-
碘是合成甲状腺激素的必要微量元素,碘元素对于强健体魄和促进能量代谢等有重大作用[1]。研究表明,碘摄入过少或过多都会对身心健康造成危害[2-3]。碘缺乏会引起地方性克汀病等疾病,但碘过量也会导致甲状腺肿大、甲状腺肿瘤等疾病[4-5]。20世纪,缺碘问题日益突出,到1995年,我国基本实现了“全民食盐加碘”[6],随着食盐加碘的实施及人们生活水平的提高,部分地区碘过量的问题逐渐凸显,水源性高碘甲状腺肿时常发生,这已经成为了公共卫生问题[7]。1980年我国在沧州发现了水源性高碘甲状腺肿 [8],之后,诸多学者对高碘地下水进行研究,碘不易富集形成矿物,易与有机质形成络合物[9]。我国高碘地区大多分布在冲积平原区和盆地中心,其松散的沉积环境及其富含的有机质,有利于形成高碘地下水[10]。由于浅层水与中层水之间的垂向水力交替作用,造成了中层地下水中碘的富集[11]。盆地中下部黏土层原生地质有利于碘的富集[12]。弱碱性以及偏还原的环境有助于碘从沉积物释放到地下水中[13]。蒸发浓缩作用和有机质降解作用[14]等过程均使得碘在水体发生富集。地下水水动力条件也会影响碘的迁移富集 [15]。
本文通过对喀什地区地下水碘含量的空间分布特征进行研究,以期明确研究区内地下水碘的来源和形成机制,揭示不同水文地球化学过程对地下水中碘富集的影响。旨在对当地饮水安全提供科学依据,对于预防因缺碘或高碘引起的病症具有一定的现实意义。
新疆喀什地区地下水碘的分布特征及成因分析
Distribution characteristics and cause analysis of iodine in groundwater in Kashi Prefecture, Xinjiang
-
摘要: 本文以新疆喀什地区183组地下水水质资料为基础,运用Piper三线图、因子分析、Gibbs图、饱和指数、离子比值等方法来分析地下水碘的分布特征及成因。结果表明,研究区地下水碘的匮乏与富集并存,I−含量范围为未检出—1460.0 μg·L−1;在碱性、偏还原性和富含有机质的水环境中,矿物中的碘容易以I−的形式进入到地下水中,沿地下水流向,I−逐渐从山前倾斜冲洪积平原区,向中下游河流冲积平原区富集;研究区地下水中碘主要受强烈的蒸发浓缩作用、阳离子交换作用和矿物溶解沉淀的影响。Abstract: Based on the test results of 183 groups of groundwater quality in Kashi prefecture of Xinjiang, Piper trilinear diagram, factor analysis, Gibbs diagram, saturation index and ion ratio were used to analyze the distribution characteristics and causes of groundwater iodine. The results showed that iodine deficiency and iodine enrichment coexist in groundwater. The range of I− varied from undetected to 1460.0 μg·L−1. Alkaline, partially reductive and organic-rich environment was likely to cause the iodine occured on minerals to enter the groundwater in the form of I−. Along the flow of groundwater, the I− gradually accumulated from the mountain front alluvial plain to the river alluvial plain of the middle and lower reaches. In addition, the iodine in groundwater was mainly affected by strong evaporation and concentration, cation exchange, mineral dissolution and precipitation.
