-
城市内河是城市废弃物、生活污水和暴雨径流的主要汇集地,也是城市水循环的重要输送环节,被喻为“城市动脉”,起到调节城市微气候、美化城市环境等关键作用。我国城镇化进程加速了城市规模的扩张,随之而来的是城市内河水体污染问题日益凸显,内河生态系统濒临崩溃,水体黑臭是城市内河最易发生的现象[1]。自2015年起,我国开启了城市黑臭水体的摸排与大力整治,形成了“控源截污、内源治理、生态修复、活水提质、长制久清”的治理模式。到了2020年,城市内河水体的黑臭现象得到了根本的改善,但返黑返臭现象时有发生。究其根源,是城市内河受到周边的外源排放负荷冲击,超出了生态系统的调节界限[2]。
尽管人们对于水环境保护的认识日益提高,并且正在努力保护城市河流资源的可持续发展,但城市的高速发展不可避免地导致河流环境的恶化加剧[3]。由于高负荷污水排放和水体微生物的特性(特别是多样性和群落结构)可能会受到物理化学和生物参数的空间变异性的影响,这些参数可作为环境条件的指标[4]。以往大多数评估城市人类活动对地表水影响的实验室和现场研究都集中在物理化学指标上,如重金属[5]、碳氢化合物[6]和藻类特征[7]。对城市内河水体中微生物群落多样性的深入了解仍十分匮乏,并且相较于海洋或湖泊生态系统的研究更少。
微生物群落作为环境胁迫的敏感指标,既是生态系统的初级生产者和主要分解者,又是物质循环中的重要成员与物质和能量的贮存者,对生态系统的稳定起决定性作用,同时能够快速反映河流生态系统的状态,菌群的空间分布特征是与环境因子综合作用的结果。由于内河水体的补给以大气降雨、径流汇入、沿河点源排放为主,补给源的水质对于内河的微生物群落组成具有决定性作用[8]。研究环境因子对生物群落多样性、结构、组成以及空间分布格局是生态学的重要内容之一[9]。在城市内河水体的环境因子中,水体理化指标能够直接影响微生物群落的空间分布特征。对黄河中的浮游细菌群落主要受到pH、溶解有机碳(DOC)的影响 [10],我国华南地区的东江中氨氮(NH3-N)和硝态氮(NO3-N)是影响河流浮游细菌群落的主要环境因子[11]。瑞典的14个湖泊中氮磷营养盐(TN、TP)是影响微生物群落多样性的主要环境因子[12]。因此,了解城市内河中微生物群落的空间分布和微生物多样性对于监测生态系统的健康和功能至关重要[13]。
不同于传统的微生物研究手段局限于可培养微生物的研究,近年来高速发展的高通量测序技术,能够快速、系统地分析环境样品中的微生物组成、结构、多样性以及认识微生物的生态功能[14]。这极大地促进了微生物生态学的发展,也使得高通量测序技术能广泛地应用到研究各种环境介质的微生物中[15]。众多学者针对不同类型水体,如海洋[16]、湖泊[17]、天然河流[18]、城市内河[19]等高通量测序技术进行了关于微生物的赋存状态、微生物与自然环境因子之间的响应关系、微生物与其他污染物的交互影响机制、在外来污染源如工业污水、生活污水等影响下微生物群落的响应特征等研究。尤其针对城市内河,研究主要集中在城市内河水体中微生物的空间分布、城市内河水体的群落结构和多样性、城市内河水体生物群落结构受环境因素的影响、城市黑臭水体成因和治理措施等[20],但是,目前对易返黑返臭时期的城市内河水体的微生物的群落的研究相对较少。
本项目以夏末秋初芜湖城区典型城市内河段作为研究对象,通过16S rRNA高通量测序技术研究了3条内河水体微生物群落的结构和多样性,探讨主要环境因子与微生物群落之间的关系,为预防城市内河水体的返黑返臭现象提供理论基础。
芜湖城市内河水体微生物群落结构特征及其影响因素
Microbial community structure and its influencing factors in urban river water in Wuhu
-
摘要: 为研究夏末秋初芜湖城市内河水质波动原因,在综合考虑河段周边土地利用类型、污染源排放等因素的基础上,论文选择芜湖三条代表性城市内河河段(中央城河段、汇成河段、中山南路河段)作为研究对象,布设了18个监测断面,分析了pH、溶解氧(DO)、电导率(EC)、氨氮(NH3-N)和总磷(TP)以及叶绿素a(Chla)等水质指标,采用16S rRNA高通量测序技术测试了微生物群落,分析了微生物群落结构特征。研究结果表明,芜湖市三条城市内河河段细菌多样性丰富,主要菌门种类相似,包括变形菌门(Proteobacteria)、放线菌门(Actinobacteria)蓝细菌门(Cyanobacteria)和拟杆菌门(Bacteroidetes),其中汇成河段水中的蓝细菌门(Cyanobacteria)、Chao1指数和Shannon指数最高,蓝细菌门(Cyanobacteria)从上游到下游显著增加,污水管网老化泄漏及点源排放是导致该河段Chao1指数和Shannon指数偏高的主要原因。冗余分析(RDA)表明总氮(TN)在三条城市内河河段的水生细菌群落分布中起关键作用,氨氮(NH3-N)和总磷(TP)以及叶绿素a(Chla)也在不同程度上影响着水体中细菌群落的组成。研究结果为精准高效保障城市内河水质提供了参考。Abstract: To explore planktonic bacteria community structure characteristics and driving factors of Wuhu city inland waters, three representative cities inland river (the central city in the river, the city river, south road section) were selected as the research objects. A total of 18 monitoring cross sections were setup according to the channel length and distribution of outlet. In this study, we analyzed the community structure characteristics