-
多氯萘(PCNs)是萘环上的氢原子被氯原子所取代的一类化合物总称。根据萘环上氯原子取代的数目和位置(1—8位)不同,PCNs共有75个同类物[1],并具有共平面结构,具有类似二噁英(PCDD/Fs)的毒性、生物富集性、持久性和远距离迁移性等特点[2]。PCNs主要生产于20世纪30年代至80年代,据文献统计,到目前为止全球总产量为15万t [3]。有研究表明[4]低氯萘主要用作表层外包装、润滑剂、胶黏剂和增塑剂等方面;而高氯萘主要用作电容器阻燃剂和电缆绝缘体。目前环境中的PCNs主要来源于残留工业品的释放和焚烧等热处理过程[5]。
官厅水库位于河北省怀来县与北京市延庆区境内,上游水系有洋河、桑干河和妫水河,其中洋河与桑干河在怀来县汇集后称为永定河,东流20 km汇入官厅水库[6]。曾经是北京市饮用水源地之一,后因受到上游污染,自1997年不再作为北京市饮用水源地。近年来,随着北京市水资源状况日益加剧,恢复官厅水库水质已经刻不容缓。国外对PCNs在地表水中的研究开展较早,文献报道[7]西班牙略布雷加特河表层水中一至八氯∑PCNs浓度为3—72900 ng·L−1,地下水中浓度为0.5—79100 ng·L−1;挪威格陵兰海峡表层水中检测到∑PCNs浓度为0.014—0.41 ng·L−1[8];日本垃圾填埋场渗滤液中∑PCNs浓度为ND—490 pg·L−1 [9];Mahmood等[10]发现,巴基斯坦切纳布河水中PCNs的浓度为178—489 ng·L−1。我国对PCNs研究开展较晚,研究报道[11]北京地表水中PCNs浓度为ND—11.89 ng·L−1;崔婷婷等[12]发现,洞庭湖表层水中PCNs浓度为0.007—0.85 ng·L−1。研究报道官厅水库的持久性有机污染物水质数据主要包括多氯联苯[13]、有机氯农药[14]、抗生素抗性基因[15]、药物及个人护理品[16]、全氟化合物[17]、但尚未见PCNs的研究报道。
本文选取官厅水库及上游河流作为研究区域,采用同位素稀释-高分辨气相色谱-高分辨质谱法对表层水中75种PCN同类物进行检测分析,研究该区域PCNs浓度水平与分布特征,并探讨其潜在来源,为将来该区域开展有机污染防治工作提供数据支撑。
官厅水库及上游河流表层水中水溶态多氯萘的污染现状与分布特征
Pollution status and distribution characteristics of water-soluble polychlorinated naphthalenes in Guanting reservoir and upstream rivers
-
摘要: 为探究官厅水库及上游河流表层水中水溶态多氯萘(PCNs)的污染状况与分布特征,采用同位素稀释-高分辨气相色谱-高分辨质谱法对官厅水库及上游河流28个点位的表层水样75种PCNs进行分析。结果显示,22种PCN同类物被检出,其中PCN-1的检出率为100%,PCN-5/7、PCN-14/24、PCN-42、PCN-37/33/34、PCN-44/47、PCN-45/36、PCN-27/30、PCN-38/40的检出率均高于80%。不同氯代同类物的浓度百分含量依次为:一氯萘占34.2%,二氯萘占35.9%,三氯萘占20.1%,四氯萘占9.7%,五氯萘占0.1%。表层水样中∑PCNs的浓度为0.31—30 ng·L−1,中值为7.5 ng·L−1,且中值呈现西库区(9.0 ng·L−1)>中库区(8.4 ng·L−1)>东库区(6.7 ng·L−1)>上游河流(5.6 ng·L−1)的趋势。与国内外相关文献报道值相比较,官厅水库及上游河流表层水中PCNs的浓度处于中等水平。PCNs的毒性当量计算结果显示∑PCNs-TEQ为0.005—0.187 pgTEQ·L−1。污染来源分析结果表明,官厅水库及上游河流表层水样中PCNs可能主要源于钢铁冶炼过程和交通排放。Abstract: In order to study the pollution status and distribution characteristic of polychlorinated naphthalenes (PCNs) in the surface water samples from Guanting reservoir and its upstream rivers, 75 PCN congeners were detected and analyzed by isotope dilution-high resolution mass spectrometry in 28 surface water samples from Guanting reservoir and its upstream rivers. The results showed