-
Key words:
- groundwater /
- iodine /
- factor analysis /
- Kashi Prefecture
-
表 1 地下水化学指标特征参数统计表
Table 1. Statistical results of groundwater chemical Indexes characteristic
类型
Type潜水(n=76)
Unconfined groundwater浅层承压水(n=78)
Shallow confined groundwater深层承压水(n=29)
Deep confined groundwater指标
Index最小值
Min最大值
Max平均值
Mean中数
Median最小值
Min最大值
Max平均值
Mean中数
Median最小值
Min最大值
Max平均值
Mean中数
MedianK+ 4.2 120.4 24.5 18.6 3.8 101.6 27.0 20.5 1.6 46.9 13.9 10.5 Na+ 26.9 3537.2 466.2 296.6 10.2 3644.0 531.5 372.4 12.9 2348.0 384.6 213.6 Ca2+ 52.1 751.7 296.7 250.6 43.1 753.1 249.8 196.3 39.4 530.5 216.1 160.7 Mg2+ 18.2 410.3 136.4 113.1 11.0 479.4 155.0 126.1 16.2 571.5 136.4 87.7 Cl− 22.9 6568.4 598.2 354.6 15.8 5865.0 659.7 431.8 26.3 3501.0 457.6 230.5 SO42− 96.2 3175.8 1117.5 848.5 65.1 3734.0 1180.7 845.3 60.6 3034.0 1007.5 740.8 HCO3− 59.9 1106.2 322.7 291.7 54.6 589.5 324.8 306.9 97.2 595.0 250.4 210.1 TH 226.7 3566.1 1223.7 840.7 255.7 3278.0 1299.8 1117.5 35.0 3778.0 1126.6 847.5 TDS 354.8 13081.7 2826.0 2023.3 214.0 14548.0 2988.1 2249.6 249.3 10350.0 2362.9 1771.0 pH 6.4 9.9 7.5 7.4 6.9 8.2 7.5 7.5 6.6 8.7 7.7 7.7 I− ND 350.0 25.9 10.0 ND 1460.0 58.7 10.0 ND 220.0 24.5 10.0 Fe ND 6.0 0.6 0.2 ND 30.3 1.9 0.2 ND 26.5 3.5 0.2 Eh 103.0 251.0 187.7 205.0 −69.0 260.0 125.6 147.0 113.0 244.0 193.2 198.5 注:n为样品数;pH为无量纲;ND为未检出;I−单位为μg·L−1,Eh单位为mV,其余单位为mg·L−1.
Note:n is sample number;pH is dimensionless;ND is not detected;unit of I− is μg·L−1;unit of Eh is mV;other units are mg·L−1.表 2 水化学指标旋转因子载荷矩阵
Table 2. Rotation factor loading matrix of groundwater chemistry index
指标
Index因子载荷Factor loading F1 F2 F3 Na+ 0.952 0.055 −0.063 Ca2+ 0.864 0.294 0.162 Mg2+ 0.871 0.274 0.207 Cl− 0.944 −0.032 −0.091 SO42- 0.895 0.277 0.155 HCO3− 0.149 0.759 0.231 I− 0.733 −0.307 −0.235 TDS 0.979 0.165 0.044 Eh 0.066 −0.701 0.058 pH −0.203 −0.522 0.115 Fe 0.044 −0.033 0.935 特征值Eigenvalues 5.870 1.611 1.000 贡献率Contribution rate% 53.366 14.644 9.090 累计贡献率Cumulative contribution rate% 53.366 68.010 77.101 表 3 地下水矿物饱和指数计算
Table 3. Calculation of groundwater mineral saturation index
矿物指标
Mineral index潜水
Unconfined groundwater浅层承压水
Shallow confined groundwater深层承压水
Deep confined groundwater最小值
Min最大值
Max平均值
Mean最小值
Min最大值
Max平均值
Mean最小值
Min最大值
Max平均值
Mean方解石Calcite −0.32 1.94 0.55 −0.41 1.25 0.55 −0.77 1.32 0.55 白云石Dolomite −0.55 3.62 1.10 −0.83 2.54 1.22 −1.63 2.69 1.17 石膏Gypuum −1.75 −0.02 −0.66 −1.93 −0.01 −0.70 −1.93 −0.09 −0.77 盐岩Halite −7.79 −3.42 −5.70 −8.36 −3.46 −5.59 −8.04 −3.86 −5.90 -
[1] 王洋, 侯常春, 陈晓蓓, 等. 高碘对儿童健康影响的流行病学研究进展 [J]. 环境与健康杂志, 2015, 32(6): 560-563. WANG Y, HOU C C, CHEN X B, et al. Effects of excessive iodine intake on children's health: A review of recent epidemiological studies [J]. Journal of Environment and Health, 2015, 32(6): 560-563(in Chinese).
