-
纳米材料通常被定义为外部尺寸或内部结构单元至少在一维尺度上小于100 nm的材料,包括纳米颗粒(nanoparticles,NPs)、纳米纤维、纳米管、纳米复合材料和纳米结构材料等[1-2]. 其中纳米颗粒是至少在二维尺度上直径小于100 nm的颗粒,因其纳米尺寸而具有较大的比表面积和其它一些独特的物理化学性质[3]. 金属纳米颗粒(metallic nanoparticles,MNPs)是含有金属元素的纳米颗粒[4],主要包括单质金属纳米颗粒、金属氧化物纳米颗粒、量子点(Quantum dots, QD)等,如纳米银(Ag NPs)[1, 5]、纳米金(Au NPs)[5-6]、纳米零价铁(nZVI)[5]、纳米氧化锌(ZnO NPs)、纳米二氧化钛(TiO2 NPs)[5]、CdSe/ZnS QD[7]等.
随着纳米技术的飞速发展,金属纳米颗粒在汽车制造、生物医学、化妆品生产、国防安全和能源制备等领域的应用日益广泛[2]. 如TiO2 NPs作为一种光催化剂,已被用在太阳能电池、油漆和涂料中[5];具有较强紫外线阻断能力的ZnO NPs、TiO2 NPs常被添加在防晒剂、化妆品中[5, 8],而Fe2O3 NPs被广泛应用于水处理、气体传感、医学研究和催化领域[9-10];CeO2 NPs可用于眼科疾病的分子治疗[11],还可加入到生物柴油中起到催化、提高燃烧效率的作用,从而改善整体燃烧质量、降低制动比油耗、减少有害气体排放[12];Au NPs生物相容性较好,在生物医学方面可以用于成像、肿瘤的诊断以及作为靶向治疗的药物运输载体[6];贵金属纳米催化剂在氧化还原反应、析氧反应、析氢反应等方面都表现出了优异的性能[13];一些贵金属纳米颗粒(钯、银等)可用于改善固体储氢材料的性能[14]. 另外,有的纳米材料表面覆盖了具有不同功能的分子[6],或通过纳米颗粒形状的控制和核-壳形态的结构设计进一步调节纳米催化剂的表面能,从而使纳米颗粒具有独特的催化活性和选择性[15-16].
近年来,纳米技术产品及应用的全球市场价值不断攀升,纳米材料的产量不断增长[2, 17]. MNPs在生产及使用过程中可通过多种途径进入水环境,在其中迁移、积累. 譬如工业生产过程产生的含MNPs废水会排放到河流、湖泊、河口、沿海水域等[18-20];在水处理及环境修复过程中使用的纳米颗粒也可能会排放到水环境中. 这会导致水环境中纳米颗粒的暴露风险增加. 目前,许多文献都阐述了MNPs在水环境中的行为[5, 17, 21-26]、生物累积[26-28]和毒性效应[2, 20, 26, 29-30]等. 以TiO2 NPs为例,Nam等[27]的研究表明TiO2 NPs在水环境中会因发生一定程度的团聚而沉降到沉积物中,其团聚过程受到溶解性有机质、离子强度、zeta电位及pH等因素的影响,而沉积物中的TiO2 NPs主要聚集在底栖生物膜中,悬浮在水体中的TiO2 NPs则主要附着于浮游型微生物上,TiO2 NPs还会通过食物链在不同营养级之间传递,也可能发生生物放大;此外,Chen等[31]的研究发现同为锐钛矿结构的TiO2 NPs对蛋白核小球藻(Chlorella pyrenoidosa)的急性毒性作用随TiO2 NPs粒径的增加而降低;Zhu等[32]的研究表明粒径相同(50—60 nm)时,晶体结构为锐钛矿结构的TiO2 NPs能够比金红石结构的TiO2 NPs引起更多的氧化损伤.
藻类作为水生生态系统中的初级生产者,是水生食物链的关键环节,亦是自然界营养循环的重要参与者[33]. 因此,了解MNPs在水环境中的行为及其与藻类间的相互作用机制对厘清MNPs的生态风险至关重要. 本文关注的藻类既包括原核藻类(如蓝藻门的藻类),也包括真核藻类(如绿藻门、硅藻门的藻类);既有浮游生活的藻类,也有固着在岩石等生长基质上的藻类(如红藻门的藻类).
本文的主要内容包括:(1)MNPs在水中的环境行为;(2)MNPs与藻类之间的相互作用,包括MNPs在藻类表面的吸附、在藻类细胞中的累积、对藻类的毒性效应、与水中其它污染物及天然有机质(natural organic matter,NOM)对藻类的共同作用以及MNPs胁迫下藻类的自我防御机制, 如图1所示.
金属纳米颗粒的环境行为及其与藻类的相互作用概述
Environmental behavior of metal nanoparticles and their interactions with planktonic algae:A review
-
摘要: 金属纳米颗粒在各领域的应用日益广泛,可通过多种途径进入环境,并在水生生态系统中积累. 因此关于其进入水环境后的行为及与水中初级生产者—藻类相互作用的研究至关重要. 金属纳米颗粒在水中会发生团聚、沉降、溶解、硫化反应及光化学反应等,这些行为受到自身理化性质(大小、形状、表面电荷、晶体结构、化学组成等)和环境因素(pH、离子强度、阳离子价态等)的影响,进而改变金属纳米颗粒在藻类表面的吸附聚集和可能的吸收累积. 金属纳米颗粒还可能影响藻类光合作用、引起氧化应激、甚至造成藻类的凋亡. 同时,与金属纳米颗粒共存的其它污染物及天然有机质也可能改变金属纳米颗粒的行为、生物吸附、生物累积和生物效应. 相应地,藻类在面对金属纳米颗粒胁迫时也会启动自我防御机制. 尽管如此,真实环境中金属纳米颗粒与藻类的相互作用及分子机制仍有待进一步研究.Abstract: Metallic nanoparticles (MNPs) have been widely used in various fields. They can enter the environment through a variety of ways and accumulate in aquatic ecosystems. Researches on their behavior and interactions with planktonic algae, the important primary producers in the aquatic environment, are important. Once MNPs enter aquatic environment, they will undergo aggregation, settlement, dissolution, sulfidation, and photochemical reactions. The behavior of MNPs is affected by their own physicochemical properties (e.g., size, shape, surface charge, crystal structure and chemical composition) and environmental factors (e.g., pH, ionic strength, cation valence, etc.), which in turn changes the adsorption of MNPs on algal surface, as well as possible absorption and accumulation. MNPs may also affect algal photosynthesis, induce oxidative stress, and even cause algal apoptosis. At the same time, other pollutants and natural organic matter coexisting with MNPs may change the behavior, biosorption, bioaccumulation and biological effects of MNPs. Correspondingly, algae will also activate self-defense mechanisms when facing the stress of MNPs. Nevertheless, interactions between MNPs and algae in the real environment and the molecular mechanism underlying the above interactions still need to be studied in the future.
