-
日益严格的环境管理政策及污染物排放标准的实施,持续推动我国污水处理从常规二级处理向污水深度处理(尤其是总氮)的转变。反硝化生物滤池作为生物法深度脱氮的主流工艺,在污水处理厂的提标改造中应用较广[1]。然而,目前在我国,污水处理厂二级生化尾水等污水的一大特征是低碳氮比,反硝化将被抑制,造成亚硝酸盐的累积以及反硝化效率低等问题,导致出水难以达标[2-3]。目前,为实现对低碳氮废水的深度脱氮,反硝化滤池主要通过进水处直接添加甲醇、乙酸钠、乙醇等外加碳源作为电子供体,但会造成运行成本高和出水COD超标的问题[4]。因此,采用缓释碳源材料作为滤池滤料成为反硝化脱氮的研究热点之一,其主要特点是无需持续投加碳源且可提供微生物附着位点。
释碳材料包括天然释碳材料(秸秆、稻壳、木屑等[5-7])和可生物降解的聚合物(聚乳酸、聚乙烯醇、聚丁二酸丁二醇酯等[8-11])。使用天然释碳材料虽然价格低廉,但其脱氮效果不佳,反硝化负荷较低,用聚合物作为碳源可实现较理想的脱氮效果,但是其成本相对较高。层状双金属化合物(LDHs)结构示意图如图1,LDHs具有双金属(三价金属离子和二价金属离子)层状结构,层间结合负电离子,层间存在氢键,紧密结合,结构稳定,具有良好的机械性能和缓释性能[12]。若将LDHs用于制备释碳材料的骨架、并将其与较为廉价的有机碳源混合制备反硝化滤料,既可实现缓释碳效果,又能适当降低运行成本。如Islam等[13]合成Zn-Al-Cl-LDH碳源,使用0.3 g的碳源置于100 mL初始浓度为10 mg·L−1的硝酸盐溶液中,硝酸盐去除率为85.5%。Fang等[14]制备Bio-ceramic/Zn-LDHs,将其用于去除模拟废水的氨氮,最高去除率可达50%。Jiang等[15]针对微量金属(铁、锰、铜、锌、钼)对反硝化活性的影响研究,发现铁可显著提高生物反硝化速率。Chen等[16]将含金属镍的层状双金属纳米颗粒用于反硝化以改善微生物脱氮性能。Mg2+和Al3+是合成LDHs最常用的二价和三价金属离子,Ni2+和Fe3+可以赋予LDHs更好的释放性能,并能促进反硝化活性和反硝化速率[17]。同时,有机物羟甲基纤维素钠(CMC)具有黏合性且较为廉价。故使用CMC作为LDHs缓释碳源的有机碳源和包埋法制备滤料中的黏合剂,选用Fe3+、Ni2+等金属离子制备LDHs缓释碳源的方法具有潜在有效性,且此方案在国内外鲜见报道。
因此,本研究选择Fe3+、Al3+、Ni2+、Mg2+等4种金属离子,率先选用CMC为负电离子用于制备基于层状双金属化合物的缓释碳源材料,并初步筛选出碳源FeNi-LDH-CMC用于LDHs基滤料的制备。对制得的LDHs基滤料进行系统研究,确定了各组成物质最优质量分数及释碳性能。选用最优LDHs基滤料,构建反硝化滤池反应器,以低碳氮比模拟废水作为处理对象,综合分析不同水力停留时间下反硝化滤池对废水的处理效果并探究其机理,结果表明,新型LDHs基缓释碳源滤料可提高反硝化滤池对低碳氮比废水的深度脱氮效果,具有较强的推广应用前景。
新型LDHs基缓释碳源的制备及应用
Preparation and application of a novel LDHs-based slow-release carbon source
-
摘要: 以羟甲基纤维素钠(CMC)为负电离子,选用4种金属离子(Fe3+、Al3+、Ni2+、Mg2+),以共沉淀法制备4种基于层状双金属化合物(LDHs)的缓释碳源材料。采用X射线衍射(XRD)、X射线光电子能谱(XPS)和缓释性能分析,筛选出释碳量大、稳定缓释的FeNi-LDH-CMC碳源材料。通过响应面实验确定了FeNi-LDH-CMC、聚乙烯醇(PVA)、CMC的最佳质量分数为7.77%、4.02%、1.02%,此时制备的LDHs基滤料释碳系数为4.40,最大COD释放值为320.96 mg·g−1。最后构建反硝化生物滤池,对模拟低碳氮比废水进行脱氮处理。结果表明,HRT=3 h时,反硝化滤池对TN平均去除率仅为32.4%,氮负荷为(0.0960±0.0082)kg·m−3·d−1 N,而投加LDHs基滤料使滤池TN去除率提高了35.32%—38.46%,氮负荷提高了(0.118±0.0092)kg·m-3·d−1 N;在投加LDHs基滤料后,5种反硝化功能基因(napA、narG、nirS、nirK、nosZ)的丰度均有显著增加(P<0.05),提高了反硝化的各个阶段脱氮效率。研究结果表明LDHs基缓释碳源在反硝化滤池中可强化低碳氮比废水深度脱氮,是一种潜在应用于废水深度脱氮的新型材料。
-
关键词:
- 羟甲基纤维素钠(CMC) /
- 层状双金属化合物(LDHs) /
- 缓释碳源 /
- 深度脱氮
Abstract: This study took the lead in using sodium hydroxymethyl cellulose (CMC) as the negative ion and four kinds of metal ions (Fe3+, Al3+, Ni2+ and Mg2+) to prepare layered bimetallic compounds (LDHs)-based slow-release carbon source materials by coprecipitation method. FeNi-LDH-CMC with the charecteristics of large amount and stable slow-release of carbon was screened out through X-ray diffraction (XRD), X ray photoelectron spectroscopy (XPS) and slow-release performance analyses. The optimum mass fraction of FeNi-LDH-CMC, polyvinyl alcohol (PVA) and CMC was determined as 7.77%:4.02%:1.02% by response surface experiment, to achieve the carbon release coefficient of 4.40 and the maximum chemical oxygen demand (COD) release of 320.96 mg·g-1 of the prepared LDHs-based filter media. Finally, denitrification biological filter was constructed for denitrogenation of synthetic wastewater with low C/N ratio. Results showed that under HRT of 3 h, the average removal rate of total nitrogen (TN) was only 32.4% and the nitrogen load was (0.0960±0.0082) kg·m-3·d-1 N. By contrast, TN removal rate and nitrogen load were increased