of planktonic bacteria in three Wuhu inland rivers by16S rRNA high-throughput sequencing technologies, in September 2020. The results showed that Wuhu inland river had a highly abundant bacterial diversity. The main dominant bacteria species are similar, including Proteobacteria, Actinobacteria, Cyanobacteria and Bacteroidetes. Compared with the Zhongyangcheng reach and Zhongshan South Road reach, the number of Cyanobacteria in the confluence reach is significantly higher, and the number of Cyanobacteria in the confluence reach is significantly increased from upstream to downstream. The Chao1 index and Shannon index of water samples from the city river system are obviously higher than those from the Central City River system and the South Zhongshan Road River. This consequence may be resulted from peripheral sewage pipe network aging leakage and point source discharge. The result of redundancy analysis (RDA) showed that total nitrogen (TN) play key roles in the distribution of aquatic bacterial community in three urban inland rivers. And mmonia nitrogen (NH3-N), total phosphorus (TP) and chlorophyll a (Chla) also affect the composition of bacterial community. These findings may provide a reference for efficiently governing the water quality of city inland river.
-
Key words:
- Wuhu /
- urban inland river /
- community structure /
- biodiversity
-
表 1 采样断面经纬度坐标
Table 1. Longitude and latitude coordinates of river sections
河段
Reach采样点
Sampling sites微生物送检编号
Microbial inspection number经纬度
Longitude and latitude中央城河段 ZYC1 ZYC-1 E118°37′18.9″, N31°29′90.7″ ZYC2 ZYC-2 E118°37′22.1″, N31°29′63.4″ 汇成河段 HC1 HC1 E118°37′82.6″, N31°29′96.1″ HC2 HC-2 E118°37′82.2″, N31°29′94.3″ HC3 HC-3 E118°37′80.4″, N31°29′91.8″ HC5 HC-4 E118°37′77.2″, N31°29′64.4″ 中山南路河段 ZSNL2 ZSNL-1 E118°35′91.6″, N31°30′31.8″ ZSNL5 ZSNL-2 E118°35′89.6″, N31°30′23.9′ ZSNL8 ZSNL-3 E118°35′81.3″, N31°29′85.8″ 表 2 芜湖城市内河水体理化性质
Table 2. physical and chemical properties of wuhu urban river water body
河段
Reach采样点
Sampling
sitespH EC* WT/
℃TP***/
(mg·L−1)TN*/
(mg·L−1)DO COD**/
(mg·L−1)BOD5 NH3-N*/
(mg·L−1)Chl a/
(μg·L−1)SD/
cmORP 中央城
河段ZYC1 8.05 423 28.0 0.170 4.07 2.7 8.85 3.80 0.58 30 48 162 ZYC2 7.81 796 27.4 0.153 3.48 1.6 12.70 8.89 1.70 15 54 174 ZYC3 7.79 434 25.0 0.221 4.41 2.4 4.71 3.30 2.20 16 91 167 汇成河段 HC1 7.81 435 28.2 0.179 5.16 2.3 12.10 8.47 1.54 82 49 153 HC2 7.85 460 28.9 0.163 5.69 4.6 13.80 9.66 2.18 44 46 143 HC3 7.76 406 28.7 0.176 5.56 5.1 10.90 7.63 2.44 33 41 204 HC4 7.97 466 28.8 0.173 5.93 5.8 19.90 13.93 3.12 30 43 171 HC5 8.88 516 29.0 0.236 4.42 9.1 18.40 2.90 3.34 31 43 138 HC6 8.49 449 28.9 0.258 5.31 9.1 16.20 2.80 3.44 40 54 146 HC7 7.75 438 28.4 0.273 5.08 5.4 8.60 6.02 3.54 55 57 183 中山南
