-
水库沉积物作为水环境中有机质的埋藏和贮存场所,是水生态系统的重要组成部分[1],沉积物中的碳、氮、磷等生源要素是指示水域生产力、营养盐水平的有效指标,直接反映了水体的污染状况[2]. 沉积物有机质分解过程在消耗水的溶解氧的同时,还会向水体释放大量的碳、氮、磷、硫等营养盐[3],并通过沉积物-水界面的物质交换过程,改变氮、磷营养盐在生态系统中的循环,对水体富营养化水平产生重要影响[4]. 水库在发电、航运、渔业以及供水等方面具有重要功能,水库的水环境保护及水生态安全维护成为目前和今后的主要任务,研究水库中沉积物的碳、氮、磷含量的时空分布特征,有助于了解水库的营养状况及水体氮、磷污染生态风险,为保障水库供水安全等方面提供科学依据[5]. 此外,通过对沉积物指标的分析还可以重建水域环境的演变过程以及其对人类活动的响应,以便揭示水体富营养化的演化规律[6].
江西柘林水库,又名柘林湖、庐山西海,是长江中游鄱阳湖流域的大型峡谷型旅游性水库,由人工拦截鄱阳湖五大支流之一的“修河”而成. 作为江西省最大的人工湖,不仅是江西省九江市重要的饮用水水源地,也是沿湖城乡生活污水和工业污水的主要纳污水体[7]. 此外,作为庐山西海5A级风景名胜区和鱤国家级水产种质资源保护区的所在地,还被国家环保总局列入了中国重要湿地名录名单,在水源涵养、洪水调蓄、旅游开发、渔业养殖以及生物多样性保护等方面均具有重要的生态作用[8]. 随着沿湖工、农业以及旅游业的迅速发展,入库的氮磷负荷不断增加,库区的水生态环境也发生了新的改变,尽管柘林水库整体呈中营养状态,但部分水域的浮游植物优势种主要以蓝藻门的微囊藻和长孢藻属为主,有爆发蓝藻水华的风险[7-9]. 近年来有关柘林水库的研究主要集中在水质、浮游植物、底栖动物以及鱼类等方面[10-13],未见有关柘林水库沉积物研究的报道.
为了解柘林水库表层沉积物的污染现状,本研究基于柘林水库4个季度33个监测点的表层沉积物调查数据,分析了沉积物中总氮、总磷和有机质含量的时空分布特征,基于相关性分析和C/N比值解析了沉积物有机质的来源,并以综合污染指数法和有机污染指数法分别评价了表层沉积物的污染现状,以期为柘林水库水生态环境的管理和保护提供科学数据支撑.
柘林水库表层沉积物氮、磷、有机质的时空分布及污染评价
Temporal-spatial distribution and pollution assessment of nitrogen, phosphorus and organic matter in surface sediments of Zhelin Reservoir
-
摘要: 柘林水库是鄱阳湖流域的大型峡谷型水库,具有水源涵养、洪水调蓄、旅游开发、渔业养殖以及生物多样性保护等重要生态功能. 研究其表层沉积物营养盐和有机质的污染特征,对了解其污染生态风险、揭示富营养化的演化规律具有重要意义. 于2020年9月、2021年1月、4月和7月对33个监测点的表层沉积物(0―10 cm)进行季度采样,分析了沉积物总氮(TN)、总磷(TP)和有机质(OM)的时空分布格局及相关性,并分别运用综合污染指数法(FF)和有机质污染指数法(OI)对其污染现状进行评价. 结果表明,柘林水库表层沉积物TN、TP和OM含量范围分别为334―4800 mg·kg−1、98―1900 mg·kg−1和0.2%―8.6%,均值分别为1832.6 mg·kg−1、657.5 mg·kg−1和3.2%,且呈现一定的时空异质性. Pearson相关分析表明,柘林水库沉积物OM与TP、C/N均呈显著正相关(P<0.05),相关系数分别为0.21和0.45,但OM与TN、TP与TN的相关性均不显著(P>0.05),表明沉积物OM与TP有一定的同源性,但与TN的来源不一致. 沉积物来源分析表明,柘林水库沉积物有机质具有混合来源,春季和冬季沉积物有机质来源以水生生物为主,下游和库湾区域的陆源输入有机质的贡献则更大. STN、STP、FF和OI指数的范围分别为1.32―3.66、0.65―1.85、1.30―3.11和0.18―0.78,均值分别为1.91、1.11、1.76和0.35,表明柘林水库表层沉积物处于中等污染等级,具有一定的生态污染风险.Abstract:
Zhelin Reservoir is a large canyon reservoir in Poyang Lake basin, which plays an important ecological role in water conservation, flood control, tourism development, fishery culture and biodiversity protection. It is of great significance to study the pollution characteristics of nutrients and organic matter in surface sediments to understand the risk of ecological pollution and reveal the evolution law of eutrophication. The spatial and temporal distribution patterns of total nitrogen (TN), total phosphorus (TP) and organic matter (OM) in the surface sediments (0―10 cm) were analyzed with samples collected from 33 monitoring sites in September 2020, January, April and July 2021. The pollution status was evaluated by single, comprehensive and organic matter pollution index, respectively. Results showed that: TN, TP and OM in the surface sediments of Zhelin Reservoir showed certain spatial-temporal heterogeneity, and ranged from 334―4800 mg·kg−1, 98―1900 mg·kg−1 and 0.2%―8.6% with mean values of 1832.6 mg·kg−1, 657.5 mg·kg−1 and 3.2%, respectively. Pearson correlation analysis showed that there