-
地球上存在许多天然光催化物质和人工合成光催化物质,光催化物质发生的光催化反应,内在机理在于高活性电子(e-)-空穴(h+)对的光激发。自由电子存在的能带称为导带,自由空穴存在的能带称为价带,电子-空穴对是在光的照射下,价带上的电子跃迁到导带上后,由导带上的电子和价带上的空穴组成的[1-3],而电子从价带跃迁到导带所需能量的最小值称为禁带宽度[4]。电子-空穴与光催化物质表面的电子受体或电子供体反应会生成的具有高活性的中间物质,即光生自由基,如单线态氧(1O2)、羟基自由基 (·OH)、超氧负离子(O2-·)等[5]。
光催化物质可应用于污染物的降解、自清洁材料的制备、生物疾病的治疗等多个方面[6],具有成本低、无二次污染等突出优点,得到人们的普遍认可,有关光催化的出版物数量呈线性逐年增加[7]。近年来,许多自然界中存在的天然物质具备的光催化特性陆续被发现,该类天然物质对驱动地球生物化学循环、地表污染物迁移转化产生着不可忽视的影响[8],然而目前大部分研究者的关注点仍在于如何制备新型高效人工复合型光催化物质,对天然光催化物质的综述文献极少。因此,本论文将总结自然环境中具备光催化性能的天然物质,介绍其光催化参数,解析其发生光催化的原理,阐述其环境效应与应用前景,并从效应研究和工程应用角度展望其今后的发展方向。
天然光催化物质的光电特性与环境效应研究进展
Advances in photoelectric properties and environmental effects of natural photocatalytic substances
-
摘要: 自然界中存在许多天然光催化物质,它们对驱动地球生物化学循环产生着不可忽视的影响,挖掘绿色天然的光催化物质无论是在环境效益还是经济效益上都具有重要意义。本文总结了目前已发现的自然界中具有光催化性能的天然物质,介绍其光催化特性的表征方法,重点阐述天然金属矿物、天然色素、天然溶解性有机质及天然硫四类物质的光催化特性及原理,从强氧化性的光生空穴/自由基及强还原性的光生电子的角度探讨天然光催化物质在驱动非光合微生物生长代谢、加速污染物降解转化、促进电活性微生物生长等方面的效应与机制,并从效应研究和工程应用的角度展望其今后的发展方向。Abstract: There are many natural photocatalytic substances in nature, which play an important role in driving the biochemical cycle of the earth. The excavation of green natural photocatalytic substances is of great significance in both environmental and economic benefits. This paper mainly reviews the natural substances with photocatalytic properties and introduces the characterization methods of their photocatalytic properties, focusing on the photocatalytic characteristics and principles of four natural substances including the metal mineral, the natural pigment, the natural dissolved organic matter and the natural sulfur. We discuss the effects and mechanisms of natural photocatalytic substances in driving the growth and metabolism of non-photosynthetic microorganisms, accelerating the degradation and transformation of pollutants, and promoting the growth of electroactive microorganisms from perspectives of strongly oxidizing photogenerated holes/free radicals and strongly reducing photogenerated electrons. The future development directions from the point of view of effect research and engineering application are proposed.