路河段ZSNL1 7.57 647 31.3 0.305 7.50 2.6 13.30 9.31 2.34 31 113 194 ZSNL2 7.70 396 28.2 0.584 3.40 3.1 11.40 7.98 4.42 32 100 180 ZSNL3 7.73 407 28.4 0.387 5.48 4.2 15.10 10.50 4.14 23 121 171 ZSNL4 7.91 440 28.5 0.939 10.43 4.0 31.10 21.77 3.81 56 47 156 ZSNL5 9.05 420 30.0 0.927 9.33 7.7 31.50 3.50 8.64 157 45 128 ZSNL6 9.46 402 28.3 0.729 8.48 17.8 28.10 12.60 6.18 22 59 114 ZSNL7 9.43 424 30.5 0.762 8.14 17.1 36.40 11.50 6.30 115 55 137 ZSNL8 9.49 411 30.9 0.885 5.70 17.4 22.30 11.70 4.43 68 51 119 ZSNL9 9.24 420 30.4 0.708 6.38 15.1 24.50 8.80 3.88 42 70 127 注: * P<0.05,** P<0.01 表 3 城市黑臭水体分级标准
Table 3. Classification standards for urban black and odorous water bodies
特征指标
Characteristic index轻度黑臭
Mild black smelly重度黑臭
Heavy black smelly透明度/cm 25—10* <10* 溶解氧/(mg·L−1) 0.2—2.0 <0.2 氧化还原电位/mV −200—50 < −200 氨氮/(mg·L−1) 8.0—15 >15 注: * 水深不足 25 cm时,该指标按水深的 40%取值。
Note: * When the water depth is less than 25 cm, the value of this index is 40% of the water depth表 4 研究区细菌群落的丰度和多样性
Table 4. Abundance and diversities of bacterial communities in the three inland rivers
样品
SampleASV数量*
ASVs门数量*
Phylum属数量**
GenusChao1指数*
Chao1 index观察到的物种*
Observed_Species香农指数*
Shannon index辛普森指数
Simpson indexZYC-1 2094 28 270 2172.36 2017.30 8.74 0.9907 ZYC-2 2181 20 226 2261.00 2140.40 8.85 0.9926 HC-1 3662 24 251 3901.71 3270.20 9.10 0.9894 HC-2 2122 22 259 2244.94 2050.80 8.57 0.9869 HC-3 2197 19 241 2330.21 2079.70 8.67 0.9873 HC-4 2125 17 216 2264.49 2061.00 8.60 0.9873 ZSNL-1 1618 20 188 1655.60 1573.60 8.17 0.9895 ZSNL-2 2000 20 262 2022.43 1992.20 8.63 0.9921 ZSNL-3 1587 22 239 1668.32 1515.40 8.29 0.9905 注: * P<0.05,** P<0.01 表 5 优势菌门与环境因子的 Pearson 相关性
Table 5. Pearson's correlation coefficient of predominant bacteriaat the phylum level and environmental factors
优势菌门
PhylumpH EC DO WT TP TN Chla NH3-N Proteobacteria 0.636 -0.288 −0.242 0.687* 0.886** 0.776* 0.802** 0.993** Actinobacteria −0.65 0.272 −0.099 −0.767* −0.624 −0.931** −0.811** 0.807** Cyanobacteria 0.069 0.01 0.413** 0.094 -0.514 0.031 −0.191 −0.401 Bacteroidetes −0.072 −0.17 −0.158 0.001 0.482 0.176 0.253 0.411 Verrucomicrobia −0.366 −0.115 0.791* −0.103 −0.495 −0.019 −0.101 −0.586 注: * P<0.05,** P<0.01 -
[1] 武福平, 夏传, 王艳琴, 等. 西北典型村镇集雨窖水水质变化及特性 [J]. 环境工程学报, 2014, 8(9): 3541-3545. WU F P, XIA C, WANG Y Q, et al. Quality and its variation of water in rainwater collection cellar of rural areas of northwest China [J]. Chinese Journal of Environmental Engineering, 2014, 8(9): 3541-3545(in Chinese).