[2] 白超, 魏巍, 张丽, 等. 乌鲁木齐地区人群碘和硒营养状态与甲状腺癌相关性研究 [J]. 新疆医科大学学报, 2016, 39(9): 1183-1186. doi: 10.3969/j.issn.1009-5551.2016.09.027 BAI C, WEI W, ZHANG L, et al. Urumqi region population iodine and selenium nutrition status with thyroid cancer relevant research [J]. Journal of Xinjiang Medical University, 2016, 39(9): 1183-1186(in Chinese). doi: 10.3969/j.issn.1009-5551.2016.09.027
[3] 王敏, 庞绪贵, 高宗军, 等. 山东省黄河下游地区部分县市高碘型甲状腺肿与地质环境的关系 [J]. 中国地质, 2010, 37(3): 803-808. doi: 10.3969/j.issn.1000-3657.2010.03.037 WANG M, PANG X G, GAO Z J, et al. The relationship between the goiter induced by excessive iodine and the geological environment of several cities in the Lower Yellow River Basin of Shandong Province [J]. Geology in China, 2010, 37(3): 803-808(in Chinese). doi: 10.3969/j.issn.1000-3657.2010.03.037
[4] 李霞, 张丽. 天津市滨海新区高碘摄入与甲状腺肿瘤的相关性研究 [J]. 社区医学杂志, 2018, 16(11): 37-38. LI X, ZHANG L. Study on the correlation between high iodine intake and thyroid tumors in Tianjin Binhai New Area [J]. Journal of Community Medicine, 2018, 16(11): 37-38(in Chinese).
[5] 曹龄之, 谢建平, 彭小东, 等. 碘摄入量及富碘食物与甲状腺癌发病关系的Meta分析 [J]. 肿瘤防治研究, 2016, 43(7): 616-622. CAO L Z, XIE J P, PENG X D, et al. Association of iodine intake and iodine-enriched food with Risk of Thyroid cancer: A meta-analysis [J]. Cancer Research on Prevention and Treatment, 2016, 43(7): 616-622(in Chinese).
[6] 阎玉芹, 陈祖培, 舒延清. 全民食盐加碘4年来我国是否发生了高碘性甲状腺肿流行 [J]. 中国地方病学杂志, 2001, 20(3): 228-229. YAN Y Q, CHEN Z P, SHU Y Q. Study on the correlation between high iodine intake and thyroid tumors in Tianjin Binhai New Area [J]. Chinese Journal of Endemiology, 2001, 20(3): 228-229(in Chinese).
[7] 郭晓尉, 秦启亮, 边建朝, 等. 山东省水源性高碘地区分布现状与特征 [J]. 中国公共卫生, 2005, 21(4): 403-405. doi: 10.3321/j.issn:1001-0580.2005.04.011 GUO X W, QIN Q L, BIAN J C, et al. Distribution and characteristic of areas with high iodine concentration in drinking water in Shandong Province [J]. Chinese Journal of Public Health, 2005, 21(4): 403-405(in Chinese). doi: 10.3321/j.issn:1001-0580.2005.04.011
[8] 曾昭华. 地下水中碘的形成及其控制因素 [J]. 江苏地质, 1999, 18(2): 31-34,73. ZENG Z H. The formation of I and its control factors [J]. Jilin Geology, 1999, 18(2): 31-34,73(in Chinese).
