-
醛酮类化合物是重要的环境污染物,也是光化学烟雾的主要成分[1]. 大气中醛酮类化合物的来源有两方面,一是来自于汽车尾气、化工行业、木材加工防腐以及吸烟直接产生醛酮类等物质(原生来源);另一个主要来源是大气中的有机物经光化学反应所产生(次生来源). 醛酮类化合物既是大气光化学反应的中间产物,也是生成自由基、臭氧和过氧硝基化合物的前体物. 大部分醛酮类化合物会影响人体健康,如甲醛能刺激人的神经系统、免疫系统、肝脏,研究表明高浓度的甲醛对老鼠有致癌作用[2-4].
目前,对环境空气中醛酮类化合物的测定方法包括分光光度法[5]、气相色谱-质谱法[6]和液相色谱法[7-9]等. 其中,2,4-二硝基苯肼(DNPH)衍生化-高效液相色谱(HPLC)法是灵敏度高、选择性好且应用最广泛的一种方法. 我国环保行业标准《车内挥发性有机物和醛酮类物质采样测定方法》(HJ/T 400—2007)[10]、《环境空气 醛酮类化合物的测定 高效液相色谱法》(HJ 683—2014)[11]、《环境空气 醛、酮类化合物的测定 溶液吸收-高效液相色谱法》(HJ 1154—2020)[12]和《固定污染源废气 醛、酮类化合物的测定 溶液吸收-高效液相色谱法》(HJ 1153—2020)[13]均是采用液相色谱法. 由于高效液相色谱法定性能力不强,易出现假阳性现象或正干扰情况,国外已有文献报道该方法的一些问题[14-15]. 根据《“十三五”挥发性有机污染防治工作方案》,生态环境部于2018—2020年期间开展了重点地区环境空气挥发性有机物监测工作,其中包括环境空气中13种醛酮的监测分析. 本实验室参照《环境空气 醛、酮类化合物的测定 高效液相色谱法》(HJ683—2014)标准方法,在开展江苏省重点城市环境空气中醛酮类监测分析时,结合紫外光谱扫描的判定,发现大量实际样品中出现了己醛假阳性检出的现象.
近年来,国内已有研究[16-19]采用通用检测手段结合高分辨质谱技术等开展药物杂质、食品非法添加物等方向的鉴定工作,在环境污染物筛查和鉴定领域的研究应用[20-21]也有所开展. 常规通用检测方法一般用于目标物的定量分析,也具备一定的定性能力,但面临复杂基质样品或有干扰的样品,其定性准确度非常有限. 而高分辨质谱技术通过获取精确质量数、同位素丰度比、二级碎片质谱数据等技术参数,极大提高了方法的准确定性能力,十分有利于干扰物或未知物的结构鉴定.
本文利用高效液相色谱-二极管阵列检测器(HPLC-PDA)和高效液相色谱-四极杆/飞行时间高分辨质谱(HPLC-QTOF-HRMS)技术,采用高分辨质谱-非目标性数据采集-自动谱峰识别策略,综合分析干扰物质的色谱和质谱数据,并通过结构解析,对干扰物质进行鉴定. 最后利用标准物质对鉴定结果进行验证,进一步确认了我省实际环境空气样品中一种未知醛酮类化合物的化学结构. 本研究方法的建立为实际环境样品中未知化合物的筛查和结构确证提供了可借鉴的思路.
江苏省环境空气样品中一种未知醛酮类化合物的确证研究
Verification of an unknown aldehyde and ketone compound in ambient air samples from Jiangsu Province
-
摘要: 确证江苏省重点地区环境空气样品中的一种未知醛酮类化合物. 根据我国环境行业标准《环境空气 醛酮类化合物的测定 高效液相色谱法》(HJ 683—2014),采用高效液相色谱-二极管阵列检测法(HPLC-PDA),通过对实际环境空气样品和标准溶液的保留时间和紫外光谱图比对发现,江苏省重点地区环境空气样品中普遍存在一种醛酮类未知化合物. 利用高效液相色谱-四极杆/飞行时间高分辨质谱(HPLC-QTOF-HRMS)采集正离子模式下的色谱图,获取未知化合物的精确质量数、同位素分布信息和二级质谱碎片信息,利用SCIEX OS软件对数据进行解析,推测该化合物衍生化前分子式为C9H10O. 根据分子式推测可能的结构式,购买相关纯品,结合二级质谱碎片信息、色谱保留时间和紫外光谱图等,综合确证假阳性化合物为3,4-二甲基苯甲醛. 本研究可为实际环境样品中未知化合物的筛查和结构确证提供可借鉴的思路.Abstract: In this study, an unknown aldehyde and ketone compound has been confirmed in ambient air samples collected from key areas in Jiangsu Province. According to environmental protection standard of China “Determination of aldehyde and ketone compounds-High performance liquid chromatography in ambient air samples” (HJ 683-2014), a high-performance liquid chromatography coupled with diode array detection (HPLC-PDA) technique was used. By comparing the retention time and UV absorption spectrum, a aldehyde and ketone compound has been prevailingly detected in ambient air samples. In addition, high-performance liquid chromatography–quadrupole time-of-flight high resolution MS (HPLC-QTOF-HRMS) was used to collect chromatograms under positive ion mode. The accurate mass, isotope distribution, and secondary mass fragmentation information of the unknown compound were obtained. These data were further analyzed by SCIEX OS software, and the molecular formula prior to derivatization was proposed as C9H10O. Referring to the information of the molecular formula, authentic standard, secondary fragments spectral configuration, retention time, and UV spectrum, the false positive compound was comprehensively confirmed as 3,4-dimethylbenzaldehyde. In this paper, the structure of a false positive compound of aldehydes and ketones in actual samples was derived and confirmed by HPLC-PDA and HPLC-QTOF-HRMS technology. The common screening and confirmation processes of unknown substances were summarized, which could provide useful information for the screening and structural confirmation of unknown compounds in the actual environmental samples.