[2] IBEKWE A M, MA J C, MURINDA S E. Bacterial community composition and structure in an Urban River impacted by different pollutant sources [J]. Science of the Total Environment, 2016, 566/567: 1176-1185. doi: 10.1016/j.scitotenv.2016.05.168 [3] SUTHAR S, SHARMA J, CHABUKDHARA M, et al. Water quality assessment of river Hindon at Ghaziabad, India: Impact of industrial and urban wastewater [J]. Environmental Monitoring and Assessment, 2010, 165(1/2/3/4): 103-112. [4] LUNDGAARD A, TREUSCH A H, STIEF P, et al. Nitrogen cycling and bacterial community structure of sinking and aging diatom aggregates [J]. Aquatic Microbial Ecology, 2017, 79(2): 85-99. doi: 10.3354/ame01821 [5] VINK R, BEHRENDT H, SALOMONS W. Development of the heavy metal pollution trends in several European rivers: An analysis of point and diffuse sources [J]. Water Science and Technology, 1999, 39(12): 215-223. doi: 10.2166/wst.1999.0549 [6] YUNKER M B, BACKUS S M, GRAF PANNATIER E, et al. Sources and significance of alkane and PAH hydrocarbons in Canadian arctic rivers [J]. Estuarine, Coastal and Shelf Science, 2002, 55(1): 1-31. doi: 10.1006/ecss.2001.0880 [7] GUO X P, LU D P, NIU Z S, et al. Bacterial community structure in response to environmental impacts in the intertidal sediments along the Yangtze Estuary, China [J]. Marine Pollution Bulletin, 2018, 126: 141-149. doi: 10.1016/j.marpolbul.2017.11.003 [8] 柴晓娟, 骆大伟, 吴春笃, 等. 水体中微生物分布及与环境因素的相关性研究 [J]. 人民长江, 2008, 39(3): 45-47,110. doi: 10.3969/j.issn.1001-4179.2008.03.017 CHAI X J, LUO D W, WU C D, et al. Research on relation of micro-organism distribution in water and environmental factor [J]. Yangtze River, 2008, 39(3): 45-47,110(in Chinese). doi: 10.3969/j.issn.1001-4179.2008.03.017
[9] SALA O E, CHAPIN F S, ARMESTO J J, et al. Global biodiversity scenarios for the year 2100 [J]. Science, 2000, 287(5459): 1770-1774. doi: 10.1126/science.287.5459.1770 [10] 陈兆进, 丁传雨, 朱静亚, 等. 丹江口水库枯水期浮游细菌群落组成及影响因素研究 [J]. 中国环境科学, 2017, 37(1): 336-344. doi: 10.3969/j.issn.1000-6923.2017.01.041 CHEN Z J, DING C Y, ZHU J Y, et al. Community structure and influencing factors of bacterioplankton during low water periods in Danjiangkou Reservoir [J]. China Environmental Science, 2017, 37(1): 336-344(in Chinese). doi: 10.3969/j.issn.1000-6923.2017.01.041
[11] LIU Z H, HUANG S B, SUN G P, et al. Phylogenetic diversity, composition and distribution of bacterioplankton community in the Dongjiang River, China [J]. FEMS Microbiology Ecology, 2012, 80(1): 30-44. doi: 10.1111/j.1574-6941.2011.01268.x [12] LOGUE J B, LANGENHEDER S, ANDERSSON A F, et al. Freshwater bacterioplankton richness in oligotrophic lakes depends on nutrient availability rather than on species–area relationships [J]. The ISME Journal, 2012, 6(6): 1127-1136. doi: 10.1038/ismej.2011.184 [13] 杨浩, 张国珍, 杨晓妮, 等. 16S rRNA高通量测序研究集雨窖水中微生物群落结构及多样性 [J]. 环境科学, 2017, 38(4): 1704-1716. YANG H, ZHANG G Z, YANG X N, et al. Microbial community structure and diversity in cellar water by 16S rRNA high-throughput sequencing [J]. Environmental Science, 2017, 38(4): 1704-1716(in Chinese).
[14] 谢建平, 韩玉波, 刘钢, 等. 2015年中国微生物遗传学研究领域若干重要进展 [J]. 遗传, 2016, 38(9): 765-790. XIE J P, HAN Y B, LIU G, et al. Research advances on microbial genetics in China in 2015 [J]. Hereditas, 2016, 38(9): 765-790(in Chinese).
