-
酸雨是全球重要环境问题之一,对生态环境和经济发展造成很大不利影响[1]。研究指出,除无机酸外,有机酸对雨水酸化的贡献不可忽视[2-3]。我国东南部地区降水研究发现,有机酸对降水酸度贡献为5%—66.3%[4-5];在非工业区、远离人类活动区,降水有机酸对降水酸度的贡献甚至高达80%—90%[6]。降水中有机酸多为低分子有机酸,主要包括甲酸、乙酸、丙酸、草酸等[7-8],其中甲、乙酸是最重要的两种有机酸,约占有机酸总量的75%;草酸是重要的二元有机酸[9],含量不高,但对降水酸化具有重要影响[10-11]。
近年来,研究者们围绕区域降水有机酸的分布与来源开展相关研究并取得一定成果。徐刚等[12]研究贵阳地区降水有机酸的季节变化为:春>冬>秋>夏;章炎麟等[13]研究指出,安顺市降水有机酸浓度的季节变化特征为:冬>春>夏>秋。降水有机酸被认为直接来源于植被释放和人类活动(生物质燃烧、机动车尾气和烹饪油烟等),或间接来源于气态前体物的光化学反应过程[7]。目前对有机酸的来源分析主要采用比值法或统计分析法[14]。龙晓娟等[15]应用降水中甲酸/乙酸(F/A)比值分析鼎湖山降水有机酸主要来自植物排放,以自然源为主,而秋冬表现出一定人为污染的影响。李一兰等[16]采用F/A比值法分析得到天津市降水有机酸主要来源于植物、蚂蚁的直接源排放和不饱和烃、醛类的间接转化。Sun 等[10]采用F/A比值法得到庐山降水中有机酸以直接来源为主。何晓欢[17]采用因子分析法解析淮安和郴州降水来源,发现区域降水中甲酸来源与酸性气溶胶有关。龙晓娟[15]采用因子分析法发现鼎湖山降水中甲、乙酸以植物排放源为主。
当前,降水有机酸的相关研究多是针对整场降雨中有机酸的分布研究,而鲜有对同场降水事件的不同段降水样品中有机酸的分布研究;其次,关于降水样品中有机酸的来源解析,现有研究尚未定量分析云下冲刷过程和云水对降水样品中有机酸的贡献;此外,在不同的区域,降水有机酸的分布受局地或区域源的影响,因此对不同区域降水有机酸的分布与来源进行解析追踪十分有必要。
南昌是长江中下游中心城市之一,属亚热带湿润季风气候区,气候湿润温和,降水量大,太阳辐射强烈,大气光化学反应活跃,酸雨频率高。本研究针对南昌前湖区域的降水,对同一降水事件不同时段的降水样品分段采集,研究分段降水样品中低分子有机酸的浓度分布;基于分段降水样品中有机酸的分布,计算云下冲刷大气污染物和云水对降水样品中有机酸的贡献度;利用有机酸与其他水溶性离子的相关性分析,结合不同有机酸根的比值分析,解析降水有机酸的来源。本研究有助于丰富降水有机酸的分布与来源的研究方法和成果,对于区域大气污染成因分析和污染控制具有重要意义。
南昌前湖区域夏季降水中低分子有机酸的分布与来源
Distribution and source of low-molecular-weight organic acids in summer precipitation in Qianhu, Nanchang
-
摘要: 2020年5—9月,共采集南昌前湖区域20个降水事件的88个分段降水样品,测定降水中3种低分子有机酸(甲酸、乙酸、草酸)和4种无机阴离子(Cl−、
${\rm{NO}}_2^{-} $ 、${\rm{NO}}_3^{-} $ 、${\rm{SO}}_4^{2-} $ )浓度,分析讨论降水有机酸的分布、来源,定量解析云下冲刷、云水对降水有机酸的贡献。结果表明,降水中甲酸、乙酸、草酸占所测定阴离子总量的16%,降水有机酸与无机酸总量的月变化呈相反趋势;长降水事件的降水有机酸浓度在降水进程中呈现先逐渐降低,到降雨末期趋于平稳或稍稍反升的变化特征;降水进程中,云下冲刷对降水中3种有机酸的贡献率逐渐减小,而云水对其贡献率逐渐增大,降雨前期,云下冲刷为降水中有机酸根的主要来源,降雨后期,以云水贡献为主;前期降水中3种有机酸两两之间的相关性比末期降水中的弱,降水中草酸与${\rm{SO}}_4^{2-} $ 的相关性较甲、乙酸与${\rm{SO}}_4^{2-} $ 的相关性强,反映降水中草酸受二次污染影响大;基于甲酸/乙酸比值(F/A)分析,南昌地区5、9月降水有机酸受二次有机物影响较大,6—8月降水有机酸主要来源于植物直接排放;因子分析结果表明降水有机酸受酸性气溶胶、燃烧源、植物排放源的影响;PMF分析结果表明燃烧源、二次颗粒的冲刷和植被排放源对降水有机酸的影响。Abstract: 88 segmented precipitation samples of 20 precipitation events in Qianhu area of Nanchang were collected during the period from May to September in 2020. Through analyzing the concentration of three low-molecular-weight organic acids (formic acid, acetic acid, oxalic acid) and four inorganic anions (Cl−,${\rm{NO}}_2^{-} $ ,${\rm{NO}}_3^{-} $ ,${\rm{SO}}_4^{2-} $ ) and the distribution of the precipitated organic acids in the segmented samples, the contribution of cloud water and below-cloud scavenging to organic acids in precipitation was quantitatively revealed. The results indicated that formic, acetic and oxalic acids accounted for 16% of the total precipitation anions and the monthly variation of the organic and inorganic acids in precipitation showed an opposite trend. The concentration of organic acids in precipitation from long-term precipitation events first decreased and then stabilized or slightly increased at the end of the precipitation process. During the precipitation, the below-cloud scavenging showed a growing contribution to the three organic acids, contrasting to the case of cloud water (a decreased contribution). For organic acids in precipitation, below-cloud scavenging was the main source at the beginning of precipitation, while cloud water played an important role at the later stage of precipitation. Meanwhile, the correlations among the three organic acids at the beginning of precipitation were weaker than those derived from the end of precipitation. Compared to formic acid and acetic acid, oxalic acid showed a stronger dependence on${\rm{SO}}_4^{2-} $ in precipitation, implying that the presence of oxalic acid in precipitation was significantly influenced by secondary pollution. Based on the formic acid to acetic acid ratio (F/A), it was found that the organic acids in precipitation were primarily caused by secondary organic matter in May and September and by direct plant emissions from June to August in Nanchang City. Finally, factor analysis results demonstrated that the organic acids in precipitation were derived from acid aerosol washed, combustion source and plant emission source. The influence of combustion source, secondary aerosol washed and plant emission source on the organic acids was further verified by PMF analysis results.-
Key words:
- precipitation /
- low-molecular-weight organic acids /
- below-cloud scavenging /
- cloud water /
- source /
- Nanchang
-
表 1 淋洗液梯度淋洗程序
Table 1. Gradient eluting procedure of eluent
时间/min
Time流速/(mL·min−1)