was a significant positive correlation between OM and TP with the correlation coefficients of 0.21 and 0.45, respectively (P < 0.05), but no significant correlation between OM and TN, TN and TP in sediments of Zhelin reservoir (P > 0.05), indicating that OM and TP had certain homology, but the source of TN was not consistent. Further analysis showed that the organic matter in the sediments of Zhelin Reservoir had mixed sources, the main source of sediment organic matter was aquatic organisms in the spring and winter, while the contribution of terrigenous material inputs to OM was larger in the Lower reaches and reservoir bay. The pollution indices of STN, STP, FF and OI ranged from 1.32―3.66, 0.65―1.85, 1.30―3.11 and 0.18―0.78, with mean values of 1.91, 1.11, 1.76 and 0.35, respectively, indicating that there was certain ecological pollution risk in the surface sediments of Zhelin Reservoir with the moderate pollution grade. -
Key words:
- surface sediments /
- nutrients /
- temporal-spatial distribution /
- pollution assessment /
- Zhelin Reservoir.
-
表 1 柘林水库表层沉积物采样点分布情况
Table 1. Sampling site and season of surface sediments in Zhelin Reservoir
采样点
Sampling
site采样位置
Sampling
location采样区域
Sampling
area采样季节 Sampling season 采样点周围情况描述
Description of sampling
site春季
Spring夏季
Summer秋季
Autumn冬季
WinterZL1 上游 入库河流或河口 + + 修水河段、砂质为主,
采砂作业活动频繁ZL2 + + + + ZL3 + + + + ZL4 上游 入库河流或河口 + + 靠近武宁县城,接纳工农业生产和
城镇居民生活污水ZL5 库湾 + + ZL6 入库河流或河口 + + ZL7 库心区域 + + + + ZL8 库心区域 + + ZL9 入库河流或河口 + + + + ZL10 上游 库湾 + + + + 潘龙岗库湾 ZL11 上游 库心区域 + + + + 库心 ZL12 中游 库心区域 + + 罗坪镇 ZL13 库心区域 + + + + ZL14 中游 库湾 + + + + 扬州乡 ZL27 中游 库湾 + + + + 八里棚库湾 ZL28 中游 库湾 + + + + 河口库湾 ZL29 库心区域 + + 巾口乡 ZL30 中游 入库河流或河口 + + 鲁溪镇双溪河 ZL31 中游 入库河流或河口 + + 横路镇株林河 ZL32 中游 入库河流或河口 + + + + 两河交汇 ZL33 中游 入库河流或河口 + + + + 红岩潭大桥附近 ZL15 下游 库湾 + + + + 瓜源河、花源谷风景区、
阳光照耀29度度假区ZL16 入库河流或河口 + + + + ZL17 库湾 + + ZL18 下游 库心区域 + + 司马旅游码头、观光塔、
滨湖栈道、玻璃桥等ZL19 库湾 + + + + ZL20 下游 库心区域 + + + + 瑶池湾国际垂钓中心、民宿、
民俗文化村等ZL21 库湾 + + ZL22 库湾 + + ZL23 下游 库湾 + + + + 西海渔村风景区 ZL24 库心区域 + + ZL25 下游 库湾 + + + + 官莲乡巾口大桥附近 ZL26 下游 库心区域 + + 墨斗山观湖岛景区 注:“+”表示在该季节采样. “+” represent sampling in this season. 表 2 沉积物综合污染指数和有机污染指数评价标准
Table 2. Assessment standards of surface sediments comprehensive pollution index (FF) and organic pollution index (OI)
级别
Level综合污染指数
FF有机质污染指数
OI评价等级
GradeⅠ <1.0 <0.05 清洁 Clean Ⅱ 1.0≤FF≤1.5 0.05≤OI<0.20 轻度污染 Light pollution Ⅲ 1.5<FF≤2.0 0.20≤OI<0.5 中度污染 Moderate pollution Ⅳ >2.0 ≥0.5 重度污染 Heavy pollution 表 3 柘林水库表层沉积物TN、TP、OM 、C/N和N/P的空间分布
Table 3. Spatial patterns of TN, TP, OM, C/N and N/P in surface sediments of Zhelin Reservoir
总氮/(mg·kg−1)
TN总磷/(mg·kg−1)
TP有机质/%
OM碳氮比
C/N
氮磷比
N/P上游 2088.4±1086.6 632.7±116.2 2.2±0.8c 8.40±6.79b 3.37±1.75 中游 1676.8±490.4 667.3±259.9 3.4±1.0ab 11.84±2.32a 3.40±3.33 下游 1757.9±549.5 660.1±335.6 3.9±1.5a 13.80±6.64a 3.69±2.99 全库 1832.6±754.4 654.1±257.8 3.2±1.4b 11.51±6.04a 3.49±2.78 注:同列的不同字母表示差异显著,P<0.05.