-
Key words:
- natural substance /
- photocatalysis /
- photogenerated free radical /
- photoelectron /
- environmental effect
-
物质
Materials价带/eV
Valence band导带/eV
Conduction band波长/nm
Wavelength分布
Distribution
金属氧化物锐钛矿(TiO2) 2.54 −0.66 387 火成岩及变质岩矿脉 赤铁矿(Fe2O3) 2.48 0.28 565 火成岩 斜锆石(ZrO2) 3.91 −1.09 249 碳酸岩矿床或砂矿 黑锡矿(SnO) 3.29 −0.91 296 热液矿床 褐铊矿(Tl2O3) 1.65 0.05 777 天然河流重砂 铅黄(PbO) 2.32 −0.48 444 硫化物矿床的氧化带 金属硫化物 闪锌矿(ZnS) 2.56 −1.04 345 热液矿床 硫镉矿(CdS) 1.88 −0.52 518 铅锌矿床氧化带 辰砂(HgS) 2.02 0.02 622 低温热液矿床 红铊矿(TlAsS2) 1.46 −0.34 691 天然河流重砂 辉钨矿(WS2) 1.71 0.36 921 脉钨矿床 类别
Category主要结构
Main structure吸收波长/nm
Absorption wavelength分布
Distribution叶绿素 叶绿素a 镁卟啉环 420—440、660—680 所有绿色植物 叶绿素b 460—480、640—650 高等植物、绿藻等 叶绿素c 460—475、620—640 硅藻、甲藻、褐藻等 叶绿素d 700—750 红藻、蓝藻 叶绿素f 700—800 藻青菌 细菌叶绿素 715—1050 各种厌氧光合细菌 类胡萝卜素 胡萝卜素 8个异戊二烯相连 430-480 藻类、真菌、细菌、高等植物 叶黄素 藻胆素 藻蓝胆素 线性四吡咯 640 蓝藻、红藻等 藻红胆素 550 藻紫胆素 590 藻尿胆素 490 细胞色素 铁卟啉环 450 嗜酸古生菌 -
[1] SPASIANO D, MAROTTA R, MALATO S, et al. Solar photocatalysis: Materials, reactors, some commercial, and pre-industrialized applications. A comprehensive approach [J]. Applied Catalysis B:Environmental, 2015, 170/171: 90-123. doi: 10.1016/j.apcatb.2014.12.050 [2] LACOMBE S, KELLER N. Photocatalysis: Fundamentals and applications in JEP 2011 [J]. Environmental Science and Pollution Research, 2012, 19(9): 3651-3654. doi: 10.1007/s11356-012-1040-8 [3] LIU B S, WU H, PARKIN I P. New insights into the fundamental principle of semiconductor photocatalysis [J]. ACS Omega, 2020, 5(24): 14847-14856. doi: 10.1021/acsomega.0c02145 [4] KUMAR V, SINHA A, FAROOQUE U. Concentration and temperature dependence of the energy gap in some binary and alloy semiconductors [J]. Infrared Physics & Technology, 2015, 69: 222-227. [5] OKAZAKI S, TOMO T, MIMURO M. Direct measurement of singlet oxygen produced by four chlorin-ringed chlorophyll species in acetone solution [J]. Chemical Physics Letters, 2010, 485(1/2/3): 202-206. [6] IBHADON A, FITZPATRICK P. Heterogeneous photocatalysis: Recent advances and applications [J]. Catalysts, 2013, 3(1): 189-218. doi: 10.3390/catal3010189 [7] PARRINO F, LODDO V, AUGUGLIARO V, et al. Heterogeneous photocatalysis: Guidelines on experimental setup, catalyst characterization, interpretation, and assessment of reactivity [J]. Catalysis Reviews, 2019, 61(2): 163-213. doi: 10.1080/01614940.2018.1546445 [8] LU A H, LI Y, DING H R, et al. Photoelectric conversion on Earth's surface via widespread Fe- and Mn-mineral coatings [J]. PNAS, 2019, 116(20): 9741-9746. doi: 10.1073/pnas.1902473116 [9] 鲁安怀, 李艳, 王鑫, 等. 关键带中天然半导体矿物光电子的产生与作用 [J]. 地学前缘, 2014, 21(3): 256-264. doi: 10.13745/j.esf.2014.03.027 LU A H, LI Y, WANG X, et al. The photoelectron generation from semiconducting minerals and its effects in critical zone [J]. Earth Science Frontiers, 2014, 21(3): 256-264(in Chinese). doi: 10.13745/j.esf.2014.03.027