Velocity of flow淋洗液NaOH浓度/(mmol·L−1)
Eluent concentration of NaOH0 1 2 0—1 1 2 1—35 1 13 35—45 1 35 45—45.1 1 12 45.1—48 1 2 表 2 本研究降水中有机酸和无机阴离子的月均浓度水平(μmol·L−1)
Table 2. Monthly average concentrations of organic acids and inorganic anions in precipitation in this study(μmol·L−1)
项目
ProjectHCOO− CH3COO− ${\rm{C}}_2\rm O_4^{2-} $ Cl- NO2- ${\rm{NO}}_3^{-} $ ${\rm{SO}}_4^{2-} $ 5月 2.85 2.02 1.17 8.32 2.39 30.68 33.59 6月 2.13 6.16 0.88 6.07 2.45 9.48 17.41 7月 3.56 6.07 1.51 5.34 3.18 24.53 1.42 8月 3.26 6.94 1.09 6.53 3.04 42.26 1.02 9月 7.27 1.62 1.01 2.62 1.87 13.57 0.95 平均 3.81 4.56 1.13 5.78 2.58 24.10 10.88 表 3 本研究与其它地区降水中有机酸浓度的对比(μmol·L−1)
Table 3. Comparison of organic acid concentration in precipitation between this study and other areas(μmol·L−1)
地区/区域
Region对象
Object甲酸
Formic acid乙酸
Acetic acid草酸
Oxalic acid3种有机酸总含量
Total concentration参考文献
Reference南昌 雨水 3.81 4.56 1.13 9.48 本研究 临安 雨水 9.58 3.89 — 13.47 Niu [11] 安顺 雨水 8.77 6.90 2.84 18.51 章炎麟[13] 鼎湖山 雨水 4.12 3.39 2.51 10.02 龙晓娟[15] 天津 雨水 12.53 3.45 0.64 16.62 李一兰[16] 庐山 云水 10.83 9.29 9.90 30.02 Sun [10] 雨水 10.21 11.20 5.07 26.48 厦门 雨水 0.15 0.18 0.14 0.47 Du [8] 上海城区 雨水 0.81 1.34 0.86 3.01 马琳[26] 崇明东滩 雨水 0.87 2.48 0.29 3.64 郑州 雪水 42.82 8.13 1.67 52.62 殷美雪[27] 杭州 23.91 — 2.00 25.91 武汉 10.43 12.78 6.67 29.88 石家庄 15.87 0.33 2.56 18.76 南京 0.11 0.12 0.33 0.56 成都龙泉驿区 雨水 0.7826 2.123 0.3 3.2056 蒋贤栋[28] 济南 雨水 5.32 3.80 1.19 10.31 王秀秀[29] 北京 雨水 4.62 4.60 1.17 10.39 Xu [30] 泰山 雨水 4.98 3.85 1.65 10.48 Wang [31] 贵阳 雨水 14.24 9.35 5.58 29.17 Xu [32] 衡山 雨水 14.30 16.46 3.31 34.07 Wang [33] 圣保罗 雨水 17.00 8.90 — 25.90 Fornaro [34] 巴西郊区 雨水 10.20 29.87 — 40.07 洛杉矶 雨水 6.50 5.60 7.80 19.90 Kawamura [35] 西班牙 雨水 0.5474 0.8816 0.5016 1.9306 PEñA [36] 表 4 不同源的F/A比值
Table 4. F/A ratio of different sources
表 5 本研究分段降水样品中F/A比值的月均值
Table 5. The monthly mean value of F/A ratio in segmented precipitation samples in this study
月份
MonthF/A 5月 1.0817 6月 0.2652 7月 0.4498 8月 0.3606 9月 3.4454 平均 1.1205 表 6 前两段分段降水样品中有机酸与无机阴离子的相关系数
Table 6. Correlation coefficients of organic acids and inorganic anions in the first two segmented precipitation samples
组分