Note: Different letters in the same column indicate significant differences, P<0.05表 4 柘林水库表层沉积物TN、TP、OM的区域分布
Table 4. Area patterns of TN, TP and OM in surface sediments of Zhelin Reservoir
总氮/ (mg·kg−1)
TN总磷/(mg·kg−1)
TP有机质/%
OM入库河口 1948.6±915.2 567.1±201.8b 2.9±1.3b 库心 1757.4±772.2 654.6±196.9b 3.0±1.2b 库湾 1802.8±589.6 726.1±331.9a 3.7±1.5a 注:同列的不同字母表示差异显著,P<0.05.
Note: Different letters in the same column indicate significant differences, P<0.05表 5 柘林水库表层沉积物TN、TP、OM的特征及与其他湖库的对比
Table 5. Characteristics of TN, TP and OM of surface sediments in Zhelin Reservoir and their comparison with other lakes and reservoirs
所处省份
Province湖库名称
Name总氮/(mg·kg−1)
TN总磷/(mg·kg−1)
TP有机质/%
OM文献来源
Reference江西 鄱阳湖 1340 460 1.6 王圣瑞等[42] 湖北 黄柏河梯级水库 1500 3840 4.6 包宇飞等[16] 江西 江西15座典型水库 951 609 2.6 胡强等[36] 福建 山美水库 1180 642 3.3 邱祖凯等[33] 陕西 金盆水库 1132 1131 7.0 王亚平等[35] 河南 丹江口水库 1340 570 2.9 李冰等[40] 广东 清林径水库 1645 232 1.9 兰建洪等[32] 重庆 三峡水库 903 1014 2.8 封丽等[34] 天津 于桥水库 1365 480 3.6 吴光红等[41] 江西 柘林水库 1833 658 3.2 本研究 表 6 柘林水库表层沉积物TN、TP、OM、C/N和 N/P相关性(n=98)
Table 6. Pearson correlation between TN, TP, OM,C/N and N/P in surface sediments of Zhelin Reservoir (n=98)
指标
Parameters总氮
TN总磷
TP有机质
OM碳氮比
C/NTP 0.04 1 OM 0.17 0.21* 1 C/N −0.53** 0.14 0.45** 1 N/P 0.45** −0.64** 0.21* −0.2 表 7 柘林水库表层沉积物污染等级评价
Table 7. Pollution grade assessment on surface sediments of Zhelin Reservoir
综合污染指数 FF 有机质污染指数 OI 点位数量
Sampling sites number占比/%
Percentage点位数量
Sampling sites number占比/%
Percentage清洁 5 5.1 2 2.0 轻度污染 39 39.8 28 28.6 中度污染 30 30.6 50 51.0 重度污染 24 24.5 18 18.4 -
[1] RUBIO-PORTILLO E, VILLAMOR A, FERNANDEZ-GONZALEZ V, et al. Exploring changes in bacterial communities to assess the influence of fish farming on marine sediments [J]. Aquaculture, 2019, 506: 459-464. doi: 10.1016/j.aquaculture.2019.03.051 [2] WU M, HUANG S L, WEN W, et al. Nutrient distribution within and release from the contaminated sediment of Haihe River [J]. Journal of Environmental Sciences, 2011, 23(7): 1086-1094. doi: 10.1016/S1001-0742(10)60491-3 [3] SHEN Q S, LIU C, ZHOU Q L, et al. Effects of physical and chemical characteristics of surface sediments in the formation of shallow lake algae-induced black bloom [J]. Journal of Environmental Sciences, 2013, 25(12): 2353-2360. doi: 10.1016/S1001-0742(12)60325-8 [4] ZHANG Y, SONG C L, JI L, et al. Cause and effect of N/P ratio decline with eutrophication aggravation in shallow lakes [J]. Science of the Total Environment, 2018, 627: 1294-1302. doi: 10.1016/j.scitotenv.2018.01.327 [5] 潘雄, 顾文俊, 李欢, 等. 洪湖沉积物碳氮磷分布特征及污染评价 [J]. 长江科学院院报, 2021, 38(8): 41-46. doi: 10.11988/ckyyb.20200640 PAN X, GU W J, LI H, et al. Carbon, nitrogen, and phosphorus in sediments of Honghu Lake: Spatial distribution and pollution evaluation [J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(8): 41-46(in Chinese). doi: 10.11988/ckyyb.20200640