[10] SHANG J, HAO W C, LV X, et al. Bismuth oxybromide with reasonable photocatalytic reduction activity under visible light [J]. ACS Catalysis, 2014, 4(3): 954-961. doi: 10.1021/cs401025u [11] 任桂平, 孙曼仪, 鲁安怀, 等. 纳米赤铁矿电极光电催化特性及苯酚降解活性研究 [J]. 岩石矿物学杂志, 2017, 36(6): 825-832. doi: 10.3969/j.issn.1000-6524.2017.06.007 REN G P, SUN M Y, LU A H, et al. Photoelectrochemical performance of nano-hematite electrode and photoelectrocatalytic activity toward oxidation of phenol [J]. Acta Petrologica et Mineralogica, 2017, 36(6): 825-832(in Chinese). doi: 10.3969/j.issn.1000-6524.2017.06.007
[12] LIU J H, YANG R, LI S M. Preparation and characterization of high photoactive TiO2 catalyst using the UV irradiation-induced Sol-gel method [J]. Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material, 2006, 13(4): 350-354. doi: 10.1016/S1005-8850(06)60072-8 [13] BORGES M E, SIERRA M, CUEVAS E, et al. Photocatalysis with solar energy: Sunlight-responsive photocatalyst based on TiO2 loaded on a natural material for wastewater treatment [J]. Solar Energy, 2016, 135: 527-535. doi: 10.1016/j.solener.2016.06.022 [14] JIANG Z F, SUN H L, WANG T Q, et al. Nature-based catalyst for visible-light-driven photocatalytic CO2 reduction [J]. Energy & Environmental Science, 2018, 11(9): 2382-2389. [15] JIANG H L, LI X Q, LI M L, et al. A new strategy for triggering photocatalytic activity of Cytrochrome P450 by coupling of semiconductors [J]. Chemical Engineering Journal, 2019, 358: 58-66. doi: 10.1016/j.cej.2018.09.199 [16] 鲁安怀, 李艳, 丁竑瑞, 等. 地表“矿物膜”: 地球“新圈层” [J]. 岩石学报, 2019, 35(1): 119-128. doi: 10.18654/1000-0569/2019.01.08 LU A H, LI Y, DING H R, et al. “Mineral membrane” of the surface: “New sphere” of the Earth [J]. Acta Petrologica Sinica, 2019, 35(1): 119-128(in Chinese). doi: 10.18654/1000-0569/2019.01.08
[17] 鲁安怀, 李艳, 丁竑瑞, 等. 天然矿物光电效应: 矿物非经典光合作用 [J]. 地学前缘, 2020, 27(5): 179-194. LU A H, LI Y, DING H R, et al. Natural mineral photoelectric effect: Non-classical mineral photosynthesis [J]. Earth Science Frontiers, 2020, 27(5): 179-194(in Chinese).
[18] 鲁安怀, 李艳, 丁竑瑞, 等. 矿物光电子能量及矿物与微生物协同作用 [J]. 矿物岩石地球化学通报, 2018, 37(1): 1-15,158. doi: 10.19658/j.issn.1007-2802.2018.37.011 LU A H, LI Y, DING H R, et al. Mineralogical photoelectrons and minerals and microorganisms synergistic interactions [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2018, 37(1): 1-15,158(in Chinese). doi: 10.19658/j.issn.1007-2802.2018.37.011
[19] 靳青, 毕宇霖, 刘晓牧, 等. 类胡萝卜素代谢及功能研究进展 [J]. 动物营养学报, 2014, 26(12): 3561-3571. doi: 10.3969/j.issn.1006-267x.2014.12.003 JIN Q, BI Y L, LIU X M, et al. Recent advances on research of carotenoid metabolism and functions [J]. Chinese Journal of Animal Nutrition, 2014, 26(12): 3561-3571(in Chinese). doi: 10.3969/j.issn.1006-267x.2014.12.003
[20] 吴志强, 周韦. 叶绿素的类别概述 [J]. 生物学通报, 2014, 49(9): 12-14. WU Z Q, ZHOU W. An overview of the categories of chlorophyl [J]. Bulletin of Biology, 2014, 49(9): 12-14(in Chinese).
[21] 马丞博. 藻蓝胆素的制备及其作为光敏剂的初步研究[D]. 烟台: 烟台大学, 2020. MA C B. Preparation of phycocyanobilin and its preliminary study as photosensitizer[D]. Yantai: Yantai University, 2020(in Chinese).