ComponentsHCOO− CH3COO− ${\rm{C} }_2\rm O_4^{2-} $ Cl− NO2− ${\rm{NO} }_3^{-} $ ${\rm{SO} }_4^{2-} $ HCOO− 1.000 CH3COO− −0.015 1.000 ${\rm{C} }_2\rm O_4^{2-} $ −0.032 −0.101 1.000 Cl− 0.156 0.128 −0.024 1.000 ${\rm{NO} }_2^{-} $ 0.129 0.088 0.093 −0.035 1.000 ${\rm{NO} }_3^{-} $ 0.080 0.035 0.042 0.628** −0.029 1.000 ${\rm{SO} }_4^{2-} $ 0.229 0.221 0.145 0.418* −0.009 0.515** 1.000 注:**,在0.01级别(双尾),相关性显著;*,在0.05级别(双尾),相关性显著. 表 7 末两段分段降水样品中有机酸与无机阴离子的相关系数
Table 7. Correlation coefficients of organic acids and inorganic anions in the last two segmented precipitation samples
组分
ComponentsHCOO− CH3COO− ${\rm{C} }_2\rm O_4^{2-} $ Cl− NO2− ${\rm{NO} }_3^{-} $ ${\rm{SO} }_4^{2-} $ HCOO− 1.000 CH3COO− 0.562** 1.000 ${\rm{C} }_2\rm O_4^{2-} $ 0.033 0.123 1.000 Cl− 0.220 0.666** 0.361 1.000 ${\rm{NO} }_2^{-} $ 0.524** 0.420* 0.351 0.308 1.000 ${\rm{NO} }_3^{-} $ 0.570** 0.524** 0.046 0.434* 0.257 1.000 ${\rm{SO} }_4^{2-} $ 0.571** 0.513** 0.202 581** 0.475* 0.691** 1.000 注:**,在0.01级别(双尾),相关性显著;*,在0.05级别(双尾),相关性显著. 表 8 所有分段降水样品中有机酸与无机阴离子的相关系数
Table 8. Correlation coefficients of organic acids and inorganic anions in all segmented precipitation samples
组分
ComponentsHCOO− CH3COO− ${\rm{C} }_2\rm O_4^{2-} $ Cl− NO2− ${\rm{NO} }_3^{-} $ ${\rm{SO} }_4^{2-} $ HCOO− 1.000 CH3COO− 0.266* 1.000 ${\rm{C} }_2\rm O_4^{2-} $ 0.046 0.021 1.000 Cl− 0.157 0.321** 0.213* 1.000 ${\rm{NO} }_2^{-} $ 0.118 0.080 0.156 0.095 1.000 ${\rm{NO} }_3^{-} $ 0.163 0.206 0.171 0.541** 0.129 1.000 ${\rm{SO} }_4^{2-} $ 0.234* 0.458** 0.300** 0.526** 0.151 0.577** 1.000 注:**,在0.01级别(双尾),相关性显著;*,在0.05级别(双尾),相关性显著. 表 9 南昌前湖区域降水组分因子分析载荷矩阵
Table 9. The factor loading matrix of precipitation components in Qianhu area of Nanchang
变量
Variables因子1
Factor 1因子2
Factor 2因子3
Factor 3CH3COO− 0.921 0.100 0.028 HCOO− 0.051 0.027 0.911 Cl− −0.313 0.702 0.085 ${\rm{NO} }_2^{-} $ −0.378 −0.839 0.046 ${\rm{NO} }_3^{-} $ −0.001 0.226 0.143 ${\rm{SO} }_4^{2-} $ 0.273 0.025 0.008 ${\rm{C} }_2\rm O_4^{2-} $ 0.290 0.114 −0.427 累计贡献率/% 59.396 70.330 80.260 -
[1] 何晓欢, 徐晓斌, 于晓岚, 等. 我国14个站点降水中甲酸和乙酸浓度及对酸性的贡献 [J]. 环境科学, 2010, 31(4): 858-864. HE X H, XU X B, YU X L, et al. Concentrations and acidity contributions of acetate and formate in precipitation at 14 stations of China [J]. Environmental Science, 2010, 31(4): 858-864(in Chinese).