[9] 吴飞, 王曾祺, 童秀娟, 等. 我国典型地区浅层高碘地下水分布特征及其赋存环境 [J]. 水资源与水工程学报, 2017, 28(2): 99-104. doi: 10.11705/j.issn.1672-643X.2017.02.17 WU F, WANG Z Q, TONG X J, et al. The distribution characteristics and storage environments of rich iodine in shallow groundwater of typical areas in China [J]. Journal of Water Resources and Water Engineering, 2017, 28(2): 99-104(in Chinese). doi: 10.11705/j.issn.1672-643X.2017.02.17
[10] 徐清, 刘晓端, 汤奇峰, 等. 山西晋中地区地下水高碘的地球化学特征研究 [J]. 中国地质, 2010, 37(3): 809-815. doi: 10.3969/j.issn.1000-3657.2010.03.038 XU Q, LIU X D, TANG Q F, et al. High iodic geochemical characteristics of the groundwater in central Shanxi Province [J]. Geology in China, 2010, 37(3): 809-815(in Chinese). doi: 10.3969/j.issn.1000-3657.2010.03.038
[11] 韩颖, 张宏民, 张永峰, 等. 大同盆地地下水高砷、氟、碘分布规律与 成因分析及质量区划 [J]. 中国地质调查, 2017, 4(1): 57-68. HAN Y, ZHANG H M, ZHANG Y F, et al. Distribution regularity, origin and quality division of high arsenic, fluorine and iodine contents in groundwater in Datong Basin [J]. Geological Survey of China, 2017, 4(1): 57-68(in Chinese).
[12] 薛肖斌, 李俊霞, 钱坤, 等. 华北平原原生富碘地下水系统中碘的迁移富集规律: 以石家庄-衡水-沧州剖面为例 [J]. 地球科学, 2018, 43(3): 910-921. XUE X B, LI J X, QIAN K, et al. Spatial distribution and mobilization of iodine in groundwater system of North China Plain: Taking hydrogeological section from Shijiazhuang, Hengshui to Cangzhou section as an example [J]. Earth Science, 2018, 43(3): 910-921(in Chinese).
[13] 张媛静, 张玉玺, 向小平, 等. 沧州地区地下水碘分布特征及其成因浅析 [J]. 地学前缘, 2014, 21(4): 59-65. doi: 10.13745/j.esf.2014.04.006 ZHANG Y J, ZHANG Y X, XIANG X P, et al. Distribution characteristics and cause analysis of iodine in groundwater of Cangzhou Region [J]. Earth Science Frontiers, 2014, 21(4): 59-65(in Chinese). doi: 10.13745/j.esf.2014.04.006
[14] 徐芬, 马腾, 石柳, 等. 内蒙古河套平原高碘地下水的水文地球化学特征 [J]. 水文地质工程地质, 2012, 39(5): 8-15. doi: 10.16030/j.cnki.issn.1000-3665.2012.05.020 XU F, MA T, SHI L, et al. Hydrogeochemical characteristics of high-iodine groundwater in the Hetao Plain’ Inner Mongolia [J]. Hydrogeology and Engineering Geology, 2012, 39(5): 8-15(in Chinese). doi: 10.16030/j.cnki.issn.1000-3665.2012.05.020
[15] 王雨婷, 李俊霞, 薛肖斌, 等. 华北平原与大同盆地原生高碘地下水赋存主控因素的异同 [J]. 地球科学, 2021, 46(1): 308-320. WANG Y T, LI J X, XUE X B, et al. Similarities and differences of main controlling factors of natural high iodine groundwater between North China Plain and Datong Basin [J]. Earth Science, 2021, 46(1): 308-320(in Chinese).