by 35.32%—38.46% and (0.118±0.0092) kg·m-3·d-1 N, respectively, after the addition of LDHs-based filter media. The abundances of five denitrifying functional genes (napA, narG, nirS, nirK and nosZ) were also significantly increased (P<0.05), which improved the denitrogenation efficiency at each stage of denitrification. It demonstrated that LDHs-based slow-release carbon source could strengthen the deep denitrogenation of wastewater with low C/N ratio in denitrification biological filter, and could be employed as a potentially novel material for advanced denitrogenation of wastewater. -
表 1 响应面实验设计
Table 1. The experimental design of Response Surface Experiment
实验组别
Experimental groupPVA质量分数/%
PVA mass fractionCMC质量分数/%
CMC mass fractionFeNi-LDH-CMC质量分数/%
FeNi-LDH-CMC mass fraction1 4.0 1.5 6.0 2 4.0 1.0 8.0 3 4.0 0.5 10.0 4 4.0 1.0 8.0 5 2.0 0.5 8.0 6 6.0 1.0 6.0 7 6.0 0.5 8.0 8 6.0 1.5 8.0 9 4.0 0.5 6.0 10 4.0 1.0 8.0 11 2.0 1.5 8.0 12 4.0 1.5 10.0 13 2.0 1.0 8.0 14 2.0 1.0 6.0 15 6.0 1.0 10.0 16 4.0 1.0 8.0 17 4.0 1.0 8.0 表 2 人工合成废水组分
Table 2. Components of synthetic wastewater
主要组分
Essential components浓度/(mg·L−1)
Concentration微量元素组分
Trace element components浓度/(mg·L−1)
ConcentrationCOD 150.0 MgCl2·6H2O 24.0 NO3−-N 50.0 CaCl2·2H2O 24.0 KH2PO4 25.0 ZnSO4 0.4 NaHCO3 250.0 CoCl2·6H2O 0.5 (NH4)6Mo7O24·4H2O 0.5 MnCl2·4H2O 0.3 EDTA-2Na 5.0 表 3 功能基因的引物序列及实验条件
Table 3. Primers of functional genes and corresponding experiment conditions
功能基因
Functional gene引物名称
Primer name引物序列
Primer sequence (5′-3′)退火温度/℃
Annealing temperature基因长度/bp
Amplification sizenirS nirS-F ATGCAGGAAGCGGGAGGT 54 410 nirS-R TGAAGGAAACGGGCAAGGT nirK nirK583F TCATGGTGCTGCCGCGKGACGG 60 350 nirK909R GAACTTGCCGGTKGCCCAGAC napA napA-F AGCGAGAATGGGCTGTTG 52 152 napA-R TGGACGATGGGCTTCAAC narG narGF TCGCCSATYCCGGCSATGTC 61 173 narGR GAGTTGTACCAGTCRGCSGAYTCSG nosZ nosZ-F TGTCCTTGCCGTCCTTGC 55 392 nosZ-R CGACTGGGTGGTGGTGTTC 表 4 CMC和4种碳源的元素组成
Table 4. Element composition of CMC and four carbon sources
碳源
Carbon sources元素
Elements含量/%
Percentage compositionCMC C1s 53.39 O1s 38.69 Na1s 7.92 AlNi-LDH-CMC C1s 25.10 O1s 48.27 Al2p 18.20 Ni2p 4.35 Cl2p 4.05 AlMg-LDH-CMC C1s 21.18 O1s 51.31 Al2p 11.18 Mg1s 12.18 Cl2p 4.16 FeNi-LDH-CMC C1s 33.14 O1s 55.92 Fe2p 1.96 Ni2p 5.35 Cl2p 3.63 FeMg-LDH-CMC C1s 33.33 O1s 49.50 Fe2p 2.23 Mg1s 11.76 Cl2p 3.17 表 5 各组分含量对K值的影响
Table 5. Effect of each component content on K value
实验组别
Experimental groupPVA质量分数/%
PVA mass fractionCMC质量分数/%
CMC mass fractionFeNi-LDH-CMC质量分数/%
FeNi-LDH-CMC mass fraction释碳系数K
Carbon release coefficient K1 4.0 1.5 6.0 5.69 2 4.0 1.0 8.0 4.26 3 4.0 0.5 10.0 7.65 4 4.0 1.0 8.0 4.66 5 2.0 0.5 8.0 5.98 6 6.0 1.0 6.0 7.32 7 6.0 0.5 8.0 8.11 8 6.0 1.5 8.0 6.85 9 4.0 0.5 6.0 7.39 10 4.0 1.0 8.0 4.68 11 2.0 1.5 8.0 8.64 12 4.0 1.5 10.0 7.29 13 2.0 1.0 8.0 7.66 14 2.0 1.0 6.0 6.98 15 6.0 1.0 10.0 6.77 16 4.0 1.0 8.0 4.16 17 4.0 1.0 8.0 4.33 表 6 反硝化生物滤池稳定阶段出水污染物浓度
Table 6. Concentration of effluent contaminants in stable stage of denitrification biofilters
实验组别
Experimental groupTOC/(mg·L−1) TN/(mg·L−1) NO3−N/(mg·L−1) NO2−N/(mg·L−1) 反硝化负荷/(kg·m−3·d−1 N)