[2] 王晓燕. 上海中心城区降水中低分子有机酸的特征分析 [J]. 广东化工, 2014, 41(6): 135-138. doi: 10.3969/j.issn.1007-1865.2014.06.069 WANG X Y. Analysis of characteristics of low molecular weight carboxylic acids in precipitation in central city zone of Shanghai [J]. Guangdong Chemical Industry, 2014, 41(6): 135-138(in Chinese). doi: 10.3969/j.issn.1007-1865.2014.06.069
[3] KHARE P, KUMAR N, KUMARI K M, et al. Atmospheric formic and acetic acids: An overview [J]. Reviews of Geophysics, 1999, 37(2): 227-248. doi: 10.1029/1998RG900005 [4] 刘辰, 何凌燕, 牛彧文, 等. 深圳降水中低分子量有机酸对降雨酸性的贡献 [J]. 环境科学研究, 2007, 20(5): 20-25. doi: 10.13198/j.res.2007.05.22.liuch.004 LIU C, HE L Y, NIU Y W, et al. Wet deposition of low molecular weight carboxylic acids in Shenzhen [J]. Research of Environmental Sciences, 2007, 20(5): 20-25(in Chinese). doi: 10.13198/j.res.2007.05.22.liuch.004
[5] 徐刚, 李心清, 黄荣生, 等. 贵阳市区大气降水中有机酸的研究 [J]. 地球与环境, 2007, 35(1): 46-50. doi: 10.14050/j.cnki.1672-9250.2007.01.008 XU G, LI X Q, HUANG R S, et al. Low molecular carboxylic acids in precipitation of Guiyang, southwest China [J]. Earth and Environment, 2007, 35(1): 46-50(in Chinese). doi: 10.14050/j.cnki.1672-9250.2007.01.008
[6] 牛彧文, 顾骏强, 俞向明, 等. 有机酸对长江三角洲大气背景区降水酸化的影响 [J]. 中国环境科学, 2010, 30(2): 150-154. NIU Y W, GU J Q, YU X M, et al. Impact of organic acids on rainwater acidification in the background air of the Yangtze River Delta [J]. China Environmental Science, 2010, 30(2): 150-154(in Chinese).
[7] 杨笑影, 曹芳, 林煜棋, 等. 南京北郊降水无机离子和有机酸的化学特征及来源分析 [J]. 环境科学, 2020, 41(6): 2519-2527. YANG X Y, CAO F, LIN Y Q, et al. Chemical characteristics and source analysis of inorganic ions and organic acids in precipitation in the northern suburbs of Nanjing [J]. Environmental Science, 2020, 41(6): 2519-2527(in Chinese).
[8] DU W J, HONG Z Y, CHEN Y T, et al. Spatiotemporal distribution and source apportionment of low molecular weight organic acids in wet precipitation at a coastal city, China [J]. Environmental Science and Pollution Research, 2017, 24(9): 8399-8410. doi: 10.1007/s11356-017-8498-3 [9] 张静, 程温莹, 石友香. 成都市区降雨中主要低分子有机酸及来源分析 [J]. 四川环境, 2013, 32(2): 12-15. doi: 10.3969/j.issn.1001-3644.2013.02.003 ZHANG J, CHENG W Y, SHI Y X. Study of low-molecular-weight carboxylic acids and their resources in precipitation in Chengdu [J]. Sichuan Environment, 2013, 32(2): 12-15(in Chinese). doi: 10.3969/j.issn.1001-3644.2013.02.003
[10] SUN X, WANG Y, LI H Y, et al. Organic acids in cloud water and rainwater at a mountain site in acid rain areas of South China [J]. Environmental Science and Pollution Research, 2016, 23(10): 9529-9539. doi: 10.1007/s11356-016-6038-1 [11] NIU Y W, LI X L, PU J J, et al. Organic acids contribute to rainwater acidity at a rural site in Eastern China [J]. Air Quality, Atmosphere & Health, 2018, 11(4): 459-469. [12] 徐刚, 李心清, 吕迎春, 等. 大气降水中低分子有机酸的季节变化及对酸雨形成的贡献(以贵阳市和尚重镇为例) [J]. 科学通报, 2009, 54(17): 2568-2573. doi: 10.1360/csb2009-54-17-2568 XU G, LI X Q, LYU Y C, et al. Seasonal variations of carboxylic acids and their contributions to the rainwater acidity: A case study of Guiyang City and Shangzhong Town [J]. Chinese Science Bulletin, 2009, 54(17): 2568-2573(in Chinese). doi: 10.1360/csb2009-54-17-2568
[13] 章炎麟, 李心清, 曹芳, 等. 安顺大气降水中低分子有机酸的季节变化及其来源[J]. 科学通报, 2011, 56(增刊1): 327-332. ZHANG Y L, LI X Q, CAO F, et al. Seasonal variation and source of low molecular organic acids in atmospheric precipitation in Anshun [J]. Chinese Science Bulletin, 2011, 56(Sup 1): 327-332(in Chinese).
