-
扬尘源是我国各地区大气颗粒物污染的重要来源,如我国北方地区春季扬尘源对PM2.5的贡献率可达到30%以上[1-5]。《扬尘源颗粒物排放清单编制技术指南(试行)》(以下简称“《指南》”)指出,土壤扬尘是指裸露地面的颗粒物在自然或人力作用下形成的扬尘[6]。土壤扬尘源分布区域广、排放随机性大、瞬时爆发性强,对局地和区域空气质量的季节性影响明显[7-9],会影响大气辐射平衡或作为凝结核促进颗粒物的二次反应[10]。因此,编制土壤扬尘源排放清单对于空气质量模拟和相关研究具有重要意义[11]。
近年来,遥感技术(RS)和地理信息系统技术(GIS)被广泛应用于构建高空间分辨率排放清单[12-14]。运用该类方法,目前已有关于南京[15]、哈尔滨[16]、北京[17]、常州[18]、长沙[19]、武汉[9]和郑州[20]等中国中部及东部城市的土壤扬尘排放清单及本地化排放因子的研究,但有关中国西部城市的相关报道较少[21],尚未发现关于西宁市土壤扬尘排放清单的研究。
作为青海省省会,地处青藏高原河湟谷地的西宁市具有典型的西部城市特征。同时也是兰西城市群中心城市,是西部大开发重要工业基地、资源开发基地和交通网络枢纽。西宁市2018年PM10和PM2.5日均浓度均超过国家二级质量标准,其大气污染不容忽视。西宁市土壤扬尘排放清单研究的缺乏,给当地污染成因分析、预警预报带来了较大的不确定性。
为系统构建西宁市土壤扬尘清单,本研究以2018年为基准年,将遥感技术(RS)与地理信息系统技术(GIS)相结合,并通过实地考察、现场采样以及实验分析,获取了具有西宁市本地化特征的土壤扬尘计算参数,并结合当地气象参数,建立了西宁市土壤扬尘排放清单并获得其时空分配特征,以期为西宁市大气污染防治对策制定提供基础和依据。
西宁市土壤扬尘排放清单构建及时空分布特征
Construction of emission inventory and temporal-spatial distribution of soil fugitive dust in Xining, China
-
摘要: 本研究通过遥感解译获得植被覆盖度,结合土地利用现状、土壤质地和气象数据,获取了西宁市本地化土壤扬尘源计算参数,并据此构建了西宁市2018年土壤扬尘排放清单。结果表明,2018年西宁市土壤扬尘PM2.5、PM10年排放量分别为353.13 t、1502.46 t,其中湟源县土壤扬尘排放量最高,大通县位居第二,市辖区排放量较小。PM2.5、PM10在四月排放量最大,分别为59.08 t、251.68 t;7月份排放量最小,PM2.5、PM10排放量分别为6.41 t、27.40 t。蒙特卡罗模拟结果表明,西宁市土壤扬尘PM2.5和PM10的不确定度均较低,PM10排放量的不确定度范围为-21.90%—24.50%;PM2.5排放量的不确定度范围为-20.15%—22.00%。Abstract: The localization parameters and emission inventory of soil fugitive dust in Xining in 2018 was constructed according to vegetation coverage interpreted by remote sensing, land use, soil texture, and meteorological factors. Results showed that the annual PM2.5 and PM10 emissions from the soil fugitive dust were 353.13 t and 1502.46 t, respectively. The emission of soil fugitive dust in Huangyuan county was the highest, followed by Datong county, and the emissions in municipal districts were low. The emissions of PM2.5 and PM10 were the highest in April with the values of 59.08 t and 251.68 t and lowest in July with the values of 6.41 t and 27.40 t, respectively. The Monte Carlo simulation results showed that the uncertainties of PM2.5 and PM10 of soil fugitive dust in Xining were both low, with the range of -20.15% to 22.00% and -21.90% to 24.50%, respectively.
