-
磺胺类抗生素是人工合成的广谱型抗菌药物,因杀菌性强、使用方便等优点被广泛应用于人类医疗和畜禽养殖中。当人类或动物服用后,仅有20%左右的磺胺抗生素能被吸收,剩余部分则以母体或代谢产物的形式随排泄物进入环境[1]。磺胺嘧啶(SDZ)作为一种常用的磺胺类药物,在世界各地的水环境中经常被检测到[2],可能对水生生物构成生态风险。由于磺胺抗生素固有的N、S杂环结构使其具有较强的生化稳定性,采用传统的处理工艺与技术难以有效的将其去除[3]。因此,探寻高效的磺胺类抗生素处理方法成为研究难点。
基于活化过一硫酸盐(PMS)产生硫酸根自由基SO4·-的高级氧化技术因氧化能力强、稳定性好、pH值耐受范围广、便于运输储存等优点在难降解有机物处理领域得到广泛关注[4-5]。目前活化PMS的方法主要有过渡金属离子活化、紫外活化、热活化以及超声活化[6]等,其中以零价铁(Fe0)为主要活性点位的过渡金属活化法因较高的氧化还原电位、环保及低成本等特性备受广大研究者青睐,但金属团聚及反应后催化剂难回收等问题限制了其广泛应用。因此,开发新型、绿色高效的Fe0基支撑材料具有广泛而深远的现实意义。
生物炭作为一种由废弃生物质高温分解而来的碳材料, 不仅来源广泛、价格低廉、制备过程简单,其巨大比表面积、丰富的含氧官能团、杂化的碳结构还能为PMS提供新的活性点位[7],是一种颇具潜力的Fe0基氧化还原介体。目前,已有研究者将污泥[8]、秸秆[9]和草药残渣[10]等工业及林业废弃物与高价铁源混合制备Fe0功能的生物炭复合材料,而以绵羊粪便为原料制备生物炭并作为Fe0支撑材料的研究未有报道。不同种类的铁物质对活化PMS降解污染物的机制有较大差异,现有研究多集中在Fe0、Fe2+和Fe3+参与的自由基途径耦合生物炭产生的非自由基途径来降解有机物[11-13]。关于Fe3C和Fe0两种铁物质在生物炭上的形成以及协同作用的污染物降解机制并不明确。
因此,本研究以绵羊粪便为生物炭来源,通过共沉淀法制备磁性羊粪生物炭(Fe3O4-SMB),再将其在3种不同温度(500 ℃、600 ℃、700 ℃)下热解得到Fe@SMB复合材料。通过SEM、EDS、XRD、Raman、BET等方法对材料的形貌、石墨化程度、比表面积和表面化学性质进行表征,揭示Fe0/Fe3C在生物炭上的产生机制,并通过序批实验考察不同PMS和催化剂用量、温度、阴离子、pH等因素对SDZ降解的影响。结合猝灭实验实验和XPS测试阐明Fe0/Fe3C双铁功能生物炭复合材料活化PMS的主要活性点位及反应机理。最后,通过稳定性评价该催化剂的应用潜力,为Fe0/Fe3C-生物炭在硫酸根自由基高级氧化技术实际工程的应用提供理论和技术支撑。
Fe0/Fe3C羊粪生物炭复合材料的制备及其活化过一硫酸盐降解磺胺嘧啶
Preparation of Fe0/Fe3C sheep manure biochar composites for activating peroxymonosulfate to degrade sulfadiazine
-
摘要: 以Fe3O4-羊粪生物炭为原料,热解制备铁功能化的生物炭复合材料(Fe0/Fe3C-SMB700)用于活化过一硫酸盐(PMS)降解磺胺嘧啶(SDZ)。结果表明,在700 ℃下制备的Fe0/Fe3C-SMB700,因双铁Fe0/Fe3C功能化结构、高度石墨化及层状多孔结构表现出最强的催化活性。在最优反应条件下(0.3 g·L−1 PMS和0.6 g·L−1催化剂),10 mg·L-1的SDZ在50 min内被完全去除。Fe0/Fe3C-SMB700可通过外部磁铁进行有效回收,并且经过5次循环使用仍能保持良好的催化活性。猝灭实验及X射线光电子能谱分析结果表明,自由基与非自由基途径均对SDZ的降解有着重要影响,其中自由基途径以Fe0激活PMS产生SO4·−为主,非自由基途径主要通过Fe3C改变碳电子分布产生1O2,而Fe0/Fe3C-SMB700的石墨碳层结构为非自由基途径提供了良好的电子转移场所。综上,本研究通过以废制废的方式制备双铁功能化的催化材料,不仅实现了粪源废物的资源化利用,同时为有机废水高效的处理方法提供了技术支撑。Abstract: Fe3O4-sheep manure biochar was used for the preparation of iron-functionalized biochar composite (Fe0/Fe3C-SMB700) by pyrolysis for the degradation of sulfadiazine (SDZ) by activating peroxymonosulfate (PMS) . The results showed that Fe0/Fe3C-SMB700, prepared at 700 °C, exhibited the strongest catalytic activity due to the functionalized structure of double iron (Fe0/Fe3C), high graphitization and layered porous structure. Under the optimal reaction conditions (0.3 g·L−1 PMS and 0.6 g·L−1 catalyst) , 10 mg·L−1 SDZ was completely removed within 50 min. Fe0/Fe3C-SMB700 could be effectively recovered by external magnets and retained good catalytic activity after 5 cycles of use. The results of quenching experiments and X-ray photoelectron spectroscopy showed that both radical pathway and non-radical pathway had important effects on the degradation of SDZ, in which the free radical pathway was dominated by SO4·−produced by Fe0 activating PMS, and the non-radical pathway mainly caused by Fe3C changing the carbon electron distribution to produce 1O2, while the graphitic carbon layer structure of Fe0/Fe3C-SMB700 provided a good electron transfer site for the non-radical pathway. Consequently, this study prepares a catalytic material with double iron functionalization by waste-to-waste method, which not only realizes the resource utilization of manure-sourced waste but also provides the technical support for the efficient treatment method of organic wastewater.