that 22 PCN congeners were detected, and PCN-1 was detected in all the surface water samples. Other congeners with a detection rate higher than 80% included PCN-5/7、PCN-14/24、PCN-42、PCN-37/33/34、PCN-44/47、PCN-45/36、PCN-27/30、PCN-38/40. MoCNs, DiCNs, TrCNs ,TeCNs and PeCNs account for 34.2%, 35.9%, 20.1%, 9.7% and 0.1% of PCNs, respectively. ΣPCNs concentration ranges from 0.31—30 ng·L−1, with a median value of 7.5 ng·L−1. The median concentration showed a trend of West reservoir area (9.0 ng·L−1) > middle reservoir area (8.4 ng·L−1) > East Reservoir Area (6.7 ng·L−1) > upstream rivers (5.6 ng·L−1). Compared with domestic and foreign studies, PCNs content in the surface water of Guanting reservoir and its upstream rivers is at a medium level. Toxicity Equivalent Quantity (TEQ) of PCNs ranged from 0.005—0.187 pgTEQ·L−1. The results showed that PCNs in these surface water samples from Guanting reservoir and its upstream rivers are mainly polluted by steel smelting process and traffic emission.
-
表 1 类二噁英毒性的多氯萘同类物及其相对毒性因子(REP)
Table 1. DL-PCNs congeners and their relative potencies(REP)
DL-PCNs REP DL-PCNs REP CN-1 1.7×10−5 CN-57 1.6×10−6 CN-4 2.0×10−8 CN-56 4.6×10−5 CN-5/7 1.8×10−8 CN-66/67 2.5×10−3 CN-38/40 8.0×10−6 CN-71/72 3.5×10−6 CN-50 6.8×10−5 CN-63 2.0×10−3 CN-54 1.7×10−4 CN-73 3.0×10−3 表 2 PCNs同类物浓度及其与悬浮颗粒物含量的关系
Table 2. The relationships between the PCNs congeners and SS
指标Index MoCNs DiCNs TrCNs TeCNs PeCNs ΣPCNs DiCNs 0.810** TrCNs 0.950** 0.819** TeCNs 0.871** 0.768** 0.893** PeCNs 0.765** 0.621** 0.789** 0.631** ΣPCNs 0.960** 0.929** 0.963** 0.903** 0.750** SS −0.046 −0.120 −0.003 −0.036 0.126 −0.064 注:**在P<0.01水平上(双侧)显著相关. -
[1] FALANDYSZ J. Polychlorinated naphthalenes: An environmental update [J]. Environmental Pollution, 1998, 101(1): 77-90. doi: 10.1016/S0269-7491(98)00023-2 [2] 郭丽, 巴特, 郑明辉. 多氯萘的研究[J]. 化学进展, 2009, 21(增刊1): 377-388. GUO L, BA T, ZHENG M H. Study of sources and distribution characteristics of polychlorinated naphthalenes[J]. Progress in Chemistry, 2009, 21(Sup 1): 377-388(in Chinese).