[14] 石友香. 成都市城东区降雨中主要低分子有机酸的研究[D]. 成都: 成都理工大学, 2012. SHI Y X. The study on mainly low molecular weight organic acids in rainfall of Chengdong district in Chengdu City[D]. Chengdu: Chengdu University of Technology, 2012(in Chinese).
[15] 龙晓娟, 王雪梅, 朱圣洁, 等. 鼎湖山降水有机酸的变化特征及影响因素分析 [J]. 环境化学, 2011, 30(9): 1611-1619. LONG X J, WANG X M, ZHU S J, et al. Variation and source analysis of atmospheric organic acids from precipitation at dinghu mountain [J]. Environmental Chemistry, 2011, 30(9): 1611-1619(in Chinese).
[16] 李一兰, 朱兆洲, 尚云涛, 等. 天津夏季大气降水中低分子有机酸研究[J]. 环境科学与技术, 2018, 41(增刊2): 69-74. LI Y L, ZHU Z Z, SHANG Y T, et al. Low molecular weight carboxylic acids in summer precipitation in Tianjin[J]. Environmental Science & Technology, 2018, 41(Sup 2): 69-74(in Chinese).
[17] 何晓欢. 降水中甲酸乙酸的观测研究[D]. 北京: 中国气象科学研究院, 2008. HE X H. Observational research of acetate and formate in precipitation[D]. Beijing: Chinese Academy of Meteorological Sciences, 2008(in Chinese).
[18] 魏宸, 黄虹, 邹长伟, 等. 南昌市新城区大气降水化学特征与主要成分来源解析 [J]. 环境科学研究, 2016, 29(11): 1582-1589. WEI C, HUANG H, ZOU C W, et al. Chemical characteristics and main sources of atmospheric precipitation in new urban district of Nanchang city [J]. Research of Environmental Sciences, 2016, 29(11): 1582-1589(in Chinese).
[19] 龚娴, 陈芬, 左嘉. 2010—2015年南昌市大气降水特征及化学成分分析 [J]. 绿色科技, 2017(20): 65-67. GONG X, CHEN F, ZUO J. Analysis of characteristics and chemical constituents of atmospheric precipitation in Nanchang from 2010 to 2015 [J]. Journal of Green Science and Technology, 2017(20): 65-67(in Chinese).
[20] 孙启斌, 肖红伟, 肖化云, 等. 南昌市大气降水化学特征及来源分析 [J]. 环境科学研究, 2017, 30(12): 1841-1848. doi: 10.13198/j.issn.1001-6929.2017.03.38 SUN Q B, XIAO H W, XIAO H Y, et al. Chemical characteristics and source apportionment of atmospheric precipitation in Nanchang city [J]. Research of Environmental Sciences, 2017, 30(12): 1841-1848(in Chinese). doi: 10.13198/j.issn.1001-6929.2017.03.38
[21] 黄德银. 广州大气降水中几类典型污染物的化学组成、沉降能量及物质来源分析[D]. 广州: 中国科学院广州地球化学研究所, 2007. HUANG D Y. Analysis of chemical composition, sedimentation energy and material source of several typical pollutants in atmospheric precipitation in Guangzhou [D]. Guangzhou: Institute of Geochemistry, Chinese Academy of Sciences, 2007(in Chinese).
[22] 雷萍, 瞿白露. 碱稳定样品法测定降水中3种有机酸 [J]. 广州化学, 2020, 45(3): 19-28. doi: 10.16560/j.cnki.gzhx.20200310 LEI P, QU B L. Determination of three organic acid anions in the rainfall samples based on alkali stabilization method [J]. Guangzhou Chemistry, 2020, 45(3): 19-28(in Chinese). doi: 10.16560/j.cnki.gzhx.20200310
[23] 朱丹丹. 南京冬季三级分档雾水有机酸和无机离子化学特征研究[D]. 南京: 南京信息工程大学, 2020. ZHU D D. Study on chemical characteristics of organic acids and inorganic ions in three-stage fog water in Nanjing in winter [D]. Nanjing University of Information Science & Technology, 2020(in Chinese).