-
Key words:
- peroxymonosulfate /
- sulfadiazine /
- sheep manure biochar /
- Fe0 /
- Fe3C
-
表 1 样品的比表面积和孔隙参数
Table 1. Specific surface areas and pore parameters of different composites
样品
Sample比表面积/(m2·g−1)
SBET总孔容/(cm3·g−1)
Total pore volume微孔孔容/(cm3·g−1)
Micropore volume平均孔径/nm
DpFe3O4-SMB 8.3 0.006 0 9.7 Fe@SMB500 45.6 0.011 0.003 9.2 Fe@SMB600 76.2 0.036 0.042 9.1 Fe0/Fe3C-SMB700 136.2 0.122 0.068 8.9 -
[1] CHENG D L, NGO H H, GUO W S, et al. A critical review on antibiotics and hormones in swine wastewater: Water pollution problems and control approaches [J]. Journal of Hazardous Materials, 2020, 387: 121682. doi: 10.1016/j.jhazmat.2019.121682 [2] STANGE C, TIEHM A. Occurrence of antibiotic resistance genes and microbial source tracking markers in the water of a karst spring in Germany [J]. Science of the Total Environment, 2020, 742: 140529. doi: 10.1016/j.scitotenv.2020.140529 [3] WANG L, YOU L X, ZHANG J M, et al. Biodegradation of sulfadiazine in microbial fuel cells: Reaction mechanism, biotoxicity removal and the correlation with reactor microbes [J]. Journal of Hazardous Materials, 2018, 360: 402-411. doi: 10.1016/j.jhazmat.2018.08.021 [4] WANG S Z, WANG J L. Peroxymonosulfate activation by Co9S8@ S and N co-doped biochar for sulfamethoxazole degradation [J]. Chemical Engineering Journal, 2020, 385: 123933. doi: 10.1016/j.cej.2019.123933 [5] CHEN X W, VIONE D, BORCH T, et al. Nano-MoO2 activates peroxymonosulfate for the degradation of PAH derivatives [J]. Water Research, 2021, 192: 116834. doi: 10.1016/j.watres.2021.116834 [6] GHANBARI F, MORADI M. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: Review [J]. Chemical Engineering Journal, 2017, 31: 41-62. [7] DIAO Z H, ZHANG W X, LIANG J Y, et al. Removal of herbicide atrazine by a novel biochar based iron composite coupling with peroxymonosulfate process from soil: Synergistic effect and mechanism [J]. Chemical Engineering Journal, 2021, 409: 127684. doi: 10.1016/j.cej.2020.127684 [8] ZANG T C, WANG H, LIU Y H, et al. Fe-doped biochar derived from waste sludge for degradation of rhodamine B via enhancing activation of peroxymonosulfate [J]. Chemosphere, 2020, 261: 127616. doi: 10.1016/j.chemosphere.2020.127616 [9] ZHANG Y, JIANG Q, JIANG S M, et al. One-step synthesis of biochar supported nZVI composites for highly efficient activating persulfate to oxidatively degrade atrazine [J]. Chemical Engineering Journal, 2021, 420: 129868. doi: 10.1016/j.cej.2021.129868 [10] GAO J, HAN D Q, XU Y, et al. Persulfate activation by sulfide -modified nanoscale iron supported by biochar (S-nZVI/BC) for degradation of ciprofloxacin [J]. Separation and Purification Technology, 2020, 235: 116202. doi: 10.1016/j.seppur.2019.116202 [11] LI W, ZHANG Y L, ZHAO P J, et al. Enhanced kinetic performance of peroxymonosulfate/ZVI system with the addition of copper ions: Reactivity, mechanism, and degradation pathways [J]. Journal of Hazardous Materials, 2020, 393: 122399. doi: 10.1016/j.jhazmat.2020.122399 [12] JIANG S F, LING L L, CHEN W J, et al. High efficient removal of bisphenol A in a peroxymonosulfate/iron functionalized biochar system: Mechanistic elucidation and quantification of the contributors [J]. Chemical Engineering Journal, 2019, 359: 572-583. doi: 10.1016/j.cej.2018.11.124 [13] FU H C, ZHAO P, XU S J, et al. Fabrication of Fe3O4 and graphitized porous biochar composites for activating peroxymonosulfate to degrade p-hydroxybenzoic acid: Insights on the mechanism [J]. Chemical Engineering Journal, 2019, 375: 121980. doi: 10.1016/j.cej.2019.121980 [14] MALDONADO-HODAR F J, MORENO-CASTILLA C, RIVERA-UTRILLA J, et al. Catalytic graphitization of carbon aerogels by transition metals [J]. Langmuir, 2000, 16(9): 4367-4373. doi: 10.1021/la991080r [15] MANGARELLA M C, EWBANK J L, DUTZER M R, et al. Synthesis of embedded iron nanoparticles in Fe3C-derived carbons [J]. Carbon, 2014, 79: 74-84. doi: 10.1016/j.carbon.2014.07.044 [16] DUAN X G, SUN H Q, KANG J, et al. Insights into heterogeneous catalysis of persulfate activation on dimensional-structured nanocarbons [J]. Acs Catalysis, 2015, 5(8): 4629-4636. doi: 10.1021/acscatal.5b00774 [17] GONG Y N, LI D L, LUO C Z, et al. Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors [J]. Green Chemistry, 2017, 19(17): 4132-4140. doi: 10.1039/C7GC01681F [18] FU H C, MA S L, ZHAO P, et al. Activation of peroxymonosulfate by graphitized hierarchical porous biochar and MnFe2O4 magnetic nanoarchitecture for organic pollutants degradation: Structure dependence and mechanism [J]. Chemical Engineering Journal, 2019, 360: 157-170. doi: 10.1016/j.cej.2018.11.207 [19] LUO J M, BO S F, QIN Y N, et al. Transforming goat manure into surface-loaded cobalt/biochar as PMS activator for highly efficient ciprofloxacin degradation [J]. Chemical Engineering Journal, 2020, 395: 125063. doi: 10.1016/j.cej.2020.125063 [20] YOU Y, ZHAO Z J, SONG Y R, et al. Synthesis of magnetized nitrogen-doped biochar and its high efficiency for elimination of ciprofloxacin hydrochloride by activation of peroxymonosulfate [J]. Separation and Purification Technology, 2021, 258: 117977. doi: 10.1016/j.seppur.2020.117977 [21] AHMADI M, GHANBARI F. Combination of UVC-LEDs and ultrasound for peroxymonosulfate activation to degrade synthetic dye: influence of promotional and inhibitory agents and application for real wastewater [J]. Environmental Science and Pollution Research, 2018, 25(6): 6003-6014. doi: 10.1007/s11356-017-0936-8 [22] YANG J F, HE M, WU T F, et al. Sulfadiazine oxidation by permanganate: Kinetics, mechanistic investigation and toxicity evaluation [J]. Chemical Engineering Journal, 2018, 349: 56-65. doi: 10.1016/j.cej.2018.05.018 [23] GUO W Q, ZHAO Q, DU J S, et al. Enhanced removal of sulfadiazine by sulfidated ZVI activated persulfate process: Performance, mechanisms and degradation pathways [J]. Chemical Engineering Journal, 2020, 388: 124303. doi: 10.1016/j.cej.2020.124303 [24] ZHU S J, WANG W, XU Y P, et al. Iron sludge-derived magnetic Fe0/Fe3C catalyst for oxidation of ciprofloxacin via peroxymonosulfate activation [J]. Chemical Engineering Journal, 2019, 365: 99-110. doi: 10.1016/j.cej.2019.02.011 [25] JAVIER RIVAS F, SOLIS R R. Chloride promoted oxidation of tritosulfuron by peroxymonosulfate [J]. Chemical Engineering Journal, 2018, 349: 728-736. doi: 10.1016/j.cej.2018.05.117 [26] MA J, YANG Y, JIANG X, et al. Impacts of inorganic