[6] CUNDY A B, CROUDACE I W, CEARRETA A, et al. Reconstructing historical trends in metal input in heavily-disturbed, contaminated estuaries: Studies from Bilbao, Southampton Water and Sicily [J]. Applied Geochemistry, 2003, 18(2): 311-325. doi: 10.1016/S0883-2927(02)00127-0 [7] 戴国飞, 刘慧丽, 张伟, 等. 江西柘林湖富营养化现状与藻类时空分布特征 [J]. 湖泊科学, 2015, 27(2): 275-281. doi: 10.18307/2015.0211 DAI G F, LIU H L, ZHANG W, et al. Spatio-temporal variation of algae and eutrophic status of Lake Zhelin, Jiangxi Province [J]. Journal of Lake Sciences, 2015, 27(2): 275-281(in Chinese). doi: 10.18307/2015.0211
[8] 刘慧丽, 廖兵. 柘林湖湖泊生态环境问题及保护对策 [J]. 江西科学, 2013, 31(1): 48-52,128. doi: 10.3969/j.issn.1001-3679.2013.01.013 LIU H L, LIAO B. The major eco-environmental problems and its protection countermeasures in Zhelin Lake [J]. Jiangxi Science, 2013, 31(1): 48-52,128(in Chinese). doi: 10.3969/j.issn.1001-3679.2013.01.013
[9] 张毅鸽, 王一郎, 杨平, 等. 江西柘林湖水华蓝藻: 长孢藻(Dolichospermum)的形态多样性及其分子特征 [J]. 湖泊科学, 2020, 32(4): 1076-1087. doi: 10.18307/2020.0416 ZHANG Y G, WANG Y L, YANG P, et al. Morphological diversity and molecular characteristics of bloom forming Dolichospermum species in Lake Zhelin, Jiangxi Province [J]. Journal of Lake Sciences, 2020, 32(4): 1076-1087(in Chinese). doi: 10.18307/2020.0416
[10] 孟子豪, 李学梅, 王旭歌, 等. 网箱养殖对柘林水库氮磷营养盐时空分布的影响-以太阳山库湾为例 [J]. 环境化学, 2021, 40(9): 2832-2840. doi: 10.7524/j.issn.0254-6108.2021022204 MENG Z H, LI X M, WANG X G, et al. Influence of cage fish-farming on tempo-spatial distribution of nitrogrn and phosphorus in Zhelin Reservior: A case study of Taiyangshan Bay [J]. Environmental Chemistry, 2021, 40(9): 2832-2840(in Chinese). doi: 10.7524/j.issn.0254-6108.2021022204
[11] 曾旻, 廖兵, 安长廷, 等. 江西柘林水库大型底栖动物群落结构 [J]. 南昌大学学报(理科版), 2014, 38(5): 506-510. doi: 10.13764/j.cnki.ncdl.2014.05.021 ZENG M, LIAO B, AN C T, et al. Community structure of macrozoobenthos in Zhelin Reservoir of Jiangxiprovince [J]. Journal of Nanchang University (Natural Science), 2014, 38(5): 506-510(in Chinese). doi: 10.13764/j.cnki.ncdl.2014.05.021
[12] 陈康, 孟子豪, 李学梅, 等. 江西柘林水库鱼类群落结构及功能多样性分析 [J]. 生态学报, 2022, 42(11): 4592-4602. CHEN K, MENG Z H, LI X M, et al. Community structure and functional diversity of fishes in Zhelin Reservoir, Jiangxi Province [J]. Acta Ecologica Sinica, 2022, 42(11): 4592-4602(in Chinese).