-
Key words:
- soil fugitive dust /
- localization factor /
- emission inventory /
- Xining /
- uncertainty analysis
-
表 1 各站点年气象资料
Table 1. Meteorological data of each station
站点名称
Site name年潜在蒸发量/mm
Annual potential evaporation年降水量/mm
Annual precipitation年桑氏威特降水-蒸发指数
Annual Sandhurst Precipitation - evaporation index大通县 445.53 483.40 108.50 湟源县 431.47 515.20 119.41 湟中区 442.79 669.80 151.27 西宁市区 506.50 519.10 102.49 表 2 各区县土壤扬尘PM2.5和PM10的年排放量和贡献率
Table 2. Annual emissions and contribution rate of PM2.5 and PM10 from soil dust
区县名称
CountyPM2.5 PM10 年排放量/t
Annual Emissions贡献率/%
Contribution Rate年排放量/t
Annual Emissions贡献率/%
Contribution Rate城东区 0.90 0.25 3.78 0.25 城中区 0.16 0.05 0.67 0.04 城西区 0.59 0.17 2.44 0.16 城北区 0.88 0.25 3.79 0.25 大通县 148.09 41.94 634.15 42.21 湟中区 29.68 8.40 128.45 8.55 湟源县 172.82 48.94 729.18 48.53 合计 353.13 100.00 1502.46 100.00 表 3 西宁市土壤扬尘排放强度与其他城市对比
Table 3. Comparison of soil dust emission intensity between Xining and other cities
区域
Region年份
YearPM2.5排放量/t
PM2.5 emission土壤扬尘源面积/km2
Area of soil dust source排放强度/(t·km−2)
Emission intensity文献
Reference西宁 2018 353.13 6899.44 0.05 本研究 西安 2014 60.90 360.73 0.17 [21] 常州 2014 0.24 1569.46 0.0002 [18] 郑州 2013 597.00 208.00 2.87 [20] 保定 2015 2889.00 9455.00 0.31 [23] 沧州 2015 4786.00 10112.00 0.47 [23] 承德 2015 1450.00 4789.00 0.30 [23] 邯郸 2015 7409.00 7283.00 1.02 [23] 衡水 2015 2578.00 6753.00 0.38 [23] 廊坊 2015 1056.00 4340.00 0.24 [23] 秦皇岛 2015 1055.00 2468.00 0.43 [23] 石家庄 2015 2424.00 6510.00 0.37 [23] 唐山 2015 2685.00 6753.00 0.40 [23] 邢台 2015 6593.00 7691.00 0.86 [23] 张家口 2015 6774.00 11473.00 0.59 [23] 表 4 不确定性分析结果
Table 4. Uncertainty analysis
月份
MonthPM2.5 PM10 中位值/t
Median平均值/t
Mean95%置信区间/t
95% Confidence Interval不确定度/%
Uncertainty中位值/t
Median平均值/t
Mean95%置信区间/t
95% Confidence Interval不确定度/%
Uncertainty1 6.31 6.31 6.13—6.52 −2.85—3.33 25.95 25.96 25.18—26.82 −3.00—3.31 2 5.38 5.39 5.17—5.63 −4.08—4.45 22.09 22.10 21.25—23.14 −3.85—4.71 3 2.76 2.76 2.71—2.82 −1.81—2.17 11.35 11.35 11.14—11.57 −1.85—1.94 4 5.52 5.52 5.44—5.62 −1.45—1.81 22.69 22.69 22.32—23.04 −1.63—1.54 5 3.24 3.24 3.21—3.27 −0.93—0.93 13.30 13.30 13.18—13.42 −0.90—0.90 6 1.00 1.00 0.99—1.01 −1.00—1.00 4.10 4.10 4.07—4.14 −0.73—0.98 7 0.44 0.44 0.43—0.44 −2.27—0.00 1.80 1.80 1.78—1.82 −1.11—1.11 8 0.50 0.50 0.5—0.51 0.00—2.00 2.07 2.07 2.05—2.08 −0.97—0.48 9 1.33 1.33 1.32—1.34 −0.75—0.75 5.48 5.48 5.43—5.53 −0.91—0.91 10 1.61 1.61 1.57—1.66 −2.48—3.11 6.61 6.61 6.41—6.84 −3.03—3.48 11 1.81 1.81 1.73—1.9 −4.42—4.97 7.42 7.43 7.12—7.76 −4.17—4.44 12 5.37 5.41 4.32—6.6 −20.15—22.00 22.18 22.33 17.44—27.8 −21.90—24.50 -
[1] GENG N B, WANG J, XU Y F, et al. PM2.5 in an industrial district of Zhengzhou, China: Chemical composition and source apportionment [J]. Particuology, 2013, 11(1): 99-109. doi: 10.1016/j.partic.2012.08.004 [2] 肖致美, 徐虹, 李立伟, 等. 基于在线观测的天津市PM2.5污染特征及来源解析 [J]. 环境科学, 2020, 41(10): 4355-4363. XIAO Z M, XU H, LI L W, et al. Characterization and source apportionment of PM2.5 based on the online observation in Tianjin [J]. Environmental Science, 2020, 41(10): 4355-4363(in Chinese).