[22] GIBBONS D, FLANAGAN K J, POUNOT L, et al. Structure and conformation of photosynthetic pigments and related compounds. 15. Conformational analysis of chlorophyll derivatives - implications for hydroporphyrins in vivo [J]. Photochemical & Photobiological Sciences, 2019, 18(6): 1479-1494. [23] LUO L J, LAI X Y, CHEN B W, et al. Chlorophyll catalyse the photo-transformation of carcinogenic benzo[a]Pyrene in water [J]. Scientific Reports, 2015, 5(1): 12776. doi: 10.1038/srep12776 [24] CHEN M. Chlorophyll modifications and their spectral extension in oxygenic photosynthesis [J]. Annual Review of Biochemistry, 2014, 83: 317-340. doi: 10.1146/annurev-biochem-072711-162943 [25] 张珠, 姜齐永, 李家柱, 等. 叶绿素类四吡咯大环分子的重排反应[J]. 化学进展, 2017, 29(增刊2): 262-284. ZHANG Z, JIANG Q Y, LI J Z, et al. Rearrangement reactions of chlorophyllous tetrapyrrole macrocyclic molecules[J]. Progress in Chemistry, 2017, 29(Sup 2): 262-284(in Chinese).
[26] POSPÍŠIL P. Production of reactive oxygen species by photosystem II as a response to light and temperature stress [J]. Frontiers in Plant Science, 2016, 7: 1950. [27] TRIANTAPHYLIDÈS C, HAVAUX M. Singlet oxygen in plants: Production, detoxification and signaling [J]. Trends in Plant Science, 2009, 14(4): 219-228. doi: 10.1016/j.tplants.2009.01.008 [28] PIBIRI I, BUSCEMI S, PALUMBO PICCIONELLO A, et al. Photochemically produced singlet oxygen: Applications and perspectives [J]. ChemPhotoChem, 2018, 2(7): 535-547. doi: 10.1002/cptc.201800076 [29] ALVEY R M, BISWAS A, SCHLUCHTER W M, et al. Attachment of noncognate chromophores to CpcA of Synechocystis sp PCC 6803 and Synechococcus sp PCC 7002 by heterologous expression in Escherichia coli. [J]. Biochemistry, 2011, 50(22): 4890-4902. doi: 10.1021/bi200307s [30] BLOT N, WU X J, de THOMAS J C, et al. Phycourobilin in trichromatic phycocyanin from oceanic cyanobacteria is formed post-translationally by a phycoerythrobilin lyase-isomerase [J]. Journal of Biological Chemistry, 2009, 284(14): 9290-9298. doi: 10.1074/jbc.M809784200 [31] PINTO I F D, CHAVES-FILHO A D B, CUNHA D D, et al. Cytochrome c modification and oligomerization induced by cardiolipin hydroperoxides in a membrane mimetic model [J]. Archives of Biochemistry and Biophysics, 2020, 693: 108568. doi: 10.1016/j.abb.2020.108568 [32] ZHANG B, CHENG H Y, WANG A J. Extracellular electron transfer through visible light induced excited-state outer membrane C-type cytochromes of Geobacter sulfurreducens [J]. Bioelectrochemistry, 2021, 138: 107683. doi: 10.1016/j.bioelechem.2020.107683 [33] ZENG Y, ZHOU X, QI R L, et al. Photoactive conjugated polymer-based hybrid biosystems for enhancing cyanobacterial photosynthesis and regulating redox state of protein [J]. Advanced Functional Materials, 2021, 31(8): 2007814. doi: 10.1002/adfm.202007814 [34] 刘砚弘. 溶解性有机质及其与铁共存时的光化学活性研究[D]. 南京: 南京林业大学, 2019. LIU Y H. Research on photochemical activity of dissolved organic matter and its coexistence with iron[D]. Nanjing: Nanjing Forestry University, 2019(in Chinese).