-
Key words:
- metallic nanoparticles /
- algae /
- environmental behavior /
- bioaccumulation /
- toxicity
-
表 1 一些MNPs在藻细胞中的吸收和累积
Table 1. Absorption and accumulation of some MNPs in algal cells
金属纳米颗粒
MNPs浮游藻类
Toxic effects吸收途径
Absorption pathway在细胞中
的分布
Intracellular distribution存在
形式
Existing forms成像/
实验方法
Methods参考文献
References名称
Name直径/nm
DiameterAg NPs 11.7±1.9 Chlamydomonas reinhardtii 细胞内化 细胞浆周间隙 Ag NPs HAADF-STEM* [126] 细胞质中 Ag2S Ag NPs <100 Ochromonas danica 细胞内化 细胞质中 Ag NPs TEM*、EDX* [62] CeO2 NPs 5,7,12 Chlamydomonas reinhardtii 网格蛋白依赖
介导的内吞/直接
穿过膜孔— — TEM、抑制剂实验 [127] CuO NPs 40±10 Chlorella pyrenoidosa 内吞 液泡 Cu2O NPs TEM [128] CuO NPs 30—40 Chlamydomonas reinhardtii 细胞内化 细胞质、液泡和细胞核 CuO NPs TEM [129] TiO2 NPs 192±0.8 Anabaena variabilis 尚未明确 细胞质中 TiO2 NPs 拉曼光谱
TEM[130] ZnO NPs 40—44 Scenedesmus obliquus 细胞内化 细胞壁内
细胞质中
细胞核内ZnO NPs TEM [131] *HAADF-STEM:high-angle annular dark field scanning transmission electron microscopy,高角度环形暗场扫描透射电子显微镜;TEM:transmission electron microscope,透射电子显微镜;EDX:energy dispersive X-ray spectrum,能量色散X射线光谱 表 2 常见MNPs对藻类的毒性效应
Table 2. Toxic effects of MNPs on algae
金属纳米颗粒
MNPs浮游藻类
Planktonic algae毒性效应
Toxic effects参考文献
ReferencesTiO2 NPs Nitzschia frustulum,
Desmodesmus subspicatus,
Pseudokirchneriella subcapitata,
Chlamydomonas reinhardtii生长抑制;光合作用抑制(叶绿素含量变化等);诱导氧化应激(SOD*活性↑,MDA*含量↑,CAT*活性↑);在藻细胞表面聚集;使藻细胞变形;改变细胞膜通透性 [79, 104, 137,
146, 149,
157-159]Ag NPs Thalassiosira weissflogii,
Raphidocelis subcapitata,
Chlamydomonas reinhardtii,
Dunaliella salina,
Chlorella autotrophica生长抑制(特异生长率↓,细胞密度↓);光合作用抑制(Fv/Fm*↓,叶绿素a含量↓);诱导氧化应激(ROS过量累积,SOD活性↑,CAT活性↑,POD*活性↑ [61, 83-84] ZnO NPs Pseudokirchneriella subcapitata,
Thalassiosira pseudonana,
Chaetoceros gracilis,
Phaeodactylum tricornutum,
Scenedesmus obliquus生长抑制(特异生长率↓);在藻细胞表面吸附;进入藻细胞 [79, 81, 131] CuO NPs Pseudokirchneriella subcapitata,
Chlorella vulgaris,
Scenedesmus sp.,
Chlamydomonas reinhardtii生长抑制;光合作用抑制;呼吸作用抑制;破坏细胞亚结构(破坏叶绿体);诱导ROS过量累积;造成谷胱甘肽代谢紊乱;破坏细胞膜结构;诱导膜脂重塑相关代谢反应 [79, 124, 142, 160] Au NPs Scenedesmus subcapitata,
Chlamydomonas reinhardtii生长抑制;在藻细胞表面吸附聚集 [161-163] Al2O3 NPs Chlorella sp. 生长抑制 [159] CeO2 NPs Dunaliella salina,
Chlorella autotrophica生长抑制(细胞密度↓);光合作用抑制;诱导ROS过量累积 [151] Cr2O3 NPs Chlamydomonas reinhardtii 生长抑制;诱导ROS生成;影响细胞代谢(酯酶活性增加) [154] ThO2 NPs Chlorella pyrenoidosa 生长抑制;光合作用抑制(叶绿素含量降低);在藻细胞表面聚集;破坏藻类细胞壁;诱导ROS生成、损伤细胞膜 [164] *SOD:superoxide dismutase,超氧化物歧化酶;MDA:malondialdehyde,丙二醛,与脂质过氧化有关;CAT:catalase,过氧化氢酶;Fv/Fm:光系统Ⅱ的量子产率;POD:peroxidase,过氧化物酶. -
[1] TOURINHO P S, van GESTEL C A M, LOFTS S, et al. Metal-based nanoparticles in soil: Fate, behavior, and effects on soil invertebrates [J]. Environmental Toxicology and Chemistry, 2012, 31(8): 1679-1692. doi: 10.1002/etc.1880 [2] SENGUL A B, ASMATULU E. Toxicity of metal and metal oxide nanoparticles: A review [J]. Environmental Chemistry Letters, 2020, 18(5): 1659-1683. doi: 10.1007/s10311-020-01033-6 [3] AUFFAN M, ROSE J, WIESNER M R, et al. Chemical stability of metallic nanoparticles: A parameter controlling their potential cellular toxicity in vitro [J]. Environmental Pollution, 2009, 157(4): 1127-1133. doi: 10.1016/j.envpol.2008.10.002 [4] VENKATESH N. Metallic nanoparticle: A review [J]. Biomedical Journal of Scientific & Technical Research, 2018, 4(2): 3765-3775. [5] KLAINE S J, ALVAREZ P J J, BATLEY G E, et al. Nanomaterials in the environment: Behavior, fate, bioavailability, and effects [J]. Environmental Toxicology and Chemistry, 2008, 27(9): 1825-1851. doi: 10.1897/08-090.1 [6] YANG Q Q, WEI X L, FANG Y P, et al. Nanochemoprevention with therapeutic benefits: An updated review focused on epigallocatechin gallate delivery [J]. Critical Reviews in Food Science and Nutrition, 2020, 60(8): 1243-1264. doi: 10.1080/10408398.2019.1565490 [7] KLOEPFER J A, MIELKE R E and NADEAU, J L. Uptake of CdSe and CdSe/ZnS quantum dots into bacteria via purine-dependent mechanisms [J]. Applied and Environmental Microbiology, 2005, 71(5): 2548-2557. doi: 10.1128/AEM.71.5.2548-2557.2005 [8] SCHNEIDER S L, LIM H W. A review of inorganic UV filters zinc oxide and titanium dioxide [J]. Photodermatology, Photoimmunology & Photomedicine, 2019, 35(6): 442-446. [9] HUANG B, YAN S, XIAO L, et al. Label-free imaging of nanoparticle uptake competition in single cells by hyperspectral stimulated Raman scattering [J]. Small (Weinheim an Der Bergstrasse, Germany), 2018, 14(10). [10] LIU Y Y, GUO W B, ZHAO Y T, et al. Algal foods reduce the uptake of hematite nanoparticles by downregulating water filtration in Daphnia magna [J]. Environmental Science & Technology, 2019, 53(13): 7803-7811. [11] WANG Y H, RAJALA A, RAJALA R V S. Nanoparticles as delivery vehicles for the treatment of retinal degenerative diseases [J]. Advances in Experimental Medicine and Biology, 2018, 1074: 117-123. [12] E J, ZHANG Z Q, CHEN J W, et al. Performance and emission evaluation of a marine diesel engine fueled by water biodiesel-diesel emulsion blends with a fuel additive of a cerium oxide nanoparticle [J]. Energy Conversion and Management, 2018, 169: 194-205. doi: 10.1016/j.enconman.2018.05.073 [13] PARK J, KWON T, KIM J, et al. Hollow nanoparticles as emerging electrocatalysts for renewable energy conversion reactions [J]. Chemical Society Reviews, 2018, 47(22): 8173-8202. doi: 10.1039/C8CS00336J [14] ZLOTEA C, LATROCHE M. Role of nanoconfinement on hydrogen sorption properties of metal nanoparticles hybrids [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2013, 439: 117-130. [15] TAO A R, HABAS S, YANG P D. Shape control of colloidal metal nanocrystals [J]. Small, 2008, 4(3): 310-325. doi: 10.1002/smll.200701295 [16] CHEN M, WU B H, YANG J, et al. Small adsorbate-assisted shape control of Pd and Pt nanocrystals [J]. Advanced Materials (Deerfield Beach, Fla. ), 2012, 24(7): 862-879. doi: 10.1002/adma.201104145 [17] NOWACK B, BUCHELI T D. Occurrence, behavior and effects of nanoparticles in the environment [J]. Environmental Pollution, 2007, 150(1): 5-22. doi: 10.1016/j.envpol.2007.06.006 [18] DAUGHTON C G. Non-regulated water contaminants: Emerging research [J]. Environmental Impact Assessment Review, 2004, 24(7/8): 711-732. [19] MOORE M N. Biocomplexity: The post-genome challenge in ecotoxicology [J]. Aquatic Toxicology, 2002, 59(1/2): 1-15. [20] MOORE M N. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? [J]. Environment International, 2006, 32(8): 967-976. doi: 10.1016/j.envint.2006.06.014 [21] PENG C, ZHANG W, GAO H P, et al. Behavior and potential impacts of metal-based engineered nanoparticles in aquatic environments [J]. Nanomaterials (Basel, Switzerland), 2017, 7(1): 21. doi: 10.3390/nano7010021 [22] LEAD J R, BATLEY G E, ALVAREZ P J J, et al. Nanomaterials in the environment: Behavior, fate, bioavailability, and effects-An updated review [J]. Environmental Toxicology and Chemistry, 2018, 37(8): 2029-2063. doi: 10.1002/etc.4147 [23] CHRISTIAN P, von der KAMMER F, BAALOUSHA M, et al. Nanoparticles: structure, properties, preparation and behaviour in environmental media [J]. Ecotoxicology (London, England), 2008, 17(5): 326-343. doi: 10.1007/s10646-008-0213-1 [24] ZHANG C Q, HU Z Q, DENG B L. Silver nanoparticles in aquatic environments: Physiochemical behavior and antimicrobial mechanisms [J]. Water Research, 2016, 88: 403-427. doi: 10.1016/j.watres.2015.10.025 [25] FABREGA J, LUOMA S N, TYLER C R, et al. Silver nanoparticles: Behaviour and effects in the aquatic environment [J]. Environment International, 2011, 37(2): 517-531. doi: 10.1016/j.envint.2010.10.012 [26] THWALA M, KLAINE S J, MUSEE N. Interactions of metal-based engineered nanoparticles with aquatic higher plants: A review of the state of current knowledge [J]. Environmental Toxicology and Chemistry, 2016, 35(7): 1677-1694. doi: 10.1002/etc.3364 [27] NAM D H, LEE B C, EOM I C, et al. Uptake and bioaccumulation of titanium- and silver-nanoparticles in aquatic ecosystems [J]. Molecular & Cellular Toxicology, 2014, 10(1): 9-17. [28] LUOMA S N, KHAN F R, CROTEAU M N. Bioavailability and bioaccumulation of metal-based engineered nanomaterials in aquatic environments[M]. Nanoscience and the Environment. Amsterdam: Elsevier, 2014: 157-193. [29] ROCHA T L, GOMES T, SOUSA V S, et al. Ecotoxicological impact of engineered nanomaterials in bivalve molluscs: An overview [J]. Marine Environmental Research, 2015, 111: 74-88. doi: 10.1016/j.marenvres.2015.06.013 [30] SCOWN T M, van AERLE R, TYLER C R. Review: Do engineered nanoparticles pose a significant threat to the aquatic environment? [J]. Critical Reviews in Toxicology, 2010, 40(7): 653-670. doi: 10.3109/10408444.2010.494174 [31] CHEN X J, ZHU Y, YANG K, et al. Nanoparticle TiO2 size and rutile content impact bioconcentration and biomagnification from algae to Daphnia [J]. Environmental Pollution, 2019, 247: 421-430. doi: 10.1016/j.envpol.2019.01.022 [32] ZHU R R, WANG S L, CHAO J, et al. Bio-effects of Nano-TiO2 on DNA and cellular ultrastructure with different polymorph and size [J]. Materials Science and Engineering:C, 2009, 29(3): 691-696. doi: 10.1016/j.msec.2008.12.023 [33] CHEN F R, XIAO Z G, YUE L, et al. Algae response to engineered nanoparticles: Current understanding, mechanisms and implications [J]. Environmental Science:Nano, 2019, 6(4): 1026-1042. doi: 10.1039/C8EN01368C [34] TANGAA S R, SELCK H, WINTHER-NIELSEN M, et al. Trophic transfer of metal-based nanoparticles in aquatic environments: A review and recommendations for future research focus [J]. Environmental Science:Nano, 2016, 3(5): 966-981. doi: 10.1039/C5EN00280J [35] EL BADAWY A M, LUXTON T P, SILVA R G, et al. Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions [J]. Environmental Science & Technology, 2010, 44(4): 1260-1266. [36] HERMANSSON M. The DLVO theory in microbial adhesion [J]. Colloids and Surfaces B:Biointerfaces, 1999, 14(1/2/3/4): 105-119. [37] HANDY R D, von der KAMMER F, LEAD J R, et al. The ecotoxicology and chemistry of manufactured nanoparticles [J]. Ecotoxicology (London, England), 2008, 17(4): 287-314. doi: 10.1007/s10646-008-0199-8 [38] WAYCHUNAS G A, KIM C S, BANFIELD J F. Nanoparticulate iron oxide minerals in soils and sediments: Unique properties and contaminant scavenging mechanisms [J]. Journal of Nanoparticle Research, 2005, 7(4/5): 409-433. [39] HOTZE E M, PHENRAT T, LOWRY G V. Nanoparticle aggregation: Challenges to understanding transport and reactivity in the environment [J]. Journal of Environmental Quality, 2010, 39(6): 1909-1924. doi: 10.2134/jeq2009.0462 [40] FRENCH R A, JACOBSON A R, KIM B, et al. Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles [J]. Environmental Science & Technology, 2009, 43(5): 1354-1359. [41] LEBRETTE S, PAGNOUX C, ABÉLARD P. Stability of aqueous TiO2 suspensions: Influence of ethanol [J]. Journal of Colloid and Interface Science, 2004, 280(2): 400-408. doi: 10.1016/j.jcis.2004.07.033 [42] BUETTNER K M, RINCIOG C I, MYLON S E. Aggregation kinetics of cerium oxide nanoparticles in monovalent and divalent electrolytes [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2010, 366(1/2/3): 74-79. [43] ZHOU D X, JI Z X, JIANG X M, et al. Influence of material properties on TiO2 nanoparticle agglomeration [J]. PLoS One, 2013, 8(11): e81239. doi: 10.1371/journal.pone.0081239 [44] JIANG J K, OBERDÖRSTER G, BISWAS P. Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies [J]. Journal of Nanoparticle Research, 2009, 11(1): 77-89. doi: 10.1007/s11051-008-9446-4 [45] FERNANDO I, ZHOU Y. Impact of pH on the stability, dissolution and aggregation kinetics of silver nanoparticles [J]. Chemosphere, 2019, 216: 297-305. doi: 10.1016/j.chemosphere.2018.10.122 [46] WANG X G, SUN T S, ZHU H, et al. Roles of pH, cation valence, and ionic strength in the stability and aggregation behavior of zinc oxide nanoparticles [J]. Journal of Environmental Management, 2020, 267: 110656. doi: 10.1016/j.jenvman.2020.110656 [47] MORELLI E, GABELLIERI E, BONOMINI A, et al. TiO2 nanoparticles in seawater: Aggregation and interactions with the green alga Dunaliella tertiolecta [J]. Ecotoxicology and Environmental Safety, 2018, 148: 184-193. doi: 10.1016/j.ecoenv.2017.10.024 [48] FILELLA M. Freshwaters: which NOM matters? [J]. Environmental Chemistry Letters, 2009, 7(1): 21-35. doi: 10.1007/s10311-008-0158-x [49] ZHAO J, WANG Z Y, GHOSH S, et al. Phenanthrene binding by humic acid-protein complexes as studied by passive dosing technique [J]. Environmental Pollution, 2014, 184: 145-153. doi: 10.1016/j.envpol.2013.08.028 [50] ERHAYEM M, SOHN M. Stability studies for titanium dioxide nanoparticles upon adsorption of Suwannee River humic and fulvic acids and natural organic matter [J]. Science of the Total Environment, 2014, 468/469: 249-257. doi: 10.1016/j.scitotenv.2013.08.038 [51] LOUIE S M, TILTON R D, LOWRY G V. Effects of molecular weight distribution and chemical properties of natural organic matter on gold nanoparticle aggregation [J]. Environmental Science & Technology, 2013, 47(9): 4245-4254. [52] ZHANG Y, CHEN Y S, WESTERHOFF P, et al. Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles [J]. Water Research, 2009, 43(17): 4249-4257. doi: 10.1016/j.watres.2009.06.005 [53] BIAN S W, MUDUNKOTUWA I A, RUPASINGHE T, et al. Aggregation and dissolution of 4 nm ZnO nanoparticles in aqueous environments: Influence of pH, ionic strength, size, and adsorption of humic acid [J]. Langmuir:the ACS Journal of Surfaces and Colloids, 2011, 27(10): 6059-6068. doi: 10.1021/la200570n [54] ZHOU D X, KELLER A A. Role of morphology in the aggregation kinetics of ZnO nanoparticles [J]. Water Research, 2010, 44(9): 2948-2956. doi: 10.1016/j.watres.2010.02.025 [55] LIN D, STORY S D, WALKER S L, et al. Influence of extracellular polymeric substances on the aggregation kinetics of TiO2 nanoparticles [J]. Water Research, 2016, 104: 381-388. doi: 10.1016/j.watres.2016.08.044 [56] SHENG A X, LIU F, XIE N, et al. Impact of proteins on aggregation kinetics and adsorption ability of hematite nanoparticles in aqueous dispersions [J]. Environmental Science & Technology, 2016, 50(5): 2228-2235. [57] AFSHINNIA K, GIBSON I, MERRIFIELD R, et al. The concentration-dependent aggregation of Ag NPs induced by cystine [J]. Science of the Total Environment, 2016, 557/558: 395-403. doi: 10.1016/j.scitotenv.2016.02.212 [58] GARCÍA-GARCÍA S, WOLD S, JONSSON M. Effects of temperature on the stability of colloidal montmorillonite particles at different pH and ionic strength [J]. Applied Clay Science, 2009, 43(1): 21-26. doi: 10.1016/j.clay.2008.07.011 [59] ZOU X Y, LI P H, LOU J, et al. Stability of single dispersed silver nanoparticles in natural and synthetic freshwaters: Effects of dissolved oxygen [J]. Environmental Pollution, 2017, 230: 674-682. doi: 10.1016/j.envpol.2017.07.007 [60] SOHAL I S, O'FALLON K S, GAINES P, et al. Ingested engineered nanomaterials: State of science in nanotoxicity testing and future research needs [J]. Particle and Fibre Toxicology, 2018, 15(1): 29. doi: 10.1186/s12989-018-0265-1 [61] MIAO A J, SCHWEHR K A, XU C, et al. The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substances [J]. Environmental Pollution, 2009, 157(11): 3034-3041. doi: 10.1016/j.envpol.2009.05.047 [62] MIAO A J, LUO Z P, CHEN C S, et al. Intracellular uptake: A possible mechanism for silver engineered nanoparticle toxicity to a freshwater alga Ochromonas danica [J]. PLoS One, 2010, 5(12): e15196. doi: 10.1371/journal.pone.0015196 [63] ZHANG W C, XIAO B D, FANG T. Chemical transformation of silver nanoparticles in aquatic environments: Mechanism, morphology and toxicity [J]. Chemosphere, 2018, 191: 324-334. doi: 10.1016/j.chemosphere.2017.10.016 [64] MORTIMER M, KASEMETS K, KAHRU A. Toxicity of ZnO and CuO nanoparticles to ciliated protozoa Tetrahymena thermophila [J]. Toxicology, 2010, 269(2/3): 182-189. [65] IVASK A, JUGANSON K, BONDARENKO O, et al. Mechanisms of toxic action of Ag, ZnO and CuO nanoparticles to selected ecotoxicological test organisms and mammalian cells in vitro: A comparative review [J]. Nanotoxicology, 2014, 8(sup1): 57-71. doi: 10.3109/17435390.2013.855831 [66] MCCRACKEN C, ZANE A, KNIGHT D A, et al. Minimal intestinal epithelial cell toxicity in response to short- and long-term food-relevant inorganic nanoparticle exposure [J]. Chemical Research in Toxicology, 2013, 26(10): 1514-1525. doi: 10.1021/tx400231u [67] de ANGELIS I, BARONE F, ZIJNO A, et al. Comparative study of ZnO and TiO2 nanoparticles: Physicochemical characterisation and toxicological effects on human colon carcinoma cells [J]. Nanotoxicology, 2013, 7(8): 1361-1372. doi: 10.3109/17435390.2012.741724 [68] MILLER R J, LENIHAN H S, MULLER E B, et al. Impacts of metal oxide nanoparticles on marine phytoplankton [J]. Environmental Science & Technology, 2010, 44(19): 7329-7334. [69] ZHANG W Y, QIAN L B, da OUYANG, et al. Effective removal of Cr(VI) by attapulgite-supported nanoscale zero-valent iron from aqueous solution: Enhanced adsorption and crystallization [J]. Chemosphere, 2019, 221: 683-692. doi: 10.1016/j.chemosphere.2019.01.070 [70] PERETYAZHKO T S, ZHANG Q B, COLVIN V L. Size-controlled dissolution of silver nanoparticles at neutral and acidic pH conditions: Kinetics and size changes [J]. Environmental Science & Technology, 2014, 48(20): 11954-11961. [71] TANG R, ORME C A, NANCOLLAS G H. Dissolution of crystallites: Surface energetic control and size effects [J]. Chemphyschem, 2004, 5(5): 688-696. doi: 10.1002/cphc.200300956 [72] BORM P, KLAESSIG F C, LANDRY T D, et al. Research strategies for safety evaluation of nanomaterials, part V: Role of dissolution in biological fate and effects of nanoscale particles [J]. Toxicological Sciences, 2006, 90(1): 23-32. doi: 10.1093/toxsci/kfj084 [73] KITTLER S, GREULICH C, DIENDORF J, et al. Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions [J]. Chemistry of Materials, 2010, 22(16): 4548-4554. doi: 10.1021/cm100023p [74] WANG Z Y, ZHANG L, ZHAO J, et al. Environmental processes and toxicity of metallic nanoparticles in aquatic systems as affected by natural organic matter [J]. Environmental Science:Nano, 2016, 3(2): 240-255. doi: 10.1039/C5EN00230C [75] ZHANG L Q, LI J Y, YANG K, et al. Physicochemical transformation and algal toxicity of engineered nanoparticles in surface water samples [J]. Environmental Pollution, 2016, 211: 132-140. doi: 10.1016/j.envpol.2015.12.041 [76] ODZAK N, KISTLER D, SIGG L. Influence of daylight on the fate of silver and zinc oxide nanoparticles in natural aquatic environments [J]. Environmental Pollution, 2017, 226: 1-11. doi: 10.1016/j.envpol.2017.04.006 [77] SOTIRIOU G A, MEYER A, KNIJNENBURG J T N, et al. Quantifying the origin of released Ag+ ions from nanosilver [J]. Langmuir:the ACS Journal of Surfaces and Colloids, 2012, 28(45): 15929-15936. doi: 10.1021/la303370d [78] LIU J Y, HURT R H. Ion release kinetics and particle persistence in aqueous nano-silver colloids [J]. Environmental Science & Technology, 2010, 44(6): 2169-2175. [79] ARUOJA V, DUBOURGUIER H C, KASEMETS K, et al. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata [J]. Science of the Total Environment, 2009, 407(4): 1461-1468. doi: 10.1016/j.scitotenv.2008.10.053 [80] FRANKLIN N M, ROGERS N J, APTE S C, et al. Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): The importance of particle solubility [J]. Environmental Science & Technology, 2007, 41(24): 8484-8490. [81] PENG X H, PALMA S, FISHER N S, et al. Effect of morphology of ZnO nanostructures on their toxicity to marine algae [J]. Aquatic Toxicology, 2011, 102(3/4): 186-196. [82] XIU Z M, ZHANG Q B, PUPPALA H L, et al. Negligible particle-specific antibacterial activity of silver nanoparticles [J]. Nano Letters, 2012, 12(8): 4271-4275. doi: 10.1021/nl301934w [83] NAVARRO E, PICCAPIETRA F, WAGNER B, et al. Toxicity of silver nanoparticles to Chlamydomonas reinhardtii [J]. Environmental Science & Technology, 2008, 42(23): 8959-8964. [84] WANG Z, CHEN J W, LI X H, et al. Aquatic toxicity of nanosilver colloids to different trophic organisms: Contributions of particles and free silver ion [J]. Environmental Toxicology and Chemistry, 2012, 31(10): 2408-2413. doi: 10.1002/etc.1964 [85] KAEGI R, VOEGELIN A, ORT C, et al. Fate and transformation of silver nanoparticles in urban wastewater systems [J]. Water Research, 2013, 47(12): 3866-3877. doi: 10.1016/j.watres.2012.11.060 [86] KIM B, PARK C S, MURAYAMA M, et al. Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products [J]. Environmental Science & Technology, 2010, 44(19): 7509-7514. [87] LIU J Y, PENNELL K G, HURT R H. Kinetics and mechanisms of nanosilver oxysulfidation [J]. Environmental Science & Technology, 2011, 45(17): 7345-7353. [88] MA R, LEVARD C, MICHEL F M, et al. Sulfidation mechanism for zinc oxide nanoparticles and the effect of sulfidation on their solubility [J]. Environmental Science & Technology, 2013, 47(6): 2527-2534. [89] MA R, STEGEMEIER J, LEVARD C, et al. Sulfidation of copper oxide nanoparticles and properties of resulting copper sulfide [J]. Environ Sci:Nano, 2014, 1(4): 347-357. doi: 10.1039/C4EN00018H [90] DONGARGAONKAR A A, CLOGSTON J D. Quantitation of surface coating on nanoparticles using thermogravimetric analysis [J]. Methods in Molecular Biology , 2018, 1682: 57-63. [91] CARTWRIGHT A, JACKSON K, MORGAN C, et al. A review of metal and metal-oxide nanoparticle coating technologies to inhibit agglomeration and increase bioactivity for agricultural applications [J]. Agronomy, 2020, 10(7): 1018. doi: 10.3390/agronomy10071018 [92] HUA M Y, YANG H W, CHUANG C K, et al. Magnetic-nanoparticle-modified paclitaxel for targeted therapy for prostate cancer [J]. Biomaterials, 2010, 31(28): 7355-7363. doi: 10.1016/j.biomaterials.2010.05.061 [93] VIGDERMAN L, ZUBAREV E R. Therapeutic platforms based on gold nanoparticles and their covalent conjugates with drug molecules [J]. Advanced Drug Delivery Reviews, 2013, 65(5): 663-676. doi: 10.1016/j.addr.2012.05.004 [94] SHARMA A, GOYAL A K, RATH G. Recent advances in metal nanoparticles in cancer therapy [J]. Journal of Drug Targeting, 2018, 26(8): 617-632. doi: 10.1080/1061186X.2017.1400553 [95] KENNEDY L C, BICKFORD L R, LEWINSKI N A, et al. A new era for cancer treatment: Gold-nanoparticle-mediated thermal therapies [J]. Small (Weinheim an Der Bergstrasse, Germany), 2011, 7(2): 169-183. doi: 10.1002/smll.201000134 [96] LOUIE S M, GORHAM J M, MCGIVNEY E A, et al. Photochemical transformations of thiolated polyethylene glycol coatings on gold nanoparticles [J]. Environmental Science:Nano, 2016, 3(5): 1090-1102. doi: 10.1039/C6EN00141F [97] LOUIE S M, GORHAM J M, TAN J J, et al. Ultraviolet photo-oxidation of polyvinylpyrrolidone (PVP) coatings on gold nanoparticles[J]. Environmental Science. Nano, 2017, 4(9): 1866-1875. [98] RODEA-PALOMARES I, BOLTES K, FERNÁNDEZ-PIÑAS F, et al. Physicochemical characterization and ecotoxicological assessment of CeO2 nanoparticles using two aquatic microorganisms [J]. Toxicological Sciences, 2010, 119(1): 135-145. [99] BONDARENKO O, JUGANSON K, IVASK A, et al. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: A critical review [J]. Archives of Toxicology, 2013, 87(7): 1181-1200. doi: 10.1007/s00204-013-1079-4 [100] KÖSER J, ENGELKE M, HOPPE M, et al. Predictability of silver nanoparticle speciation and toxicity in ecotoxicological media [J]. Environmental Science:Nano, 2017, 4(7): 1470-1483. doi: 10.1039/C7EN00026J [101] LEI C, ZHANG L Q, YANG K, et al. Toxicity of iron-based nanoparticles to green algae: Effects of particle size, crystal phase, oxidation state and environmental aging [J]. Environmental Pollution, 2016, 218: 505-512. doi: 10.1016/j.envpol.2016.07.030 [102] LU T, ZHANG Q, ZHANG Z Y, et al. Pollutant toxicology with respect to microalgae and cyanobacteria [J]. Journal of Environmental Sciences, 2021, 99: 175-186. doi: 10.1016/j.jes.2020.06.033 [103] HUANG J, CHENG J P, YI J. Impact of silver nanoparticles on marine diatom Skeletonema costatum [J]. Journal of Applied Toxicology:JAT, 2016, 36(10): 1343-1354. doi: 10.1002/jat.3325 [104] JIA K, SUN C L, WANG Y L, et al. Effect of TiO2 nanoparticles and multiwall carbon nanotubes on the freshwater diatom Nitzschia frustulum: Evaluation of growth, cellular components and morphology [J]. Chemistry and Ecology, 2019, 35(1): 69-85. doi: 10.1080/02757540.2018.1528240 [105] DENG X Y, CHENG J, HU X L, et al. Biological effects of TiO2 and CeO2 nanoparticles on the growth, photosynthetic activity, and cellular components of a marine diatom Phaeodactylum tricornutum [J]. Science of the Total Environment, 2017, 575: 87-96. doi: 10.1016/j.scitotenv.2016.10.003 [106] DEDMAN C J, NEWSON G C, DAVIES G L, et al. Mechanisms of silver nanoparticle toxicity on the marine cyanobacterium Prochlorococcus under environmentally-relevant conditions [J]. Science of the Total Environment, 2020, 747: 141229. doi: 10.1016/j.scitotenv.2020.141229 [107] BRAYNER R, SICARD C, SASSI H B, et al. Design of ZnO nanostructured films: Characterization and ecotoxicological studies [J]. Thin Solid Films, 2011, 519(10): 3340-3345. doi: 10.1016/j.tsf.2011.01.257 [108] MAHFOOZ S, SHAMIM A, HUSAIN A, et al. Physicochemical characterisation and ecotoxicological assessment of nano-silver using two cyanobacteria Nostoc muscorum and Plectonema boryanum [J]. International Journal of Environmental