[13] 陈康, 孟子豪, 李学梅, 等. 鄱阳湖流域柘林水库秋季浮游植物群落结构及其构建过程驱动机制 [J]. 湖泊科学, 2022, 34(2): 433-444. doi: 10.18307/2022.0206 CHEN K, MENG Z H, LI X M, et al. Phytoplankton community structure and driving mechanism of its construction process in autumn in Zhelin Reservoir, Lake Poyang Basin [J]. Journal of Lake Sciences, 2022, 34(2): 433-444(in Chinese). doi: 10.18307/2022.0206
[14] 樊华, 陈然, 刘志刚. 柘林水库水环境容量及水污染控制措施研究 [J]. 人民长江, 2009, 40(24): 39-40,43. doi: 10.3969/j.issn.1001-4179.2009.24.013 FAN H, CHEN R, LIU Z G. Study on environmental capacity and water pollution control measures of Zhelin Reservoir [J]. Yangtze River, 2009, 40(24): 39-40,43(in Chinese). doi: 10.3969/j.issn.1001-4179.2009.24.013
[15] 王怀清, 彭静, 赵志强, 等. 江西柘林水库集水区近50年气候干湿状况研究 [J]. 长江流域资源与环境, 2011, 20(6): 723-728. WANG H Q, PENG J, ZHAO Z Q, et al. Dryness/wetness status research in upper reaches of Zhelin Reservoir in last 50 years [J]. Resources and Environment in the Yangtze Basin, 2011, 20(6): 723-728(in Chinese).
[16] 包宇飞, 胡明明, 王殿常, 等. 黄柏河梯级水库沉积物营养盐与重金属分布特征及污染评价 [J]. 生态环境学报, 2021, 30(5): 1005-1016. doi: 10.16258/j.cnki.1674-5906.2021.05.013 BAO Y F, HU M M, WANG D C, et al. Distribution and pollution assessment of nutrients and heavy metals in sediments of the cascade reservoirs in Huangbai River [J]. Ecology and Environmental Sciences, 2021, 30(5): 1005-1016(in Chinese). doi: 10.16258/j.cnki.1674-5906.2021.05.013
[17] 孙小静, 秦伯强, 朱广伟, 等. 持续水动力作用下湖泊底泥胶体态氮、磷的释放 [J]. 环境科学, 2007, 28(6): 1223-1229. doi: 10.3321/j.issn:0250-3301.2007.06.010 SUN X J, QIN B Q, ZHU G W, et al. Release of colloidal N and P from sediment of lake caused by continuing hydrodynamic disturbance [J]. Environmental Science, 2007, 28(6): 1223-1229(in Chinese). doi: 10.3321/j.issn:0250-3301.2007.06.010
[18] COOPER S R, MCGLOTHLIN S K, MADRITCH M, et al. Paleoecological evidence of human impacts on the Neuse and Pamlico estuaries of North Carolina, USA [J]. Estuaries, 2004, 27(4): 617-633. doi: 10.1007/BF02907649 [19] 周子振, 黄廷林, 章武首, 等. 柘林水库污染物来源及水体分层对水质的影响 [J]. 哈尔滨工业大学学报, 2016, 48(2): 93-99. doi: 10.11918/j.issn.0367-6234.2016.02.016 ZHOU Z Z, HUANG T L, ZHANG W S, et al. Pollution sources and the stratification effects on water quality of Zhelin Reservoir [J]. Journal of Harbin Institute of Technology, 2016, 48(2): 93-99(in Chinese). doi: 10.11918/j.issn.0367-6234.2016.02.016
[20] 杨洋, 刘其根, 胡忠军, 等. 太湖流域沉积物碳氮磷分布与污染评价 [J]. 环境科学学报, 2014, 34(12): 3057-3064. doi: 10.13671/j.hjkxxb.2014.0710 YANG Y, LIU Q G, HU Z J, et al. Spatial distribution of sediment carbon, nitrogen and phosphorus and pollution evaluation of sediment in Taihu Lake Basin [J]. Acta Scientiae Circumstantiae, 2014, 34(12): 3057-3064(in Chinese). doi: 10.13671/j.hjkxxb.2014.0710
[21] 江雪, 文帅龙, 姚书春, 等. 天津于桥水库沉积物磷赋存特征及其环境意义 [J]. 湖泊科学, 2018, 30(3): 628-639. doi: 10.18307/2018.0305 JIANG X, WEN S L, YAO S C, et al. Environmental significance of phosphorus existing forms in the sediments of Yuqiao Reservoir in Tianjin [J]. Journal of Lake Sciences, 2018, 30(3): 628-639(in Chinese). doi: 10.18307/2018.0305