[24] 王琦. 高浓度CO2对水稻幼苗内源激素及有机酸含量影响研究[D]. 沈阳: 沈阳师范大学, 2019. WANG Q. Effects of high concentration CO2 on endogenous hormones and organic acids in rice seedlings[D]. Shenyang: Shenyang Normal University, 2019(in Chinese).
[25] 陶俊, 刘兰玉, 陈克军. 有机酸对云凝结核形成的影响 [J]. 四川环境, 2003, 22(6): 17-19,29. doi: 10.3969/j.issn.1001-3644.2003.06.005 TAO J, LIU L Y, CHEN K J. Effects of organic acids on the formation of cloud condensation nuclei(CCN) [J]. Sichuan Environment, 2003, 22(6): 17-19,29(in Chinese). doi: 10.3969/j.issn.1001-3644.2003.06.005
[26] 马琳. 上海市降水中水溶性离子组成特征及源解析研究[D]. 上海: 复旦大学, 2011. MA L. Characteristics and source apportionment of water-soluble ions in percipitation over Shanghai, China[D]. Shanghai: Fudan University, 2011(in Chinese).
[27] 殷美雪. 中国中东部地区大气湿沉降中的离子化学特征[D]. 上海: 上海师范大学, 2015. YIN M X. Ion chemical characteristics and elements of morphological characteristics in China's central[D]. Shanghai: Shanghai Normal University, 2015(in Chinese).
[28] 蒋贤栋. 成都市龙泉驿区降水有机酸研究[D]. 成都: 四川师范大学, 2017. JIANG X D. Organic acid study of precipitation in Chengdu Longquanyi district[D]. Chengdu: Sichuan Normal University, 2017(in Chinese).
[29] 王秀秀, 孙明虎. 济南市大气降水化学特征分析 [J]. 中国环境管理干部学院学报, 2017, 27(1): 53-56. doi: 10.13358/j.issn.1008-813x.2017.01.14 WANG X X, SUN M H. Chemical characteristics analysis on precipitation in Jinan [J]. Journal of Environmental Management College of China, 2017, 27(1): 53-56(in Chinese). doi: 10.13358/j.issn.1008-813x.2017.01.14
[30] XU Z F, HAN G L. Chemical and strontium isotope characterization of rainwater in Beijing, China [J]. Atmospheric Environment, 2009, 43(12): 1954-1961. doi: 10.1016/j.atmosenv.2009.01.010 [31] WANG Y, WAI K M, GAO J, et al. The impacts of anthropogenic emissions on the precipitation chemistry at an elevated site in North-eastern China [J]. Atmospheric Environment, 2008, 42(13): 2959-2970. doi: 10.1016/j.atmosenv.2007.12.051 [32] XU G, LEE X, LÜ Y, et al. Seasonal variations of carboxylic acids and their contributions to the rainwater acidity: A case study of Guiyang and Shangzhong, China [J]. Chinese Science Bulletin, 2010, 55(16): 1667-1673. doi: 10.1007/s11434-009-3343-9 [33] WANG Y, SUN M H, LI P H, et al. Variation of low molecular weight organic acids in precipitation and cloudwater at high elevation in South China [J]. Atmospheric Environment, 2011, 45(36): 6518-6525. doi: 10.1016/j.atmosenv.2011.08.064 [34] FORNARO A, GUTZ I G R. Wet deposition and related atmospheric chemistry in the São Paulo metropolis, Brazil: Part 2—contribution of formic and acetic acids [J]. Atmospheric Environment, 2003, 37(1): 117-128. doi: 10.1016/S1352-2310(02)00885-3 [35] KAWAMURA K, STEINBERG S, NG L, et al. Wet deposition of low molecular weight mono- and di-carboxylic acids, aldehydes and inorganic species in Los Angeles [J]. Atmospheric Environment, 2001, 35(23): 3917-3926. doi: 10.1016/S1352-2310(01)00207-2 [36] PEÑA R M, GARCı́A S, HERRERO C, et al. Organic acids and aldehydes in rainwater in a northwest region of Spain [J]. Atmospheric Environment, 2002, 36(34): 5277-5288. doi: 10.1016/S1352-2310(02)00648-9 [37] RAO P S P, TIWARI S, MATWALE J L, et al. Sources of chemical species in rainwater during monsoon and non-monsoonal periods over two mega cities in India and dominant source region of secondary aerosols [J]. Atmospheric Environment, 2016, 146: 90-99. doi: 10.1016/j.atmosenv.2016.06.069 [38] 谢鹏, 霍铭群, 孙倩, 等. 