Science and Technology, 2019, 16(8): 4407-4418. doi: 10.1007/s13762-018-1923-4 [109] SOHN E K, JOHARI S A, KIM T G, et al. Aquatic toxicity comparison of silver nanoparticles and silver nanowires [J]. BioMed Research International, 2015, 2015: 893049. [110] BRAYNER R, DAHOUMANE S A, YÉPRÉMIAN C, et al. ZnO nanoparticles: Synthesis, characterization, and ecotoxicological studies [J]. Langmuir:the ACS Journal of Surfaces and Colloids, 2010, 26(9): 6522-6528. doi: 10.1021/la100293s [111] CHEN P Y, POWELL B A, MORTIMER M, et al. Adaptive interactions between zinc oxide nanoparticles and Chlorella sp. [J]. Environmental Science & Technology, 2012, 46(21): 12178-12185. [112] MA S, LIN D H. The biophysicochemical interactions at the interfaces between nanoparticles and aquatic organisms: Adsorption and internalization [J]. Environmental Science. Processes & Impacts, 2013, 15(1): 145-160. [113] WANG F, GUAN W, XU L, et al. Effects of nanoparticles on algae: Adsorption, distribution, ecotoxicity and fate [J]. Applied Sciences, 2019, 9(8): 1534. doi: 10.3390/app9081534 [114] HARJA M, BUEMA G, BULGARIU L, et al. Removal of cadmium(II) from aqueous solution by adsorption onto modified algae and ash [J]. Korean Journal of Chemical Engineering, 2015, 32(9): 1804-1811. doi: 10.1007/s11814-015-0016-z [115] ZHANG J L, XIANG Q Q, SHEN L, et al. Surface charge-dependent bioaccumulation dynamics of silver nanoparticles in freshwater algae [J]. Chemosphere, 2020, 247: 125936. doi: 10.1016/j.chemosphere.2020.125936 [116] HUANG B, MIAO A J, XIAO L, et al. Influence of nitrogen limitation on the bioaccumulation kinetics of hematite nanoparticles in the freshwater alga Euglena intermedia [J]. Environmental Science:Nano, 2017, 4(9): 1840-1850. doi: 10.1039/C7EN00477J [117] ZHANG C, CHEN X H, WANG J T, et al. Toxicity of zinc oxide nanoparticles on marine microalgae possessing different shapes and surface structures [J]. Environmental Engineering Science, 2018, 35(8): 785-790. doi: 10.1089/ees.2017.0241 [118] RIBEIRO F, GALLEGO-URREA J A, GOODHEAD R M, et al. Uptake and elimination kinetics of silver nanoparticles and silver nitrate by Raphidocelis subcapitata: The influence of silver behaviour in solution [J]. Nanotoxicology, 2015, 9(6): 686-695. doi: 10.3109/17435390.2014.963724 [119] LANKOFF A, SANDBERG W J, WEGIEREK-CIUK A, et al. The effect of agglomeration state of silver and titanium dioxide nanoparticles on cellular response of HepG2, A549 and THP-1 cells [J]. Toxicology Letters, 2012, 208(3): 197-213. doi: 10.1016/j.toxlet.2011.11.006 [120] von MOOS N, BOWEN P, SLAVEYKOVA V I. Bioavailability of inorganic nanoparticles to planktonic bacteria and aquatic microalgae in freshwater [J]. Environmental Science:Nano, 2014, 1(3): 214. doi: 10.1039/c3en00054k [121] MAHANA A, GULIY O I, MEHTA S K. Accumulation and cellular toxicity of engineered metallic nanoparticle in freshwater microalgae: Current status and future challenges [J]. Ecotoxicology and Environmental Safety, 2021, 208: 111662. doi: 10.1016/j.ecoenv.2020.111662 [122] NGUYEN M K, MOON J Y, LEE Y C. Microalgal ecotoxicity of nanoparticles: An updated review [J]. Ecotoxicology and Environmental Safety, 2020, 201: 110781. doi: 10.1016/j.ecoenv.2020.110781 [123] WORMS I A M, BOLTZMAN J, GARCIA M, et al. Cell-wall-dependent effect of carboxyl-CdSe/ZnS quantum dots on lead and copper availability to green microalgae [J]. Environmental Pollution, 2012, 167: 27-33. doi: 10.1016/j.envpol.2012.03.030 [124] NAVARRO E, BAUN A, BEHRA R, et al. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi [J]. Ecotoxicology (London, England), 2008, 17(5): 372-386. doi: 10.1007/s10646-008-0214-0 [125] TRIPATHI D K, TRIPATHI A, Shweta, et al. Uptake, accumulation and toxicity of silver nanoparticle in autotrophic plants, and heterotrophic microbes: A concentric review [J]. Frontiers in Microbiology, 2017, 8: 07. [126] WANG S S, LV J T, MA J Y, et al. Cellular internalization and intracellular biotransformation of silver nanoparticles in Chlamydomonas reinhardtii [J]. Nanotoxicology, 2016, 10(8): 1129-1135. doi: 10.1080/17435390.2016.1179809 [127] PULIDO-REYES G, BRIFFA S M, HURTADO-GALLEGO J, et al. Internalization and toxicological mechanisms of uncoated and PVP-coated cerium oxide nanoparticles in the freshwater alga Chlamydomonas reinhardtii [J]. Environmental Science:Nano, 2019, 6(6): 1959-1972. doi: 10.1039/C9EN00363K [128] ZHAO J, CAO X S, LIU X Y, et al. Interactions of CuO nanoparticles with the algae Chlorella pyrenoidosa: Adhesion, uptake, and toxicity [J]. Nanotoxicology, 2016, 10(9): 1297-1305. doi: 10.1080/17435390.2016.1206149 [129] MELEGARI S P, PERREAULT F, COSTA R H R, et al. Evaluation of toxicity and oxidative stress induced by copper oxide nanoparticles in the green alga Chlamydomonas reinhardtii [J]. Aquatic Toxicology, 2013, 142/143: 431-440. doi: 10.1016/j.aquatox.2013.09.015 [130] CHERCHI C, CHERNENKO T, DIEM M, et al. Impact of nano titanium dioxide exposure on cellular structure of Anabaena variabilis and evidence of internalization [J]. Environmental Toxicology and Chemistry, 2011, 30(4): 861-869. doi: 10.1002/etc.445 [131] BHUVANESHWARI M, ISWARYA V, ARCHANAA S, et al. Cytotoxicity of ZnO NPs towards fresh water algae Scenedesmus obliquus at low exposure concentrations in UV-C, visible and dark conditions [J]. Aquatic Toxicology, 2015, 162: 29-38. doi: 10.1016/j.aquatox.2015.03.004 [132] KOSAK NÉE RÖHDER L A, BRANDT T, SIGG L, et al. Uptake and effects of cerium(III) and cerium oxide nanoparticles to Chlamydomonas reinhardtii [J]. Aquatic Toxicology, 2018, 197: 41-46. doi: 10.1016/j.aquatox.2018.02.004 [133] NAM H Y, KWON S M, CHUNG H, et al. Cellular uptake mechanism and intracellular fate of hydrophobically modified glycol chitosan nanoparticles [J]. Journal of Controlled Release, 2009, 135(3): 259-267. doi: 10.1016/j.jconrel.2009.01.018 [134] LIMBACH L K, WICK P, MANSER P, et al. Exposure of engineered nanoparticles to human lung epithelial cells: Influence of chemical composition and catalytic activity on oxidative stress [J]. Environmental Science & Technology, 2007, 41(11): 4158-4163. [135] DAMM E M, PELKMANS L, KARTENBECK J, et al. Clathrin- and caveolin-1-independent endocytosis: Entry of Simian virus 40 into cells devoid of caveolae [J]. The Journal of Cell Biology, 