[15] 刘永鑫, 秦媛, 郭晓璇, 等. 微生物组数据分析方法与应用 [J]. 遗传, 2019, 41(9): 845-862. LIU Y X, QIN Y, GUO X X, et al. Methods and applications for microbiome data analysis [J]. Hereditas, 2019, 41(9): 845-862(in Chinese).
[16] JI Y, ZHANGI J, HUANG X P, et al. Investigation and assessment of heavy metals in surface sediments of Ganjiang River, China [J]. Journal of Environmental Biology, 2014, 35(6): 1173-1179. [17] HAYDEN C J, BEMAN J M. Microbial diversity and community structure along a lake elevation gradient in Yosemite National Park, California, USA [J]. Environmental Microbiology, 2016, 18(6): 1782-1791. doi: 10.1111/1462-2920.12938 [18] 王元, 周俊芳, 韦信贤, 等. 海水和淡水养殖凡纳滨对虾肠道和鳃的菌群结构分析 [J]. 湖南农业大学学报(自然科学版), 2018, 44(2): 198-203. WANG Y, ZHOU J F, WEI X X, et al. Microbial community structure analysis of intestine and gill of Litopenaeus vannamei in seawater and freshwater [J]. Journal of Hunan Agricultural University (Natural Sciences), 2018, 44(2): 198-203(in Chinese).
[19] XIA N, XIA X H, LIU T, et al. Characteristics of bacterial community in the water and surface sediment of the Yellow River, China, the largest turbid river in the world [J]. Journal of Soils and Sediments, 2014, 14(11): 1894-1904. doi: 10.1007/s11368-014-0974-5 [20] YE L, ZHANG T. Bacterial communities in different sections of a municipal wastewater treatment plant revealed by 16S rDNA 454 pyrosequencing [J]. Applied Microbiology and Biotechnology, 2013, 97(6): 2681-2690. doi: 10.1007/s00253-012-4082-4 [21] 赵维, 王敬敬, 徐松, 等. 渤海湾表层海水中浮游细菌群落随离岸距离的分布特征及其影响因素 [J]. 海洋学报, 2019, 41(12): 156-171. ZHAO W, WANG J J, XU S, et al. Distribution characteristics and influencing factors of bacterioplankton community with offshore distance variation in the surface seawater of Bohai Bay [J]. Acta Oceanologica Sinica, 2019, 41(12): 156-171(in Chinese).
[22] MULKIDJANIAN A Y, KOONIN E V, MAKAROVA K S, et al. The cyanobacterial genome core and the origin of photosynthesis [J]. PNAS, 2006, 103(35): 13126-13131. doi: 10.1073/pnas.0605709103 [23] 程豹, 望雪, 徐雅倩, 等. 澜沧江流域浮游细菌群落结构特征及驱动因子分析 [J]. 环境科学, 2018, 39(8): 3649-3659. CHENG B, WANG X, XU Y Q, et al. Bacterioplankton community structure in the lancang river basin and the analysis of its driving environmental factors [J]. Environmental Science, 2018, 39(8): 3649-3659(in Chinese).
[24] 薛银刚, 刘菲, 江晓栋, 等. 太湖不同湖区冬季沉积物细菌群落多样性 [J]. 中国环境科学, 2018, 38(2): 719-728. doi: 10.3969/j.issn.1000-6923.2018.02.037 XUE Y G, LIU F, JIANG X D, et al. The diversity of bacterial communities in the sediment of different lake zones of Lake Taihu in winter [J]. China Environmental Science, 2018, 38(2): 719-728(in Chinese). doi: 10.3969/j.issn.1000-6923.2018.02.037
[25] 孙庆花, 于德爽, 张培玉, 等. 1株海洋异养硝化-好氧反硝化菌的分离鉴定及其脱氮特性 [J]. 环境科学, 2016, 37(2): 647-654. SUN Q H, YU D S, ZHANG P Y, et al. Identification and nitrogen removal characteristics of a heterotrophic nitrification-aerobic denitrification strain isolated from marine environment [J]. Environmental Science, 2016, 37(2): 647-654(in Chinese).