[16] 孙英, 周金龙, 乃尉华, 等. 新疆喀什噶尔河流域地表水水化学季节变化特征及成因分析 [J]. 干旱区资源与环境, 2019, 33(8): 128-134. doi: 10.13448/j.cnki.jalre.2019.238 SUN Y, ZHOU J L, NAI W H. Seasonal variation characteristics and causes of surface water chemistry in Kashgar River Basin, Xinjiang [J]. Journal of Arid Land Resources and Environment, 2019, 33(8): 128-134(in Chinese). doi: 10.13448/j.cnki.jalre.2019.238
[17] 陈劲松, 周金龙, 陈云飞, 等. 新疆喀什地区地下水氟的空间分布规律及其富集因素分析 [J]. 环境化学, 2020, 39(7): 1800-1808. doi: 10.7524/j.issn.0254-6108.2019042801 CHEN J S, ZHOU J L, CHEN Y F, et al. Spatial distribution and enrichment factors of groundwater fluoride in Kashgar Region, Xinjiang [J]. Environmental Chemistry, 2020, 39(7): 1800-1808(in Chinese). doi: 10.7524/j.issn.0254-6108.2019042801
[18] 曾妍妍, 周殷竹, 周金龙, 等. 新疆喀什地区西部地下水质量现状评价 [J]. 新疆农业大学学报, 2016, 39(2): 167-172. doi: 10.3969/j.issn.1007-8614.2016.02.015 ZENG Y Y, ZHOU Y Z, ZHOU J L, et al. Assessment of groundwater quality status in western Kashgar, Xinjiang [J]. Journal of Xinjiang Agricultural University, 2016, 39(2): 167-172(in Chinese). doi: 10.3969/j.issn.1007-8614.2016.02.015
[19] 纪媛媛, 李巧, 周金龙. 新疆喀什地区地下水质量与污染评价 [J]. 节水灌溉, 2014(1): 50-53,56. doi: 10.3969/j.issn.1007-4929.2014.01.014 JI Y Y, LI Q, ZHOU J L. Assessment of groundwater quality and pollution in Kashgar region of Xinjiang [J]. Water Saving Irrigation, 2014(1): 50-53,56(in Chinese). doi: 10.3969/j.issn.1007-4929.2014.01.014
[20] 於嘉闻, 周金龙, 曾妍妍, 等. 新疆喀什地区东部地下水“三氮”空间分布特征及影响因素 [J]. 环境化学, 2016, 35(11): 2402-2410. doi: 10.7524/j.issn.0254-6108.2016.11.2016040804 YU J W, ZHOU J L, ZENG Y Y, et al. Spatial distribution and influencing factors of “ three-nitrogen”in groundwater of the eastern area of Kashgar, Xinjiang [J]. Environmental Chemistry, 2016, 35(11): 2402-2410(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.11.2016040804
[21] 王红太, 周金龙, 曾妍妍, 等. 新疆喀什地区饮用地下水碘分布及其富集因素分析 [J]. 新疆农业大学学报, 2019, 42(2): 145-150. doi: 10.3969/j.issn.1007-8614.2019.02.011 WANG H T, ZHOU J L, ZENG Y Y, et al. Spatial distribution and enrichment factors of iodine in drinking groundwater in Kashgar prefecture of Xinjiang [J]. Journal of Xinjiang Agricultural University, 2019, 42(2): 145-150(in Chinese). doi: 10.3969/j.issn.1007-8614.2019.02.011
[22] 徐雄, 肖培平, 孙艳亭, 等. 鲁西南黄河冲积平原地下水氟碘特征及成因分析 [J]. 生态与农村环境学报, 2020, 36(2): 186-192. doi: 10.19741/j.issn.1673-4831.2019.0274 XU X, XIAO P P, SUN Y T, et al. Study on the characteristics and physical causes of groundwater fluoride and iodide over the Yellow River alluvial plain in the southwest of Shandong Province [J]. Journal of Ecology and Rural Environment, 2020, 36(2): 186-192(in Chinese). doi: 10.19741/j.issn.1673-4831.2019.0274
[23] 钱会, 马致远. 水文地球化学[M]. 北京: 地质出版社, 2005: 45-46. QIAN H, MA Z Y. Hydrogeochemistry [M]. Beijing: Geological Publishing House, 2005: 45-46(in Chinese).