[3] BRINKMAN U A T, REYMER H G M. Polychlorinated naphthalenes [J]. Journal of Chromatography A, 1976, 127(3): 203-243. doi: 10.1016/S0021-9673(00)80460-4 [4] 刘芷彤, 刘国瑞, 郑明辉, 等. 多氯萘的来源及环境污染特征研究 [J]. 中国科学:化学, 2013, 43(3): 279-290. doi: 10.1360/032013-11 LIU Z T, LIU G R, ZHENG M H, et al. Progress in the studies associated with environmental distribution and characterization of polychlorinated naphthalenes [J]. Scientia Sinica (Chimica), 2013, 43(3): 279-290(in Chinese). doi: 10.1360/032013-11
[5] HELM P A, KANNAN K, BIDLEMAN T F. Polychlorinated naphthalenes in the great lakes[M]//The Handbook of Environmental Chemistry. Londen: Springer Berlin Heidelberg, 2006: 267-306. [6] 朱晓磊, 张洪, 雷沛, 等. 官厅水库沉积物中大量元素的历史分布特征 [J]. 环境科学学报, 2016, 36(2): 442-449. doi: 10.13671/j.hjkxxb.2015.0475 ZHU X L, ZHANG H, LEI P, et al. Historical distribution characteristics of major elements in Guanting Reservoir sediment [J]. Acta Scientiae Circumstantiae, 2016, 36(2): 442-449(in Chinese). doi: 10.13671/j.hjkxxb.2015.0475
[7] ESPADALER I, ELJARRAT E, CAIXACH J, et al. Assessment of polychlorinated naphthalenes in aquifer samples for drinking water purposes [J]. Rapid Communications in Mass Spectrometry, 1997, 11(4): 410-414. doi: 10.1002/(SICI)1097-0231(19970228)11:4<410::AID-RCM824>3.0.CO;2-L [8] ISHAQ R, PERSSON N J, ZEBÜHR Y, et al. PCNs, PCDD/fs, and non-orthoPCBs, in water and bottom sediments from the industrialized Norwegian grenlandsfjords [J]. Environmental Science & Technology, 2009, 43(10): 3442-3447. [9] DAIFUKU T, ITO K, BANNO A, et al. Isomer-specific determination of polychlorinated naphthalenes in landfill leachates by gas chromatography/high-resolution mass spectrometry [J]. Journal of Water and Environment Technology, 2019, 17(6): 448-457. doi: 10.2965/jwet.19-073 [10] MAHMOOD A, MALIK R N, LI J, et al. Congener specific analysis, spatial distribution and screening-level risk assessment of polychlorinated naphthalenes in water and sediments from two tributaries of the River Chenab, Pakistan [J]. Science of the Total Environment, 2014, 485/486: 693-700. doi: 10.1016/j.scitotenv.2014.03.118 [11] 解琼玉. 北京城区典型地表水中有机卤素污染物的测定及其种态分布的研究[D]. 成都: 成都理工大学, 2014. XIE Q Y. Study on the determianation and distribution of organohalogen in typical surface water of Beijing urban[D]. Chengdu: Chengdu University of Technology, 2014(in Chinese).
[12] 崔婷婷. 洞庭湖水和沉积物中PCDD/Fs、PCBs和PCNs的污染特征研究[D]. 石家庄: 河北师范大学, 2018. CUI T T. Polllution characteristics study in the dongting lake of PCDD/fs, PCBs and PCNs[D]. Shijiazhuang: Hebei Normal University, 2018(in Chinese).