[26] ZHANG L, SHEN Z, FANG W K, et al. Composition of bacterial communities in municipal wastewater treatment plant [J]. Science of the Total Environment, 2019, 689: 1181-1191. doi: 10.1016/j.scitotenv.2019.06.432 [27] ZHANG L, ZHONG M M, LI X C, et al. River bacterial community structure and co-occurrence patterns under the influence of different domestic sewage types [J]. Journal of Environmental Management, 2020, 266: 110590. doi: 10.1016/j.jenvman.2020.110590 [28] XIE W, ZHANG C L, ZHOU X D, et al. Salinity-dominated change in community structure and ecological function of Archaea from the lower Pearl River to coastal South China Sea [J]. Applied Microbiology and Biotechnology, 2014, 98(18): 7971-7982. doi: 10.1007/s00253-014-5838-9 [29] ZHANG M L, YU N, CHEN L Q, et al. Structure and seasonal dynamics of bacterial communities in three urban rivers in China [J]. Aquatic Sciences, 2012, 74(1): 113-120. doi: 10.1007/s00027-011-0201-z [30] ZHANG Y, ZHAO Z H, DAI M H, et al. Drivers shaping the diversity and biogeography of total and active bacterial communities in the South China Sea [J]. Molecular Ecology, 2014, 23(9): 2260-2274. doi: 10.1111/mec.12739 [31] KORAJKIC A, PARFREY L W, MCMINN B R, et al. Changes in bacterial and eukaryotic communities during sewage decomposition in Mississippi river water [J]. Water Research, 2015, 69: 30-39. doi: 10.1016/j.watres.2014.11.003 [32] 王鹏, 陈波, 李传琼, 等. 赣江南昌段丰水期细菌群落特征 [J]. 中国环境科学, 2016, 36(8): 2453-2462. doi: 10.3969/j.issn.1000-6923.2016.08.027 WANG P, CHEN B, LI C Q, et al. Bacterial communities in Nanchang section of the Ganjiang River in wet seaon [J]. China Environmental Science, 2016, 36(8): 2453-2462(in Chinese). doi: 10.3969/j.issn.1000-6923.2016.08.027
[33] 刘鹏远, 陈庆彩, 胡晓珂. 渤海湾湾口表层沉积物中的核心细菌群落结构及其对环境因子的响应 [J]. 微生物学通报, 2018, 45(9): 1940-1955. LIU P Y, CHEN Q C, HU X K. Structure characteristics of core bacterial communities in surface sediments and analysis on their responses to environmental factors in the inlet of Bohai Bay [J]. Microbiology China, 2018, 45(9): 1940-1955(in Chinese).
[34] STALEY C, GOULD T J, WANG P, et al. Species sorting and seasonal dynamics primarily shape bacterial communities in the Upper Mississippi River [J]. Science of the Total Environment, 2015, 505: 435-445. doi: 10.1016/j.scitotenv.2014.10.012 [35] CAI X L, YAO L, SHENG Q Y, et al. Properties of bacterial communities attached to artificial substrates in a hypereutrophic urban river [J]. AMB Express, 2018, 8(1): 1-11. doi: 10.1186/s13568-017-0531-x [36] 赵海萍, 李清雪, 陶建华. 渤海湾浮游细菌分布特征及环境影响因素 [J]. 水资源保护, 2018, 34(5): 88-94. doi: 10.3880/j.issn.1004-6933.2018.05.14 ZHAO H P, LI Q X, TAO J H. Distribution characteristics of bacterioplankton in Bohai Bay and its environmental influence factors [J]. Water Resources Protection, 2018, 34(5): 88-94(in Chinese). doi: 10.3880/j.issn.1004-6933.2018.05.14
[37] YIN H Q, NIU J J, REN Y H, et al. An integrated insight into the response of sedimentary microbial communities to heavy metal contamination [J]. Scientific Reports, 2015, 5: 14266. doi: 10.1038/srep14266 [38] 杜宛璘, 孙金辉, 麦永湛, 等. 珠江下游浮游细菌群落结构的时空分布特征 [J]. 湖泊科学, 2020, 32(2): 380-394. doi: 10.18307/2020.0208 DU W L, SUN J H, MAI Y Z, et al. Spatial and temporal distribution characteristics of bacterioplankton community structure in the downstream of Pearl River [J]. Journal of Lake Sciences, 2020, 32(2): 380-394(in Chinese). doi: 10.18307/2020.0208
[39] WANG L, ZHANG J, LI H L, et al. Shift in the microbial community composition of surface water and sediment along an urban river [J]. Science of the Total Environment, 2018, 627: 600-612. doi: 10.1016/j.scitotenv.2018.01.203 [40] NIU L H, LI Y, WANG P F, et al. Altitude-scale variation in nitrogen-removal bacterial communities from municipal wastewater treatment plants distributed along a 3600 m altitudinal gradient in China[J]. Science of the Total Environment, 2016, 559: 38-44.