云下颗粒物清除作用对雨水离子组成影响研究 [J]. 北京大学学报(自然科学版), 2009, 45(4): 707-712. doi: 10.13209/j.0479-8023.2009.105 XIE P, HUO M Q, SUN Q, et al. Contributions of washout process of particles to ion concentrations in rainwater [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2009, 45(4): 707-712(in Chinese). doi: 10.13209/j.0479-8023.2009.105
[39] ANDREAE M O, BROWELL E V, GARSTANG M, et al. Biomass-burning emissions and associated haze layers over Amazonia [J]. Journal of Geophysical Research Atmospheres, 1988, 93(D2): 1509. doi: 10.1029/JD093iD02p01509 [40] 江伟, 李心清, 曾勇, 等. 贵州省遵义地区降水中低分子有机酸及其来源 [J]. 环境科学, 2008, 29(9): 2425-2431. doi: 10.3321/j.issn:0250-3301.2008.09.007 JIANG W, LI X Q, ZENG Y, et al. Low-molecular-weight organic acids in precipitation in Zunyi city, Guizhou Province [J]. Environmental Science, 2008, 29(9): 2425-2431(in Chinese). doi: 10.3321/j.issn:0250-3301.2008.09.007
[41] TALBOT R W, BEECHER K M, HARRISS R C, et al. Atmospheric geochemistry of formic and acetic acids at a mid-latitude temperate site [J]. Journal of Geophysical Research Atmospheres, 1988, 93(D2): 1638. doi: 10.1029/JD093iD02p01638 [42] HARTMANN W R, SANTANA M, HERMOSO M, et al. Diurnal cycles of formic and acetic acids in the northern part of the Guayana shield, Venezuela [J]. Journal of Atmospheric Chemistry, 1991, 13(1): 63-72. doi: 10.1007/BF00048100 [43] GROSJEAN D. Formic acid and acetic acid: Emissions, atmospheric formation and dry deposition at two southern California locations [J]. Atmospheric Environment. Part A. General Topics, 1992, 26(18): 3279-3286. doi: 10.1016/0960-1686(92)90343-J [44] TALBOT R W, ANDREAE M O, BERRESHEIM H, et al. Sources and sinks of formic, acetic, and pyruvic acids over central Amazonia: 2. Wet season [J]. Journal of Geophysical Research Atmospheres, 1990, 95(D10): 16799. doi: 10.1029/JD095iD10p16799 [45] SERVANT J, KOUADIO G, CROS B, et al. Carboxylic monoacids in the air of mayombe forest (Congo): Role of the forest as a source or sink [J]. Journal of Atmospheric Chemistry, 1991, 12(4): 367-380. doi: 10.1007/BF00114774 [46] 孙明虎. 衡山云雾及雨水的化学研究[D]. 济南: 山东大学, 2011. SUN M H. Chemical characteristics of cloud and precipitation at mount Heng[D]. Jinan: Shandong University, 2011(in Chinese).
[47] 杨学巧. 庐山云雾水的离子组成及来源分析[D]. 济南: 山东大学, 2013. YANG X Q. Analysis of ionic composition and sources in cloudwater at mount Lu[D]. Jinan: Shandong University, 2013(in Chinese).
[48] LI X H, WANG S X, DUAN L, et al. Particulate and trace gas emissions from open burning of wheat straw and corn stover in China [J]. Environmental Science & Technology, 2007, 41(17): 6052-6058. [49] 孙潇. 庐山大气沉降中有机酸的特征及来源研究[D]. 济南: 山东大学, 2016. SUN X. Characteristics and sources of organic acids in atmospheric deposition at mount Lu[D]. Jinan: Shandong University, 2016(in Chinese).