[35] REN D, HUANG B, YANG B Q, et al. Mitigating 17α-ethynylestradiol water contamination through binding and photosensitization by dissolved humic substances [J]. Journal of Hazardous Materials, 2017, 327: 197-205. doi: 10.1016/j.jhazmat.2016.12.054 [36] BODHIPAKSHA L C, SHARPLESS C M, CHIN Y P, et al. Triplet photochemistry of effluent and natural organic matter in whole water and isolates from effluent-receiving rivers [J]. Environmental Science & Technology, 2015, 49(6): 3453-3463. [37] 刘雪石, 乔显亮, 刘远. DOM的光化学活性及其对污染物光解的影响 [J]. 环境科学与技术, 2017, 40(1): 85-94. LIU X S, QIAO X L, LIU Y. Photoreactivity of DOM and its effect on the photo-transformation of pollutants [J]. Environmental Science & Technology, 2017, 40(1): 85-94(in Chinese).
[38] DU Z Y, HE Y S, FAN J N, et al. Predicting apparent singlet oxygen quantum yields of dissolved black carbon and humic substances using spectroscopic indices [J]. Chemosphere, 2018, 194: 405-413. doi: 10.1016/j.chemosphere.2017.11.172 [39] ZHOU Z C, CHEN B N, QU X L, et al. Dissolved black carbon as an efficient sensitizer in the photochemical transformation of 17β-estradiol in aqueous solution [J]. Environmental Science & Technology, 2018, 52(18): 10391-10399. [40] QI Y Z, FU W J, TIAN J W, et al. Dissolved black carbon is not likely a significant refractory organic carbon pool in rivers and oceans [J]. Nature Communications, 2020, 11: 5051. doi: 10.1038/s41467-020-18808-8 [41] TIAN Y J, FENG L, WANG C, et al. Dissolved black carbon enhanced the aquatic photo-transformation of chlortetracycline via triplet excited-state species: The role of chemical composition [J]. Environmental Research, 2019, 179: 108855. doi: 10.1016/j.envres.2019.108855 [42] WANG H, ZHOU H X, MA J Z, et al. Triplet photochemistry of dissolved black carbon and its effects on the photochemical formation of reactive oxygen species [J]. Environmental Science & Technology, 2020, 54(8): 4903-4911. [43] NOSAKA Y, NOSAKA A Y. Generation and detection of reactive oxygen species in photocatalysis [J]. Chemical Reviews, 2017, 117(17): 11302-11336. doi: 10.1021/acs.chemrev.7b00161 [44] NOSAKA Y, NOSAKA A. Understanding hydroxyl radical (•OH) generation processes in photocatalysis [J]. ACS Energy Letters, 2016, 1(2): 356-359. doi: 10.1021/acsenergylett.6b00174 [45] PEKAKIS P A, XEKOUKOULOTAKIS N P, MANTZAVINOS D. Treatment of textile dyehouse wastewater by TiO2 photocatalysis [J]. Water Research, 2006, 40(6): 1276-1286. doi: 10.1016/j.watres.2006.01.019 [46] MACFARLANE J W, JENKINSON H F, SCOTT T B. Sterilization of microorganisms on jet spray formed titanium dioxide surfaces [J]. Applied Catalysis B:Environmental, 2011, 106(1/2): 181-185. [47] GOGNIAT G, DUKAN S. TiO2 photocatalysis causes DNA damage via Fenton reaction-generated hydroxyl radicals during the recovery period [J]. Applied and Environmental Microbiology, 2007, 73(23): 7740-7743. doi: 10.1128/AEM.01079-07 [48] CHEN M, ZHOU X F, CHEN X Y, et al. Mechanisms of nitrous oxide emission during photoelectrotrophic denitrification by self-photosensitized Thiobacillus denitrificans [J]. Water Research, 2020, 172: 115501. doi: 10.1016/j.watres.2020.115501 [49] SHARPLESS C M, AESCHBACHER M, PAGE S E, et al. Photooxidation-induced