Denitrification loadR1-1 17.94±0.11 29.82±1.17 16.23±1.76 8.10±3.04 0.0630±0.0030 R1-2 12.73±0.92 33.98±3.84 23.2±2.97 11.03±0.40 0.0960±0.0082 R2-1 38.10±2.96 12.16±1.2 8.50±0.56 2.60±0.31 0.1130±0.0016 R2-2 42.16±1.6 14.26±0.66 9.90±4.30 3.60±1.10 0.2140±0.001 -
[1] HU H D, LIAO K W, SHI Y J, et al. Effect of solids retention time on effluent dissolved organic nitrogen in the activated sludge process: Studies on bioavailability, fluorescent components, and molecular characteristics [J]. Environmental Science & Technology, 2018, 52(6): 3449-3455. [2] CAO S B, DU R, LI B K, et al. Nitrite production from partial-denitrification process fed with low carbon/nitrogen (C/N) domestic wastewater: Performance, kinetics and microbial community [J]. Chemical Engineering Journal, 2017, 326: 1186-1196. doi: 10.1016/j.cej.2017.06.066 [3] 张蕊, 韩志英, 陈重军, 等. 生物膜型污水脱氮系统中膜结构及微生物生态研究进展 [J]. 生态学杂志, 2011, 30(11): 2628-2636. doi: 10.13292/j.1000-4890.2011.0381 ZHANG R, HAN Z Y, CHEN C J, et al. Microstructure and microbial ecology of biofilm in the bioreactor for nitrogen removing from wastewater: A review [J]. Chinese Journal of Ecology, 2011, 30(11): 2628-2636(in Chinese). doi: 10.13292/j.1000-4890.2011.0381
[4] HAN F, WEI D, NGO H H, et al. Performance, microbial community and fluorescent characteristic of microbial products in a solid-phase denitrification biofilm reactor for WWTP effluent treatment [J]. Journal of Environmental Management, 2018, 227: 375-385. [5] HER J J, HUANG J S. Influences of carbon source and C/N ratio on nitrate/nitrite denitrification and carbon breakthrough [J]. Bioresource Technology, 1995, 54(1): 45-51. doi: 10.1016/0960-8524(95)00113-1 [6] COSTA D D, GOMES A A, FERNANDES M, et al. Using natural biomass microorganisms for drinking water denitrification [J]. Journal of Environmental Management, 2018, 217: 520-530. [7] LIANG X Q, LIN L M, YE Y S, et al. Nutrient removal efficiency in a rice-straw denitrifying bioreactor [J]. Bioresource Technology, 2015, 198: 746-754. doi: 10.1016/j.biortech.2015.09.083 [8] MARTÍNEZ N B, TEJEDA A, del TORO A, et al. Nitrogen removal in pilot-scale partially saturated vertical wetlands with and without an internal source of carbon [J]. The Science of the Total Environment, 2018, 645: 524-532. doi: 10.1016/j.scitotenv.2018.07.147 [9] ALI M, SHAW D R, ZHANG L, et al. Aggregation ability of three phylogenetically distant anammox bacterial species [J]. Water Research, 2018, 143: 10-18. doi: 10.1016/j.watres.2018.06.007 [10] LI P, ZUO J E, WANG Y J, et al. Tertiary nitrogen removal for municipal wastewater using a solid-phase denitrifying biofilter with polycaprolactone as the carbon source and filtration medium [J]. Water Research, 2016, 93: 74-83. doi: 10.1016/j.watres.2016.02.009 [11] HUANG G X, FALLOWFIELD H, GUAN H D, et al. Remediation of nitrate-nitrogen contaminated groundwater by a heterotrophic-autotrophic denitrification approach in an aerobic environment [J]. Water, Air, & Soil Pollution, 2012, 223(7): 4029-4038. [12] SAHA S M, RAY S, ACHARYA R, et al. Magnesium, zinc and calcium aluminium layered double hydroxide-drug nanohybrids: A comprehensive study [J]. Applied Clay