2021, 9(1): 481-488. [49] ZHAO X S, YOU Y Y, HUANG S B, et al. Z-scheme photocatalytic production of hydrogen peroxide over Bi4O5Br2/g-C3N4 heterostructure under visible light [J]. Applied Catalysis B:Environmental, 2020, 278: 119251. doi: 10.1016/j.apcatb.2020.119251 [50] YE Y X, PAN J H, XIE F Y, et al. Highly efficient photosynthesis of hydrogen peroxide in ambient conditions [J]. PNAS, 2021, 118(16): e2103964118. doi: 10.1073/pnas.2103964118 [51] ZHAO S, ZHAO X, OUYANG S X, et al. Polyoxometalates covalently combined with graphitic carbon nitride for photocatalytic hydrogen peroxide production [J]. Catalysis Science & Technology, 2018, 8(6): 1686-1695. [52] ZHAO S, ZHAO X. Polyoxometalates-derived metal oxides incorporated into graphitic carbon nitride framework for photocatalytic hydrogen peroxide production under visible light [J]. Journal of Catalysis, 2018, 366: 98-106. doi: 10.1016/j.jcat.2018.08.003 [53] ZHAO Y J, LIU Y, CAO J J, et al. Efficient production of H2O2 via two-channel pathway over ZIF-8/C3N4 composite photocatalyst without any sacrificial agent [J]. Applied Catalysis B:Environmental, 2020, 278: 119289. doi: 10.1016/j.apcatb.2020.119289 [54] KIM H I, CHOI Y, HU S, et al. Photocatalytic hydrogen peroxide production by anthraquinone-augmented polymeric carbon nitride [J]. Applied Catalysis B:Environmental, 2018, 229: 121-129. doi: 10.1016/j.apcatb.2018.01.060 [55] KOFUJI Y, ISOBE Y, SHIRAISHI Y, et al. Carbon nitride-aromatic diimide-graphene nanohybrids: Metal-free photocatalysts for solar-to-hydrogen peroxide energy conversion with 0.2% efficiency [J]. Journal of the American Chemical Society, 2016, 138(31): 10019-10025. doi: 10.1021/jacs.6b05806 [56] KOFUJI Y, OHKITA S, SHIRAISHI Y, et al. Mellitic triimide-doped carbon nitride as sunlight-driven photocatalysts for hydrogen peroxide production [J]. ACS Sustainable Chemistry & Engineering, 2017, 5(8): 6478-6485. [57] ZENG X K, LIU Y, KANG Y, et al. Simultaneously tuning charge separation and oxygen reduction pathway on graphitic carbon nitride by polyethylenimine for boosted photocatalytic hydrogen peroxide production [J]. ACS Catalysis, 2020, 10(6): 3697-3706. doi: 10.1021/acscatal.9b05247 [58] SHI L, YANG L Q, ZHOU W, et al. Photoassisted construction of holey defective g-C3 N4 photocatalysts for efficient visible-light-driven H2 O2 production [J]. Small, 2018, 14(9): 1703142. doi: 10.1002/smll.201703142 [59] CHU C H, ZHU Q H, PAN Z H, et al. Spatially separating redox centers on 2D carbon nitride with cobalt single atom for photocatalytic H2O2 production [J]. PNAS, 2020, 117(12): 6376-6382. doi: 10.1073/pnas.1913403117 [60] ZHANG J Z, YU C Y, LANG J Y, et al. Modulation of Lewis acidic-basic sites for efficient photocatalytic H2O2 production over potassium intercalated tri-s-triazine materials [J]. Applied Catalysis B:Environmental, 2020, 277: 119225. doi: 10.1016/j.apcatb.2020.119225 [61] HU S Z, QU X Y, LI P, et al. Photocatalytic oxygen reduction to hydrogen peroxide over copper doped graphitic carbon nitride hollow microsphere: The effect of Cu(I)-N active sites [J]. Chemical Engineering Journal, 2018, 334: 410-418. doi: 10.1016/j.cej.2017.10.016 [62] QU X Y, HU S Z, BAI J, et al. Synthesis of band gap-tunable alkali metal modified graphitic carbon nitride with outstanding photocatalytic H2O2 production ability via molten salt method [J]. Journal of Materials Science & Technology, 2018, 34(10): 1932-1938. [63] ZHANG C L, BAI J, MA L, et al. Synthesis of halogen doped graphite carbon nitride nanorods with outstanding photocatalytic H2O2 production ability via saturated NH4X (X = Cl, Br) solution-hydrothermal post-treatment [J]. Diamond and Related Materials, 2018, 87: 215-222. doi: 10.1016/j.diamond.2018.06.013 [64] KIM S, MOON G H, KIM H, et al. Selective charge transfer to dioxygen on KPF6-modified carbon nitride for photocatalytic synthesis of H2O2 under visible light [J]. Journal of Catalysis, 2018, 357: 51-58. doi: 10.1016/j.jcat.2017.10.002 [65] LI S N, DONG G H, HAILILI R, et al. Effective photocatalytic H2O2 production under visible light irradiation at g-C3N4 modulated by carbon vacancies [J]. Applied Catalysis B:Environmental, 2016, 190: 26-35. doi: 10.1016/j.apcatb.2016.03.004 [66] XIE Y, LI Y X, HUANG Z H, et al. Two types of cooperative nitrogen vacancies in polymeric carbon nitride for efficient solar-driven H2O2 evolution [J]. Applied Catalysis B:Environmental, 2020, 265: 118581. doi: 10.1016/j.apcatb.2019.118581 [67] WU S, YU H T, CHEN S, et al. Enhanced photocatalytic H2O2 production over carbon nitride by doping and defect engineering [J]. ACS Catalysis, 2020, 10(24): 14380-14389. doi: 10.1021/acscatal.0c03359 [68] FENG C Y, TANG L, DENG Y C, et al. Synthesis of leaf-vein-like g-C3 N4 with tunable band structures and charge transfer properties for selective photocatalytic H2O2 evolution [J]. Advanced Functional Materials, 2020, 30(39): 2001922. doi: 10.1002/adfm.202001922 [69] TENG Z Y, ZHANG Q T, YANG H B, et al. Atomically dispersed antimony on carbon nitride for the artificial photosynthesis of hydrogen peroxide [J]. Nature Catalysis, 2021, 4(5): 374-384. doi: 10.1038/s41929-021-00605-1 [70] ZHANG P, TONG Y W, LIU Y, et al. Heteroatom dopants promote two-electron O2 reduction for photocatalytic production of H2O2 on polymeric carbon nitride [J]. Angewandte Chemie International Edition, 2020, 59(37): 16209-16217. doi: 10.1002/anie.202006747