[13] WANG X T, SUN Y Z, LI X H, et al. Polychlorinated biphenyls in fish species from GuantingReservoir, Beijing, People's Republic of China [J]. Bulletin of Environmental Contamination and Toxicology, 2006, 76(5): 774-781. doi: 10.1007/s00128-006-0987-x [14] XUE N D, ZHANG D R, XU X B. Organochlorinated pesticide multiresidues in surface sediments from Beijing Guanting reservoir [J]. Water Research, 2006, 40(2): 183-194. doi: 10.1016/j.watres.2005.07.044 [15] ZHANG K, NIU Z G, LV Z, et al. Occurrence and distribution of antibiotic resistance genes in water supply reservoirs in Jingjinji area, China [J]. Ecotoxicology, 2017, 26(9): 1284-1292. doi: 10.1007/s10646-017-1853-9 [16] ZHANG P W, ZHOU H D, LI K, et al. Occurrence of pharmaceuticals and personal care products, and their associated environmental risks in Guanting Reservoir and its upstream rivers in North China [J]. RSC Advances, 2018, 8(9): 4703-4712. doi: 10.1039/C7RA12945A [17] MENG J, ZHOU Y Q, LIU S F, et al. Increasing perfluoroalkyl substances and ecological process from the Yongding Watershed to the Guanting Reservoir in the Olympic host cities, China [J]. Environment International, 2019, 133: 105224. doi: 10.1016/j.envint.2019.105224 [18] SCHNEIDER M, STIEGLITZ L, WILL R, et al. Formation of polychlorinated naphthalenes on fly ash [J]. Chemosphere, 1998, 37(9/10/11/12): 2055-2070. [19] ZHAO X R, CUI T T, GUO R, et al. A clean-up method for determination of multi-classes of persistent organic pollutants in sediment and biota samples with an aliquot sample [J]. Analytica Chimica Acta, 2019, 1047: 71-80. doi: 10.1016/j.aca.2018.10.011 [20] GULAN M P, BILLS D D, PUTNAM T B. Analysis of polychlorinated naphthalenes by gas chromatography and ultraviolet irradiation [J]. Bulletin of Environmental Contamination and Toxicology, 1974, 11(5): 438-441. doi: 10.1007/BF01685301 [21] 黄智峰, 郑丙辉, 尹大强, 等. 洞庭湖及入湖河流中209种多氯联苯同类物分布特征与风险评估[J]. 环境科学, 2021. DOI: 10.13227/j.hjkx. 202106061 HUANG Z F, ZHENG B H, YIN D Q, et al. Distribution characteristics and risk assessment of 209 PCB congeners in Dongting Lake and rivers entering the lake[J]. Environmental Science, 2021. DOI:10.13227/j.hjkx.202106061(in Chinese).
[22] BLANKENSHIP A L, KANNAN K, VILLALOBOS S A, et al. Relative potencies of individual polychlorinated naphthalenes and halowax mixtures to induce ah receptor-mediated responses [J]. Environmental Science & Technology, 2000, 34(15): 3153-3158. [23] WU J, HU J C, WANG S J, et al. Levels, sources, and potential human health risks of PCNs, PCDD/Fs, and PCBs in an industrial area of Shandong Province, China [J]. Chemosphere, 2018, 199: 382-389. doi: 10.1016/j.chemosphere.2018.02.039 [24] LIU G R, ZHENG M H, DU B, et al. Atmospheric emission of polychlorinated naphthalenes from iron ore sintering processes [J]. Chemosphere, 2012, 89(4): 467-472. doi: 10.1016/j.chemosphere.2012.05.101 [25] 陈伟. 官厅水库流域上游张家口市点源污染调查分析 [J]. 水资源保护, 2004, 20(1): 46-48,62. doi: 10.3969/j.issn.1004-6933.2004.01.020 CHEN W. Investigation of point source pollution in Zhangjiakou City on upper Guanting Reservoir [J]. Water Resources Protection, 2004, 20(1): 46-48,62(in Chinese). doi: 10.3969/j.issn.1004-6933.2004.01.020
[26] 河北省生态环境厅. 污染源监督性检测公告[EB/OL]. [2021-10-9]. [27] 薛令楠, 张琳利, 张利飞, 等. 苏南地区表层土壤中多氯萘的浓度及来源 [J]. 中国环境科学, 2017, 37(2): 646-653. XUE L N, ZHANG L L, ZHANG L F, et al. Concentration and source of polychlorinated naphthalene in topsoil in southern Jiangsu [J]. China Environmental Science, 2017, 37(2): 646-653(in Chinese).