2005, 168(3): 477-488. doi: 10.1083/jcb.200407113 [136] BUNDSCHUH M, SEITZ F, ROSENFELDT R R, et al. Effects of nanoparticles in fresh waters: Risks, mechanisms and interactions [J]. Freshwater Biology, 2016, 61(12): 2185-2196. doi: 10.1111/fwb.12701 [137] ROY R, PARASHAR A, BHUVANESHWARI M, et al. Differential effects of P25 TiO2 nanoparticles on freshwater green microalgae: Chlorella and Scenedesmus species [J]. Aquatic Toxicology, 2016, 176: 161-171. doi: 10.1016/j.aquatox.2016.04.021 [138] WANG J, WANG W X. Significance of physicochemical and uptake kinetics in controlling the toxicity of metallic nanomaterials to aquatic organisms [J]. Journal of Zhejiang University Science A, 2014, 15(8): 573-592. doi: 10.1631/jzus.A1400109 [139] MORENO-GARRIDO I, PÉREZ S, BLASCO J. Toxicity of silver and gold nanoparticles on marine microalgae [J]. Marine Environmental Research, 2015, 111: 60-73. doi: 10.1016/j.marenvres.2015.05.008 [140] MARSALEK B, JANCULA D, MARSALKOVA E, et al. Multimodal action and selective toxicity of zerovalent iron nanoparticles against cyanobacteria [J]. Environmental Science & Technology, 2012, 46(4): 2316-2323. [141] NAVARRO E, WAGNER B, ODZAK N, et al. Effects of differently coated silver nanoparticles on the photosynthesis of Chlamydomonas reinhardtii [J]. Environmental Science & Technology, 2015, 49(13): 8041-8047. [142] WANG L, HUANG X L, SUN W L, et al. A global metabolomic insight into the oxidative stress and membrane damage of copper oxide nanoparticles and microparticles on microalga Chlorella vulgaris [J]. Environmental Pollution, 2020, 258: 113647. doi: 10.1016/j.envpol.2019.113647 [143] AKTER M, SIKDER M T, RAHMAN M M, et al. A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives [J]. Journal of Advanced Research, 2018, 9: 1-16. doi: 10.1016/j.jare.2017.10.008 [144] PIKULA K, MINTCHEVA N, KULINICH S A, et al. Aquatic toxicity and mode of action of CdS and ZnS nanoparticles in four microalgae species [J]. Environmental Research, 2020, 186: 109513. doi: 10.1016/j.envres.2020.109513 [145] HJORTH R, SØRENSEN S N, OLSSON M E, et al. A certain shade of green: Can algal pigments reveal shading effects of nanoparticles? [J]. Integrated Environmental Assessment and Management, 2016, 12(1): 200-202. doi: 10.1002/ieam.1728 [146] HARTMANN N B, der KAMMER F V, HOFMANN T, et al. Algal testing of titanium dioxide nanoparticles—Testing considerations, inhibitory effects and modification of cadmium bioavailability [J]. Toxicology, 2010, 269(2/3): 190-197. [147] WU D, YANG S X, DU W C, et al. Effects of titanium dioxide nanoparticles on Microcystis aeruginosa and microcystins production and release [J]. Journal of Hazardous Materials, 2019, 377: 1-7. doi: 10.1016/j.jhazmat.2019.05.013 [148] FU L, HAMZEH M, DODARD S, et al. Effects of TiO2 nanoparticles on ROS production and growth inhibition using freshwater green algae pre-exposed to UV irradiation [J]. Environmental Toxicology and Pharmacology, 2015, 39(3): 1074-1080. doi: 10.1016/j.etap.2015.03.015 [149] DALAI S, PAKRASHI S, BHUVANESHWARI M, et al. Toxic effect of Cr(VI) in presence of n-TiO2 and n-Al2O3 particles towards freshwater microalgae [J]. Aquatic Toxicology, 2014, 146: 28-37. doi: 10.1016/j.aquatox.2013.10.029 [150] ZHAO Z L, XU L M, WANG Y, et al. Toxicity mechanism of silver nanoparticles to Chlamydomonas reinhardtii: Photosynthesis, oxidative stress, membrane permeability, and ultrastructure analysis [J]. Environmental Science and Pollution Research International, 2021, 28(12): 15032-15042. doi: 10.1007/s11356-020-11714-y [151] SENDRA M, BLASCO J, ARAÚJO C V M. Is the cell wall of marine phytoplankton a protective barrier or a nanoparticle interaction site? Toxicological responses of Chlorella autotrophica and Dunaliella salina to Ag and CeO2 nanoparticles [J]. Ecological Indicators, 2018, 95: 1053-1067. doi: 10.1016/j.ecolind.2017.08.050 [152] HAZANI A A, IBRAHIM M M, ARIF I A, et al. Ecotoxicity of Ag-nanoparticles to microalgae[J]. Journal of Pure and Applied Microbiology, 2013, 7: 233-241. [153] FU P P, XIA Q S, HWANG H M, et al. Mechanisms of nanotoxicity: Generation of reactive oxygen species [J]. Journal of Food and Drug Analysis, 2014, 22(1): 64-75. doi: 10.1016/j.jfda.2014.01.005 [154] da COSTA C H, PERREAULT F, OUKARROUM A, et al. Effect of chromium oxide (III) nanoparticles on the production of reactive oxygen species and photosystem II activity in the green alga Chlamydomonas reinhardtii [J]. Science of the Total Environment, 2016, 565: 951-960. doi: 10.1016/j.scitotenv.2016.01.028 [155] MISRA S K, DYBOWSKA A, BERHANU D, et al. The complexity of nanoparticle dissolution and its importance in nanotoxicological studies [J]. Science of the Total Environment, 2012, 438: 225-232. doi: 10.1016/j.scitotenv.2012.08.066 [156] YU S J, LAI Y J, DONG L J, et al. Intracellular dissolution of silver nanoparticles: Evidence from double stable isotope tracing [J]. Environmental Science & Technology, 2019, 53(17): 10218-10226. [157] HUND-RINKE K, SIMON M. Ecotoxic effect of photocatalytic active nanoparticles (TiO2) on algae and daphnids [J]. Environmental Science and Pollution Research International, 2006, 13(4): 225-232. doi: 10.1065/espr2006.06.311 [158] CHEN L Z, ZHOU L N, LIU Y D, et al. Toxicological effects of nanometer titanium dioxide (nano-TiO2) on Chlamydomonas reinhardtii [J]. Ecotoxicology and Environmental Safety, 2012, 84: 155-162. doi: 10.1016/j.ecoenv.2012.07.019 [159] JI J, LONG Z F, LIN D H. Toxicity of oxide nanoparticles to the green algae Chlorella sp. [J]. Chemical Engineering Journal, 2011, 170(2/3): 525-530. [160] CHE X K, DING R R, LI Y T, et al. Mechanism of long-term toxicity of CuO NPs to microalgae [J]. Nanotoxicology, 2018, 12(8): 923-939. doi: 10.1080/17435390.2018.1498928 [161] van HOECKE K, de SCHAMPHELAERE K A C, ALI Z, et al. Ecotoxicity and uptake of polymer coated gold nanoparticles [J]. Nanotoxicology, 2013, 7(1): 37-47. doi: 10.3109/17435390.2011.626566 [162] RENAULT S, BAUDRIMONT M, MESMER-DUDONS N, et al. Impacts of gold nanoparticle exposure on two freshwater species: A phytoplanktonic alga (Scenedesmus subspicatus) and a benthic bivalve (Corbicula fluminea) [J]. Gold Bulletin, 2008, 41(2): 116-126. doi: 10.1007/BF03216589 [163] PERREAULT F, BOGDAN N, MORIN M, et al. Interaction of gold