[22] HORPPILA J, NURMINEN L. Effects of different macrophyte growth forms on sediment and P resuspension in a shallow lake [J]. Hydrobiologia, 2005, 545(1): 167-175. doi: 10.1007/s10750-005-2677-9 [23] 刘慧丽, 戴国飞, 张伟, 等. 鄱阳湖流域大型湖库水生生态环境变化及驱动力分析: 以柘林湖为例 [J]. 湖泊科学, 2015, 27(2): 266-274. doi: 10.18307/2015.0210 LIU H L, DAI G F, ZHANG W, et al. Analysis of the water ecological environment changes of the large lakes and driving factors in Lake Poyang Basin: A case study of Lake Zhelin [J]. Journal of Lake Sciences, 2015, 27(2): 266-274(in Chinese). doi: 10.18307/2015.0210
[24] WANG S R, ZHENG B H, CHEN C, et al. Thematic issue: Water of the Erhai and Dianchi lakes [J]. Environmental Earth Sciences, 2015, 74(5): 3685-3688. doi: 10.1007/s12665-015-4727-6 [25] 叶宏萌, 杨浩, 袁旭音, 等. 基于流域沉积物氮磷形态的生态风险评价: 以沙溪流域为例 [J]. 环境化学, 2020, 39(12): 3471-3479. YE H M, YANG H, YUAN X Y, et al. Ecological risk assessment based on nitrogen and phosphorus forms in watershed sediments: A case study of the Shaxi Watershed, Fujian [J]. Environmental Chemistry, 2020, 39(12): 3471-3479(in Chinese).
[26] 王书锦, 刘云根, 张超, 等. 洱海流域入湖河口湿地沉积物氮、磷、有机质分布及污染风险评价 [J]. 湖泊科学, 2017, 29(1): 69-77. doi: 10.18307/2017.0108 WANG S J, LIU Y G, ZHANG C, et al. Distribution and pollution risk assessment of nitrogen, phosphorus and organic matter in inlet rivers of Erhai Basin [J]. Journal of Lake Sciences, 2017, 29(1): 69-77(in Chinese). doi: 10.18307/2017.0108
[27] 谌欣, 黄细嘉, 王佳. 生态湖泊型风景区旅游用地集约利用评价与优化研究: 以九江市庐山西海为例 [J]. 河南农业, 2021(6): 61-64. CHEN X, HUANG X J, WANG J. Evaluation and optimization of intensive use of tourism land in ecological lake scenic spot: A case study of Zhelin Reservoir, Jiujiang [J]. Agriculture of Henan, 2021(6): 61-64(in Chinese).
[28] 车霏霏, 陈俊伊, 王书航, 等. 南湖水系水-沉积物磷时空分布、影响因素及控制对策 [J]. 环境工程技术学报, 2020, 10(6): 928-935. doi: 10.12153/j.issn.1674-991X.20200068 CHE F F, CHEN J Y, WANG S H, et al. Spatio-temporal distribution, influencing factors and control strategies of phosphorus in water-sediment of Nanhu Lake water system [J]. Journal of Environmental Engineering Technology, 2020, 10(6): 928-935(in Chinese). doi: 10.12153/j.issn.1674-991X.20200068
[29] 刘欢, 孔维苇, 王晓锋, 等. 重庆梁滩河表层沉积物氮形态时空特征及影响因素 [J]. 水土保持学报, 2019, 33(6): 332-341. doi: 10.13870/j.cnki.stbcxb.2019.06.047 LIU H, KONG W W, WANG X F, et al. Temporal and spatial characteristics and influencing factors of nitrogen morphology in surface sediments of Liangtan River, Chongqing [J]. Journal of Soil and Water Conservation, 2019, 33(6): 332-341(in Chinese). doi: 10.13870/j.cnki.stbcxb.2019.06.047
[30] 卓海华, 邱光胜, 翟婉盈, 等. 三峡库区表层沉积物营养盐时空变化及评价 [J]. 环境科学, 2017, 38(12): 5020-5031. doi: 10.13227/j.hjkx.201705127 ZHUO H H, QIU G S, ZHAI W Y, et al. Evaluation of temporal and spatial variation characteristics of nutrients in surface sediment in the Three Gorges Reservoir Area [J]. Environmental Science, 2017, 38(12): 5020-5031(in Chinese). doi: 10.13227/j.hjkx.201705127
[31] 杨清心, 李文朝. 东太湖围网养鱼后生态环境的演变 [J]. 中国环境科学, 1996, 16(2): 101-106. doi: 10.3321/j.issn:1000-6923.1996.02.005 YANG Q X, LI W C. Environmental changes since foundation of pen-fish-farming in East Taihu Lake [J]. China Environmental Science, 1996, 16(2): 101-106(in Chinese). doi: 10.3321/j.issn:1000-6923.1996.02.005