Science, 2017, 135: 493-509. doi: 10.1016/j.clay.2016.09.030 [13] ISLAM M, PATEL R. Synthesis and physicochemical characterization of Zn/Al chloride layered double hydroxide and evaluation of its nitrate removal efficiency [J]. Desalination, 2010, 256(1/2/3): 120-128. [14] FANG C J, ZHANG X L, LEI Y, et al. Nitrogen removal via core-shell bio-ceramic/Zn-layer double hydroxides synthesized with different composites for domestic wastewater treatment [J]. Journal of Cleaner Production, 2018, 181: 618-630. doi: 10.1016/j.jclepro.2018.01.249 [15] JIANG L, LIU J Y, ZUO K, et al. Performance of layered double hydroxides intercalated with acetate as biodenitrification carbon source: The effects of metal ions and particle size [J]. Bioresource Technology, 2018, 259: 99-103. doi: 10.1016/j.biortech.2018.03.032 [16] CHEN M, BI R, ZHANG R, et al. Tunable surface charge and hydrophilicity of sodium polyacrylate intercalated layered double hydroxide for efficient removal of dyes and heavy metal ions [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2021, 617: 126384. doi: 10.1016/j.colsurfa.2021.126384 [17] LABBÉ N, PARENT S, VILLEMUR R. Addition of trace metals increases denitrification rate in closed marine systems [J]. Water Research, 2003, 37(4): 914-920. doi: 10.1016/S0043-1354(02)00383-4 [18] JIANG L, LIU J Y, ZHANG C, et al. Synthesis of layered double hydroxides with fermentation liquid of organic waste to extract short-chain fatty acids as a biodenitrification carbon source [J]. ACS Sustainable Chemistry & Engineering, 2017, 5(10): 9095-9101. [19] NARAYAN K D, SABAT S C, DAS S K. Mechanism of electron transport during thiosulfate oxidation in an obligately mixotrophic bacterium Thiomonas bhubaneswarensis strain S10 (DSM 18181^T) [J]. Applied Microbiology and Biotechnology, 2017, 101(3): 1239-1252. doi: 10.1007/s00253-016-7958-x [20] XU Z X, LIU S H, YING H L, et al. Biological denitrification using corncobs as a carbon source and biofilm carrier [J]. Water Environment Research, 2009, 81: 242-247. [21] 邵留, 徐祖信, 王晟, 等. 新型反硝化固体碳源释碳性能研究 [J]. 环境科学, 2011, 32(8): 2323-2327. doi: 10.13227/j.hjkx.2011.08.048 SHAO L, XU Z X, WANG S, et al. Performance of new solid carbon source materials for denitrification [J]. Environmental Science, 2011, 32(8): 2323-2327(in Chinese). doi: 10.13227/j.hjkx.2011.08.048
[22] PENG C, HUANG H, GAO Y L, et al. A novel start-up strategy for mixotrophic denitrification biofilters by rhamnolipid and its performance on denitrification of low C/N wastewater [J]. Chemosphere, 2020, 239: 124726. doi: 10.1016/j.chemosphere.2019.124726 [23] 闫续, 许柯, 耿金菊, 等. 两种释碳材料的制备及其性能研究 [J]. 中国环境科学, 2012, 32(11): 1984-1990. doi: 10.3969/j.issn.1000-6923.2012.11.009 YAN X, XU K, GENG J J, et al. Preparation and properties of two kinds of carbon releasing material [J]. China Environmental Science, 2012, 32(11): 1984-1990(in Chinese). doi: 10.3969/j.issn.1000-6923.2012.11.009