anions and natural organic matter on thermally activated persulfate oxidation of BTEX in water [J]. Chemosphere, 2018, 190: 296-306. doi: 10.1016/j.chemosphere.2017.09.148 [27] ZHOU T, ZOU X, MAO J, et al. Decomposition of sulfadiazine in a sonochemical Fe-catalyzed persulfate system: Parameters optimizing and interferences of wastewater matrix [J]. Applied Catalysis B-Environmental, 2016, 185: 31-41. doi: 10.1016/j.apcatb.2015.12.004 [28] MA D M, YANG Y, LIU B F, et al. Zero-valent iron and biochar composite with high specific surface area via K2FeO4 fabrication enhances sulfadiazine removal by persulfate activation [J]. Chemical Engineering Journal, 2021, 408: 127992. doi: 10.1016/j.cej.2020.127992 [29] YI Q Y, TAN J L, LIU W Y, et al. Peroxymonosulfate activation by three-dimensional cobalt hydroxide/graphene oxide hydrogel for wastewater treatment through an automated process [J]. Chemical Engineering Journal, 2020, 400: 125965. doi: 10.1016/j.cej.2020.125965 [30] GUO Y P, ZENG Z Q, LIU Y J, et al. One-pot synthesis of sulfur doped activated carbon as a superior metal-free catalyst for the adsorption and catalytic oxidation of aqueous organics [J]. Journal of Materials Chemistry A, 2018, 6(9): 4055-4067. doi: 10.1039/C7TA09814F [31] BENNER J, TERNES T A. Ozonation of metoprolol: Elucidation of oxidation pathways and major oxidation products [J]. Environmental Science & Technology, 2009, 43(14): 5472-5480. [32] WANG H Z, GUO W Q, LIU B H, et al. Edge-nitrogenated biochar for efficient peroxydisulfate activation: An electron transfer mechanism [J]. Water Research, 2019, 160: 405-414. doi: 10.1016/j.watres.2019.05.059 [33] NETA P, HUIE R E, ROSS A B. Rate constants for reactions of inorganic radicals in aqueous solution [J]. Journal of Physical and Chemical Reference Data, 1988, 17(3): 1027-1284. doi: 10.1063/1.555808 [34] LI Y, MA S L, XU S J, et al. Novel magnetic biochar as an activator for peroxymonosulfate to degrade bisphenol A: Emphasizing the synergistic effect between graphitized structure and CoFe2O4 [J]. Chemical Engineering Journal, 2020, 387: 124094. doi: 10.1016/j.cej.2020.124094 [35] HUANG Z Y, WU P X, LIU C H, et al. Multiple catalytic reaction sites induced non-radical/radical pathway with graphene layers encapsulated Fe-N-C toward highly efficient peroxymonosulfate (PMS) activation [J]. Chemical Engineering Journal, 2021, 413: 127507. doi: 10.1016/j.cej.2020.127507 [36] TAKDASTAN A, KAKAVANDI B, AZIZI M, et al. Efficient activation of peroxymonosulfate by using ferroferric oxide supported on carbon/UV/US system: A new approach into catalytic degradation of bisphenol A [J]. Chemical Engineering Journal, 2018, 331: 729-743. doi: 10.1016/j.cej.2017.09.021 [37] HUANG G X, WANG C Y, YANG C W, et al. Degradation of Bisphenol A by Peroxymonosulfate Catalytically Activated with Mn1.8Fe1.2O4 nanospheres: Synergism between Mn and Fe [J]. Environmental Science & Technology, 2017, 51(21): 12611-12618. [38] DING D H, YANG S J, CHEN L W, et al. Degradation of norfloxacin by CoFe alloy nanoparticles encapsulated in nitrogen doped graphitic carbon (CoFe@N-GC) activated peroxymonosulfate [J]. Chemical Engineering Journal, 2020, 392: 123725. doi: 10.1016/j.cej.2019.123725