[32] 兰建洪, 刘丰, 郭晓玮, 等. 清林径水库表层沉积物营养盐分布特征及污染评价 [J]. 中国水利水电科学研究院学报, 2021, 19(2): 269-275. doi: 10.13244/j.cnki.jiwhr.20190176 LAN J H, LIU F, GUO X W, et al. Pollution characteristics and evaluation of nutrients in surface sediments of Qinglinjing Reservoir [J]. Journal of China Institute of Water Resources and Hydropower Research, 2021, 19(2): 269-275(in Chinese). doi: 10.13244/j.cnki.jiwhr.20190176
[33] 邱祖凯, 胡小贞, 姚程, 等. 山美水库沉积物氮磷和有机质污染特征及评价 [J]. 环境科学, 2016, 37(4): 1389-1396. doi: 10.13227/j.hjkx.2016.04.025 QIU Z K, HU X Z, YAO C, et al. Pollution characteristics and evaluation of nitrogen, phosphorus and organic matter in sediments of Shanmei Reservoir in Fujian, China [J]. Environmental Science, 2016, 37(4): 1389-1396(in Chinese). doi: 10.13227/j.hjkx.2016.04.025
[34] 封丽, 李崇明, 张韵, 等. 三峡水库运行期支流沉积物营养盐污染评价 [J]. 环境科学与技术, 2015, 38(12): 151-157. FENG L, LI C M, ZHANG Y, et al. Nutrients distribution and pollution evaluation for top-layer sediments in tributaries of Three Gorges Reservoir during water storage period [J]. Environmental Science & Technology, 2015, 38(12): 151-157(in Chinese).
[35] 王亚平, 黄廷林, 周子振, 等. 金盆水库表层沉积物中营养盐分布特征与污染评价 [J]. 环境化学, 2017, 36(3): 659-665. doi: 10.7524/j.issn.0254-6108.2017.03.2016071305 WANG Y P, HUANG T L, ZHOU Z Z, et al. Distribution and pollution evaluation of nutrients in surface sediments of Jinpen Reservoir [J]. Environmental Chemistry, 2017, 36(3): 659-665(in Chinese). doi: 10.7524/j.issn.0254-6108.2017.03.2016071305
[36] 胡强, 吴晓彬, 王姣, 等. 江西省典型水库沉积物碳、氮、磷分布及污染评价 [J]. 江西水利科技, 2021, 47(3): 214-218. HU Q, WU X B, WANG J, et al. Distribution and pollution evaluation of carbon, nitrogen and phosphorus in typical reservoirs in Jiangxi Province [J]. Jiangxi Hydraulic Science & Technology, 2021, 47(3): 214-218(in Chinese).
[37] 刘慧丽, 冯明雷, 熊鹏. 柘林湖非点源入湖负荷估算及对策研究 [J]. 安徽农业科学, 2013, 41(4): 1670-1673. doi: 10.3969/j.issn.0517-6611.2013.04.103 LIU H L, FENG M L, XIONG P. Non-point source into lake load estimation and countermeasure research on Zhelin lake [J]. Journal of Anhui Agricultural Sciences, 2013, 41(4): 1670-1673(in Chinese). doi: 10.3969/j.issn.0517-6611.2013.04.103
[38] WANG M, CHEN H, YU Z C, et al. Carbon accumulation and sequestration of lakes in China during the Holocene [J]. Global Change Biology, 2015, 21(12): 4436-4448. doi: 10.1111/gcb.13055 [39] ZHU Y Y, SHAN B Q, HUANG J Y, et al. In situ biochar capping is feasible to control ammonia nitrogen release from sediments evaluated by DGT [J]. Chemical Engineering Journal, 2019, 374: 811-821. doi: 10.1016/j.cej.2019.06.007 [40] 李冰, 王亚, 郑钊, 等. 丹江口水库调水前后表层沉积物营养盐和重金属时空变化 [J]. 环境科学, 2018, 39(8): 3591-3600. doi: 10.13227/j.hjkx.201801003 LI B, WANG Y, ZHENG Z, et al. Temporal and spatial changes in sediment nutrients and heavy metals of the Danjiangkou Reservoir before and after water division of the mid-route project [J]. Environmental Science, 2018, 39(8): 3591-3600(in Chinese). doi: 10.13227/j.hjkx.201801003