[3] 韩力慧, 张鹏, 张海亮, 等. 北京市大气细颗粒物污染与来源解析研究 [J]. 中国环境科学, 2016, 36(11): 3203-3210. doi: 10.3969/j.issn.1000-6923.2016.11.001 HAN L H, ZHANG P, ZHANG H L, et al. Pollution and source apportionment of atmospheric fine particles in Beijing [J]. China Environmental Science, 2016, 36(11): 3203-3210(in Chinese). doi: 10.3969/j.issn.1000-6923.2016.11.001
[4] 陈国磊, 周颖, 程水源, 等. 承德市大气污染源排放清单及典型行业对PM2.5的影响 [J]. 环境科学, 2016, 37(11): 4069-4079. CHEN G L, ZHOU Y, CHENG S Y, et al. Air pollutant emission inventory and impact of typical industries on PM2.5 in Chengde [J]. Environmental Science, 2016, 37(11): 4069-4079(in Chinese).
[5] HAO Y F, MENG X P, YU X P, et al. Quantification of primary and secondary sources to PM2.5 using an improved source regional apportionment method in an industrial city, China [J]. Science of the Total Environment, 2020, 706: 135715. doi: 10.1016/j.scitotenv.2019.135715 [6] 环境保护部. 扬尘源颗粒物排放清单编制技术指南[EB/OL]. [2021-4-17]. 北京: 环境保护部, [7] 方小珍, 孙列, 毕晓辉, 等. 宁波城市扬尘化学组成特征及其来源解析 [J]. 环境污染与防治, 2014, 36(1): 55-59, 79. doi: 10.3969/j.issn.1001-3865.2014.01.012 FANG X Z, SUN L, BI X H, et al. The chemical compositions and sources apportionment of re-suspended dust in Ningbo [J]. Environmental Pollution & Control, 2014, 36(1): 55-59, 79(in Chinese). doi: 10.3969/j.issn.1001-3865.2014.01.012
[8] 张琦. 基于卫星遥感的河南省中原城市群扬尘源颗粒物排放及空间分异研究[D]. 郑州: 郑州大学, 2019. ZHANG Q. Emission inventory and spatial distribution of particulate matter from dust sources in the central Plains urban agglomeration of China[D]. Zhengzhou: Zhengzhou University, 2019(in Chinese).
[9] 黄宇, 虎彩娇, 成海容, 等. 武汉市扬尘源颗粒物排放清单及空间分布特征 [J]. 武汉大学学报(理学版), 2018, 64(4): 354-362. doi: 10.14188/j.1671-8836.2018.04.011 HUANG Y, HU C J, CHENG H R, et al. Emission inventory and spatial distribution characteristics of particulate matters from dust source in Wuhan, China [J]. Journal of Wuhan University (Natural Science Edition), 2018, 64(4): 354-362(in Chinese). doi: 10.14188/j.1671-8836.2018.04.011
[10] PARK S H, GONG S L, GONG W, et al. Relative impact of windblown dust versus anthropogenic fugitive dust in PM2.5on air quality in North America [J]. Journal of Geophysical Research Atmospheres, 2010, 115(D16): D16210. doi: 10.1029/2009JD013144 [11] LÓPEZ-APARICIO S, GUEVARA M, THUNIS P, et al. Assessment of discrepancies between bottom-up and regional emission inventories in Norwegian urban areas [J]. Atmospheric Environment, 2017, 154: 285-296. doi: 10.1016/j.atmosenv.2017.02.004 [12] LI T K, BI X H, DAI Q L, et al. Improving spatial resolution of soil fugitive dust emission inventory using RS-GIS technology: An application case in Tianjin, China [J]. Atmospheric Environment, 2018, 191: 46-54. doi: 10.1016/j.atmosenv.2018.07.051 [13] PIANALTO F S, YOOL S R. Monitoring fugitive dust emission sources arising from construction: A remote-sensing approach [J]. GIScience & Remote Sensing, 2013, 50(3): 251-270. [14] PIANALTO F S, MEYANRT R, NEECK S P, et al. A remote sensing model of construction-related soil disturbance in southern Arizona [J]. International Society for Optics and Photonics, 2010, 7826: 782629. [15] 王社扣, 王体健, 石睿, 等. 南京市不同类型扬尘源排放清单估计 [J]. 中国科学院大学学报, 2014, 31(3): 351-359. doi: 10.7523/j.issn.2095-6134.2014.03.009 WANG S K, WANG T J, SHI R, et al. Estimation of different fugitive dust emission inventory in Nanjing [J]. Journal of University of Chinese Academy of Sciences, 2014, 31(3): 351-359(in Chinese). doi: 10.7523/j.issn.2095-6134.2014.03.009
[16] 李莉莉. 哈尔滨市高分辨率扬尘源排放清单及控制对策的研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. LI L L. A highly resolved fugitive dust emission inventory in Harbin and assessment of control strategies[D]. Harbin: Harbin Institute of Technology, 2018(in Chinese).