changes in optical, electrochemical, and photochemical properties of humic substances [J]. Environmental Science & Technology, 2014, 48(5): 2688-2696. [50] CARLOS L, MÁRTIRE D O, GONZALEZ M C, et al. Photochemical fate of a mixture of emerging pollutants in the presence of humic substances [J]. Water Research, 2012, 46(15): 4732-4740. doi: 10.1016/j.watres.2012.06.022 [51] LI Y, LU A H, WANG X, et al. Semiconducting mineral photocatalytic regeneration of Fe2+Promotes carbon dioxide acquisition by Acidithiobacillus ferrooxidans [J]. Acta Geologica Sinica - English Edition, 2013, 87(3): 761-766. doi: 10.1111/1755-6724.12087 [52] KIM D, SAKIMOTO K K, HONG D C, et al. Artificial photosynthesis for sustainable fuel and chemical production [J]. Angewandte Chemie (International Ed. in English), 2015, 54(11): 3259-3266. doi: 10.1002/anie.201409116 [53] CESTELLOS-BLANCO S, ZHANG H, KIM J M, et al. Photosynthetic semiconductor biohybrids for solar-driven biocatalysis [J]. Nature Catalysis, 2020, 3(3): 245-255. doi: 10.1038/s41929-020-0428-y [54] SAKIMOTO K K, WONG A B, YANG P D. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production [J]. Science, 2016, 351(6268): 74-77. doi: 10.1126/science.aad3317 [55] YE J, YU J, ZHANG Y Y, et al. Light-driven carbon dioxide reduction to methane by Methanosarcina barkeri-CdS biohybrid [J]. Applied Catalysis B:Environmental, 2019, 257: 117916. doi: 10.1016/j.apcatb.2019.117916 [56] CHEN M, ZHOU X F, YU Y Q, et al. Light-driven nitrous oxide production via autotrophic denitrification by self-photosensitized Thiobacillus denitrificans [J]. Environment International, 2019, 127: 353-360. doi: 10.1016/j.envint.2019.03.045 [57] 黄绍福, 靖宪月, 陈曼, 等. 光驱动Pseudomonas stutzeri-CdS半人工光合系统固氮产氨效果与机制 [J]. 中国科学:技术科学, 2021, 51(4): 435-445. doi: 10.1360/SST-2020-0238 HUANG S F, JING X Y, CHEN M, et al. Feasibility and mechanism of light-driven nitrogen reduction to ammonium by a Pseudomonas stutzeri-CdS semi-artificial photosynthetic system [J]. Scientia Sinica (Technologica), 2021, 51(4): 435-445(in Chinese). doi: 10.1360/SST-2020-0238
[58] ZHU G L, YANG Y, LIU J, et al. Enhanced photocurrent production by the synergy of hematite nanowire-arrayed photoanode and bioengineered Shewanella oneidensis MR-1 [J]. Biosensors & Bioelectronics, 2017, 94: 227-234. [59] 淡猛, 蔡晴, 向将来, 等. 用于光催化分解硫化氢制氢的金属硫化物 [J]. 化学进展, 2020, 32(7): 917-926. DAN M, CAI Q, XIANG J L, et al. Metal sulfide semiconductors for photocatalytic hydrogen production from waste hydrogen sulfide [J]. Progress in Chemistry, 2020, 32(7): 917-926(in Chinese).
[60] HUANG S F, TANG J H, LIU X, et al. Fast light-driven biodecolorization by a Geobacter sulfurreducens–CdS biohybrid [J]. ACS Sustainable Chemistry & Engineering, 2019, 7(18): 15427-15433. [61] REN G P, YAN Y C, NIE Y, et al. Natural extracellular electron transfer between semiconducting minerals and electroactive bacterial communities occurred on the rock varnish [J]. Frontiers in Microbiology, 2019, 10: 293. doi: 10.3389/fmicb.2019.00293 [62] LI Y Z, LI Y, LIU Y, et al. Photoreduction of inorganic carbon(+IV) by elemental sulfur: Implications for prebiotic synthesis in terrestrial hot springs [J]. Science Advances, 2020, 6(47): 3687. doi: 10.1126/sciadv.abc3687