[24] XIONG R, YU X X, YU L J, et al. Biological denitrification using polycaprolactone-peanut shell as slow-release carbon source treating drainage of municipal WWTP [J]. Chemosphere, 2019, 235: 434-439. doi: 10.1016/j.chemosphere.2019.06.198 [25] XU Z S, DAI X H, CHAI X L. Effect of different carbon sources on denitrification performance, microbial community structure and denitrification genes [J]. Science of the Total Environment, 2018, 634: 195-204. doi: 10.1016/j.scitotenv.2018.03.348 [26] WU H, ZHANG Q, CHEN X, et al. Effect of HRT and BDPs types on nitrogen removal and microbial community of solid carbon source SND process treating low carbon/nitrogen domestic wastewater [J]. Journal of Water Process Engineering, 2021, 40: 101854. doi: 10.1016/j.jwpe.2020.101854 [27] YANG M, WANG X N, LIU S, et al. Carbon release behaviour of polylactic acid/starch-based solid carbon and its influence on biodenitrification [J]. Biochemical Engineering Journal, 2020, 155: 107468. doi: 10.1016/j.bej.2019.107468 [28] YANG N, ZHAN G Q, LI D P, et al. Complete nitrogen removal and electricity production in Thauera-dominated air-cathode single chambered microbial fuel cell [J]. Chemical Engineering Journal, 2019, 356: 506-515. doi: 10.1016/j.cej.2018.08.161 [29] ZHANG Y S, JIANG J Q, ZHAO Q L, et al. Accelerating anodic biofilms formation and electron transfer in microbial fuel cells: Role of anionic biosurfactants and mechanism [J]. Bioelectrochemistry, 2017, 117: 48-56. doi: 10.1016/j.bioelechem.2017.06.002 [30] PENG P C, HUANG H, REN H Q. Effect of adding low-concentration of rhamnolipid on reactor performances and microbial community evolution in MBBRs for low C/N ratio and antibiotic wastewater treatment [J]. Bioresource Technology, 2018, 256: 557-561. doi: 10.1016/j.biortech.2018.02.035 [31] van DOAN T, LEE T K, SHUKLA S K, et al. Increased nitrous oxide accumulation by bioelectrochemical denitrification under autotrophic conditions: Kinetics and expression of denitrification pathway genes [J]. Water Research, 2013, 47(19): 7087-7097. doi: 10.1016/j.watres.2013.08.041 [32] ZHI W, JI G D. Quantitative response relationships between nitrogen transformation rates and nitrogen functional genes in a tidal flow constructed wetland under C/N ratio constraints [J]. Water Research, 2014, 64: 32-41. doi: 10.1016/j.watres.2014.06.035 [33] XU H, LIN C S, CHEN W, et al. Effects of pipe material on nitrogen transformation, microbial communities and functional genes in raw water transportation [J]. Water Research, 2018, 143: 188-197. doi: 10.1016/j.watres.2018.06.040 [34] XING W, LI J L, CONG Y, et al. Identification of the autotrophic denitrifying community in nitrate removal reactors by DNA-stable isotope probing [J]. Bioresource Technology, 2017, 229: 134-142. doi: 10.1016/j.biortech.2017.01.010 [35] DESNUES C, MICHOTEY V D, WIELAND A, et al. Seasonal and diel distributions of denitrifying and bacterial communities in a hypersaline microbial mat (Camargue, France) [J]. Water Research, 2007, 41(15): 3407-3419. doi: 10.1016/j.watres.2007.04.018 [36] LI M Y, REN L H, ZHANG J C, et al. Population characteristics and influential factors of nitrogen cycling functional genes in heavy metal contaminated soil remediated by biochar and compost [J]. Science of the Total Environment, 2019, 651: 2166-2174. doi: 10.1016/j.scitotenv.2018.10.152