[17] 李贝贝, 黄玉虎, 毕晓辉, 等. 北京市土壤风蚀扬尘排放因子本地化 [J]. 环境科学, 2020, 41(6): 2609-2616. doi: 10.13227/j.hjkx.201908243 LI B B, HUANG Y H, BI X H, et al. Localization of soil wind erosion dust emission factor in Beijing [J]. Environmental Science, 2020, 41(6): 2609-2616(in Chinese). doi: 10.13227/j.hjkx.201908243
[18] 杨卫芬, 程钟, 张洁, 等. 常州市裸露地面风蚀扬尘排放清单及分布特征研究 [J]. 环境监测管理与技术, 2020, 32(2): 56-60. doi: 10.3969/j.issn.1006-2009.2020.02.014 YANG W F, CHENG Z, ZHANG J, et al. Research on emission inventory and distribution characteristics of wind erosion dust from bare ground in Changzhou [J]. The Administration and Technique of Environmental Monitoring, 2020, 32(2): 56-60(in Chinese). doi: 10.3969/j.issn.1006-2009.2020.02.014
[19] 秦建新, 朱柯颖, 吴涛, 等. 长沙市城区施工扬尘和土壤扬尘污染时空特征研究 [J]. 中国环境监测, 2020, 36(4): 69-79. doi: 10.19316/j.issn.1002-6002.2020.04.09 QIN J X, ZHU K Y, WU T, et al. Study on spatial and temporal characteristics of construction dust and soil dust pollution sources in urban areas of Changsha [J]. Environmental Monitoring in China, 2020, 36(4): 69-79(in Chinese). doi: 10.19316/j.issn.1002-6002.2020.04.09
[20] 徐媛倩, 姜楠, 燕启社, 等. 郑州市裸露地面风蚀扬尘排放清单研究 [J]. 环境污染与防治, 2016, 38(4): 22-27. doi: 10.15985/j.cnki.1001-3865.2016.04.005 XU Y Q, JIANG N, YAN Q S, et al. Research on emission inventory of bareness wind erosion dust in Zhengzhou [J]. Environmental Pollution & Control, 2016, 38(4): 22-27(in Chinese). doi: 10.15985/j.cnki.1001-3865.2016.04.005
[21] 闫东杰, 丁毅飞, 玉亚, 等. 西安市人为源一次PM2.5排放清单及减排潜力研究 [J]. 环境科学研究, 2019, 32(5): 813-820. YAN D J, DING Y F, YU Y, et al. Inventory and reduction potential of anthropogenic PM2.5 emission in Xi'an city [J]. Research of Environmental Sciences, 2019, 32(5): 813-820(in Chinese).
[22] 宋立来, 李廷昆, 毕晓辉, 等. 京津冀地区高空间分辨率土壤扬尘清单构建及动态化方法 [J]. 环境科学研究, 2021, 34(8): 1771-1781. doi: 10.13198/j.issn.1001-6929.2021.05.03 SONG L L, LI T K, BI X H, et al. Construction and dynamic method of soil fugitive dust emission inventory with high spatial resolution in Beijing-Tianjin-Hebei region [J]. Research of Environmental Sciences, 2021, 34(8): 1771-1781(in Chinese). doi: 10.13198/j.issn.1001-6929.2021.05.03
[23] 郭祥, 冯海波, 陆雅静. 河北省土壤扬尘源PM2.5排放量估算 [J]. 河北工业科技, 2017, 34(6): 477-482. doi: 10.7535/hbgykj.2017yx06015 GUO X, FENG H B, LU Y J. Estimation of emissions of PM2.5 from soil dust in Hebei Province [J]. Hebei Journal of Industrial Science and Technology, 2017, 34(6): 477-482(in Chinese). doi: 10.7535/hbgykj.2017yx06015