nanoglycodendrimers with algal cells (Chlamydomonas reinhardtii) and their effect on physiological processes [J]. Nanotoxicology, 2012, 6(2): 109-120. doi: 10.3109/17435390.2011.562325 [164] HE X X, XIE C J, MA Y H, et al. Size-dependent toxicity of ThO2 nanoparticles to green algae Chlorella pyrenoidosa [J]. Aquatic Toxicology, 2019, 209: 113-120. doi: 10.1016/j.aquatox.2019.02.003 [165] YANG K, XING B S. Desorption of polycyclic aromatic hydrocarbons from carbon nanomaterials in water [J]. Environmental Pollution, 2007, 145(2): 529-537. doi: 10.1016/j.envpol.2006.04.020 [166] DENG R, LIN D H, ZHU L Z, et al. Nanoparticle interactions with co-existing contaminants: Joint toxicity, bioaccumulation and risk [J]. Nanotoxicology, 2017, 11(5): 591-612. doi: 10.1080/17435390.2017.1343404 [167] KIM I, LEE B T, KIM H A, et al. Citrate coated silver nanoparticles change heavy metal toxicities and bioaccumulation of Daphnia magna [J]. Chemosphere, 2016, 143: 99-105. doi: 10.1016/j.chemosphere.2015.06.046 [168] FANG Q, SHI X J, ZHANG L P, et al. Effect of titanium dioxide nanoparticles on the bioavailability, metabolism, and toxicity of pentachlorophenol in zebrafish larvae [J]. Journal of Hazardous Materials, 2015, 283: 897-904. doi: 10.1016/j.jhazmat.2014.10.039 [169] LIU N, WANG Y P, GE F, et al. Antagonistic effect of nano-ZnO and cetyltrimethyl ammonium chloride on the growth of Chlorella vulgaris: Dissolution and accumulation of nano-ZnO [J]. Chemosphere, 2018, 196: 566-574. doi: 10.1016/j.chemosphere.2017.12.184 [170] NADDAFI K, ZARE M R, NAZMARA S. Investigating potential toxicity of phenanthrene adsorbed to nano-ZnO using Daphnia magna [J]. Toxicological & Environmental Chemistry, 2011, 93(4): 729-737. [171] HUANG B, WEI Z B, YANG L Y, et al. Combined toxicity of silver nanoparticles with hematite or plastic nanoparticles toward two freshwater algae [J]. Environmental Science & Technology, 2019, 53(7): 3871-3879. [172] LING L L, LIU W J, ZHANG S, et al. Magnesium oxide embedded nitrogen self-doped biochar composites: Fast and high-efficiency adsorption of heavy metals in an aqueous solution [J]. Environmental Science & Technology, 2017, 51(17): 10081-10089. [173] HU J, ZHANG Z C, ZHANG C, et al. Al2O3 nanoparticle impact on the toxic effect of Pb on the marine microalga Isochrysis galbana [J]. Ecotoxicology and Environmental Safety, 2018, 161: 92-98. doi: 10.1016/j.ecoenv.2018.05.090 [174] SAHLE-DEMESSIE E, HAN C, ZHAO A, et al. Interaction of engineered nanomaterials with hydrophobic organic pollutants [J]. Nanotechnology, 2016, 27(28): 284003. doi: 10.1088/0957-4484/27/28/284003 [175] 何莹, 刘洋, 陈治廷, 等. 溶解性有机质的表面吸附行为及其对金属基纳米颗粒环境行为的影响 [J]. 环境化学, 2019, 38(8): 1757-1767. HE Y, LIU Y, CHEN Z T, et al. Surface adsorption of dissolved organic matters and their effects on environmental behaviors of metal-based nanoparticles [J]. Environmental Chemistry, 2019, 38(8): 1757-1767(in Chinese).
[176] ZHANG C, CHEN X H, TAN L J, et al. Combined toxicities of copper nanoparticles with carbon nanotubes on marine microalgae Skeletonema costatum [J]. Environmental Science and Pollution Research International, 2018, 25(13): 13127-13133. doi: 10.1007/s11356-018-1580-7 [177] NEALE P A, JÄMTING Å K, O'MALLEY E, et al. Behaviour of titanium dioxide and zinc oxide nanoparticles in the presence of wastewater-derived organic matter and implications for algal toxicity [J]. Environmental Science:Nano, 2015, 2(1): 86-93. doi: 10.1039/C4EN00161C [178] WANG Z Y, LI J, ZHAO J, et al. Toxicity and internalization of CuO nanoparticles to prokaryotic alga Microcystis aeruginosa as affected by dissolved organic matter [J]. Environmental Science & Technology, 2011, 45(14): 6032-6040. [179] LI S X, WANG S Q, YAN B, et al. Surface properties of nanoparticles dictate their toxicity by regulating adsorption of humic acid molecules [J]. ACS Sustainable Chemistry & Engineering, 2021, 9(41): 13705-13716. [180] QIAN H F, ZHU K, LU H P, et al. Contrasting silver nanoparticle toxicity and detoxification strategies in Microcystis aeruginosa and Chlorella vulgaris: New insights from proteomic and physiological analyses [J]. Science of the Total Environment, 2016, 572: 1213-1221. doi: 10.1016/j.scitotenv.2016.08.039 [181] DU S T, ZHANG P, ZHANG R R, et al. Reduced graphene oxide induces cytotoxicity and inhibits photosynthetic performance of the green alga Scenedesmus obliquus [J]. Chemosphere, 2016, 164: 499-507. doi: 10.1016/j.chemosphere.2016.08.138 [182] ZHOU K, HU Y, ZHANG L, et al. The role of exopolymeric substances in the bioaccumulation and toxicity of Ag nanoparticles to algae [J]. Scientific Reports, 2016, 6: 32998. doi: 10.1038/srep32998 [183] CHIU M H, KHAN Z A, GARCIA S G, et al. Effect of engineered nanoparticles on exopolymeric substances release from marine phytoplankton [J]. Nanoscale Research Letters, 2017, 12(1): 620. doi: 10.1186/s11671-017-2397-x [184] HE M, YAN Y, PEI F, et al. Improvement on lipid production by Scenedesmus obliquus triggered by low dose exposure to nanoparticles [J]. Scientific Reports, 2017, 7(1): 15526. doi: 10.1038/s41598-017-15667-0 [185] CHEN B, LI F, LIU N, et al. Role of extracellular polymeric substances from Chlorella vulgaris in the removal of ammonium and orthophosphate under the stress of cadmium [J]. Bioresource Technology, 2015, 190: 299-306. doi: 10.1016/j.biortech.2015.04.080 [186] HENDERSON R K, BAKER A, PARSONS S A, et al. Characterisation of algogenic organic matter extracted from cyanobacteria, green algae and diatoms [J]. Water Research, 2008, 42(13): 3435-3445. doi: 10.1016/j.watres.2007.10.032 [187] WINGENDER J, NEU T R, FLEMMING H C. What are bacterial extracellular polymeric substances?[M]. Microbial Extracellular Polymeric Substances. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999: 1-19. [188] TAYLOR C, MATZKE M, KROLL A, et al. Toxic interactions of different silver forms with freshwater green algae and cyanobacteria and their effects on mechanistic endpoints and the production of extracellular polymeric substances [J]. Environmental Science:Nano, 2016, 3(2): 396-408. doi: 10.1039/C5EN00183H [189] QUIGG A, CHIN W C, CHEN C S, et al. Direct and indirect toxic effects of engineered nanoparticles on algae: Role of natural organic matter [J]. ACS Sustainable Chemistry & Engineering, 2013, 1(7): 686-702.