[24] LI J, WANG Y, XIE X, et al. Hydrogeochemistry of high iodine groundwater: a case study at the Datong Basin, northern China [J]. Environ Sci Process Impacts, 2013, 15(4): 848-859. [25] LI J, WANG Y, WEI G, et al. Iodine mobilization in groundwater system at Datong basin, China: Evidence from hydrochemistry and fluorescence characteristics [J]. Science of the Total Environment, 2014, 468-469(15): 738-745. [26] 王妍妍, 马腾, 董一慧, 等. 内陆盆地区高碘地下水的成因分析: 以内蒙古河套平原杭锦后旗为例 [J]. 地学前缘, 2014, 21(4): 66-73. WANG Y Y, MA T, DONG Y H, et al. The formation of inland-high-iodine groundwater: A case study in Hangjinhouqi, Hetao Plain [J]. Earth Science Frontiers, 2014, 21(4): 66-73(in Chinese).
[27] 陆徐荣, 杨磊, 陆华, 等. 江苏平原地区(淮河流域)潜水碘含量控制因素探讨 [J]. 地球学报, 2014, 35(2): 211-221. doi: 10.3975/cagsb.2014.02.13 LU X R, YANG L, LU H, et al. Discussion on the control factors of iodine content in groundwater in the Jiangsu Plain (Huaihe River Basin) [J]. Acta Geosciences, 2014, 35(2): 211-221(in Chinese). doi: 10.3975/cagsb.2014.02.13
[28] GIBBS R J. Mechanisms controlling world water chemistry [J]. Science, 1970, 170(3962): 1088-1090. [29] 雷米, 周金龙, 范薇, 等. 新疆阿克苏平原区地下水水化学演化特征 [J]. 地球与环境, 2020, 48(5): 602-611. doi: 10.14050/j.cnki.1672-9250.2020.48.069 LEI M, ZHOU J L, FAN W, et al. Hydrochemical evolution of groundwater in Aksu plain, Xinjiang [J]. Earth and Environment, 2020, 48(5): 602-611(in Chinese). doi: 10.14050/j.cnki.1672-9250.2020.48.069
[30] 孙英. 基于长系列和高频观测数据的干旱区潜水蒸发机理研究[D]. 乌鲁木齐: 新疆农业大学, 2019. SUN Y. Study on mechanism of phreatic evaporation in arid area based on long series and high frequency observation data[D] Urumqi: Xinjiang Agricultural University, 2019 (in Chinese).
[31] 孙英, 周金龙, 梁杏, 等. 塔里木盆地南缘浅层高碘地下水的分布及成因: 以新疆民丰县平原区为例 [J]. 地球科学, 2021, 46(8): 2999-3011. SUN Y, ZHOU J L, LIANG X, et al. The distribution and cause of formation of shallow high-iodine groundwater in the southern margin of the Tarim Basin: Taking the plain area of Minfeng County, Xinjiang as an example [J]. Earth Science, 2021, 46(8): 2999-3011(in Chinese).
[32] 张恒星, 张翼龙, 李政红, 等. 基于主导离子分类的呼和浩特盆地浅层地下水化学特征研究 [J]. 干旱区资源与环境, 2019, 33(4): 189-195. doi: 10.13448/j.cnki.jalre.2019.126 ZHANG H X, ZHANG Y L, LI Z H, et al. Chemical characteristics of shallow groundwater in Hohhot basin [J]. Journal of Arid Land Resources and Environment, 2019, 33(4): 189-195(in Chinese). doi: 10.13448/j.cnki.jalre.2019.126
[33] XIAO J, JIN Z D, WANG J, et al. Hydrochemical characteristics, controlling factors and solute sources of groundwater within the Tarim River Basin in the extreme arid region, NW Tibetan Plateau [J]. Quaternary International, 2015, 380-381(5): 237-246. [34] 孙一博, 王文科, 段磊, 等. 关中盆地浅层地下水地球化学的形成演化机制 [J]. 水文地质工程地质, 2014, 41(3): 29-35. doi: 10.16030/j.cnki.issn.1000-3665.2014.03.005 SUN Y B, WANG W K, DUAN L, et al. Geochemical evolution mechanisms of shallow groundwater in Guanzhong basin, China [J]. Hydrogeology and Engineering Geology, 2014, 41(3): 29-35(in Chinese). doi: 10.16030/j.cnki.issn.1000-3665.2014.03.005