[41] 吕豪朋, 申丽娜. 天津于桥水库流域河流表层沉积物中碳·氮·磷分布及污染评价 [J]. 安徽农业科学, 2017, 45(27): 98-102, 167. doi: 10.3969/j.issn.0517-6611.2017.27.031 LV H P, SHEN L N. Distribution characteristics of carbon, nitrogen and phosphorous of river surface and pollution status evaluation of sediments in Yuqiao Reservoir Basin, Tianjin [J]. Journal of Anhui Agricultural Sciences, 2017, 45(27): 98-102, 167(in Chinese). doi: 10.3969/j.issn.0517-6611.2017.27.031
[42] 王圣瑞, 倪栋, 焦立新, 等. 鄱阳湖表层沉积物有机质和营养盐分布特征 [J]. 环境工程技术学报, 2012, 2(1): 23-28. doi: 10.3969/j.issn.1674-991X.2012.01.005 WANG S R, NI D, JIAO L X, et al. Space-time variety of organic matter and nutrient in surface sediments from Poyang Lake [J]. Journal of Environmental Engineering Technology, 2012, 2(1): 23-28(in Chinese). doi: 10.3969/j.issn.1674-991X.2012.01.005
[43] ANDREWS J E, GREENAWAY A M, DENNIS P F. Combined carbon isotope and C/N ratios as indicators of source and fate of organic matter in a poorly flushed, tropical estuary: Hunts bay, Kingston harbour, Jamaica [J]. Estuarine, Coastal and Shelf Science, 1998, 46(5): 743-756. doi: 10.1006/ecss.1997.0305 [44] 王圣瑞, 金相灿, 赵海超, 等. 长江中下游浅水湖泊沉积物对磷的吸附特征 [J]. 环境科学, 2005, 26(3): 38-43. doi: 10.3321/j.issn:0250-3301.2005.03.009 WANG S R, JIN X C, ZHAO H C, et al. Phosphate adsorption characteristics onto the sediments from shallow lakes in the middle and lower reaches of the Yangtze River [J]. Environmental Science, 2005, 26(3): 38-43(in Chinese). doi: 10.3321/j.issn:0250-3301.2005.03.009
[45] 毛亮, 罗丛强, 石彭灵, 等. 湖泊水、沉积物氮磷的空间分析及其耦合特征研究: 以大通湖为例 [J]. 海洋与湖沼, 2017, 48(5): 952-959. doi: 10.11693/hyhz20170400104 MAO L, LUO C Q, SHI P L, et al. Spatial analysis and coupling characteristics of nitrogen and phosphorus in water and sediment—a case study in Datong Lake [J]. Oceanologia et Limnologia Sinica, 2017, 48(5): 952-959(in Chinese). doi: 10.11693/hyhz20170400104
[46] DAN S F, LIU S M, YANG B, et al. Geochemical discrimination of bulk organic matter in surface sediments of the Cross River Estuary system and adjacent shelf, South East Nigeria (West Africa) [J]. Science of the Total Environment, 2019, 678: 351-368. doi: 10.1016/j.scitotenv.2019.04.422 [47] KU H W, CHEN Y G, CHAN P S, et al. Paleo-environmental evolution as revealed by analysis of organic carbon and nitrogen: A case of coastal Taipei Basin in Northern Taiwan [J]. Geochemical Journal, 2007, 41(2): 111-120. doi: 10.2343/geochemj.41.111 [48] 黄廷林, 刘飞, 史建超. 水源水库沉积物中营养元素分布特征与污染评价 [J]. 环境科学, 2016, 37(1): 166-172. doi: 10.13227/j.hjkx.2016.01.022 HUANG T L, LIU F, SHI J C. Distribution characteristics and pollution status evaluation of sediments nutrients in a drinking water reservoir [J]. Environmental Science, 2016, 37(1): 166-172(in Chinese). doi: 10.13227/j.hjkx.2016.01.022
[49] 祁艳丽, 唐永杰, 蔡树伯, 等. 淡水湖泊沉积物污染评价方法比较: 以北大港水库为例 [J]. 水资源与水工程学报, 2016, 27(6): 26-30, 38. doi: 10.11705/j.issn.1672-643X.2016.06.05 QI Y L, TANG Y J, CAI S B, et al. Comparison of evaluation methods of the freshwater lake sediment pollution: A case study of Beidagang Reservoir [J]. Journal of Water Resources and Water Engineering, 2016, 27(6): 26-30, 38(in Chinese). doi: 10.11705/j.issn.1672-643X.2016.06.05