-
Key words:
- aldehydes and ketones /
- unknown compound /
- structural confirmation /
- ambient air /
- Jiangsu Province.
-
-
[1] CHRISTENSEN C S, SKOV H, NIELSEN T, et al. Temporal variation of carbonyl compound concentrations at a semi-rural site in Denmark [J]. Atmospheric Environment, 2000, 34(2): 287-296. doi: 10.1016/S1352-2310(99)00297-6 [2] NORDMAN H, KESKINEN H, TUPPURAINEN M. Formaldehyde asthma—rare or overlooked? [J]. Journal of Allergy and Clinical Immunology, 1985, 75(1): 91-99. doi: 10.1016/0091-6749(85)90018-1 [3] KERNS W D, PAVKOV K L, DONOFRIO D J, et al. Carcinogenicity of formaldehyde in rats and mice after long-term inhalation exposure [J]. Cancer Research, 1983, 43(9): 4382-4392. [4] FENG Z H, HU W W, HU Y, et al. Acrolein is a major cigarette-related lung cancer agent: Preferential binding at p53 mutational hotspots and inhibition of DNA repair [J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(42): 15404-15409. doi: 10.1073/pnas.0607031103 [5] 国家环境保护总局. 空气和废气监测和分析方法[M]. 第四版. 北京: 中国环境出版社, 2003, 9: 674-676. State Environmental Protection Administration. Monitoring and analytical methods of air and exhaust gas[M]. 4nd ed. Beijing: China Environmental Science Press, 2003, 9: 674-676(in Chinese).
[6] 周仪润, 蔡齐棋, 黄忠平, 等. 气相色谱-质谱法检测人造板中挥发性有机物 [J]. 理化检验-化学分册, 2017, 53(10): 1117-1123. ZHOU Y R, CAI Q Q, HUANG Z P, et al. GC-MS inspection of volatile organic compounds in artificial wood boards [J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2017, 53(10): 1117-1123(in Chinese).
[7] 尹燕敏, 刘淼, 孙欣阳, 等. 超高效液相色谱法测定环境空气中13种醛酮类化合物 [J]. 化学分析计量, 2021, 30(2): 32-36. doi: 10.3969/j.issn.1008-6145.2021.02.007 YIN Y M, LIU M, SUN X Y, et al. Determination of 13 aldehydes and ketones in ambient air by ultra performance liquid chromatography [J]. Chemical Analysis and Meterage, 2021, 30(2): 32-36(in Chinese). doi: 10.3969/j.issn.1008-6145.2021.02.007
[8] 司利国, 邢冠华, 王超, 等. 高效液相色谱法测定环境空气醛酮类化合物 [J]. 环境化学, 2019, 38(10): 2222-2228. doi: 10.7524/j.issn.0254-6108.2019021202 SI L G, XING G H, WANG C, et al. Determination of aldehydes and ketones in ambient air using adsorbent cartridge followed by high performance liquid chromatography [J]. Environmental Chemistry, 2019, 38(10): 2222-2228(in Chinese). doi: 10.7524/j.issn.0254-6108.2019021202
[9] 杜苑琪, 肖小华, 李攻科. 原位衍生化技术在液相色谱和液相色谱-质谱联用分析中的应用 [J]. 色谱, 2018, 36(7): 579-587. doi: 10.3724/SP.J.1123.2018.02021 DU Y Q, XIAO X H, LI G K. Applications of in situ derivatization in liquid chromatography and liquid chromatography-mass spectrometry [J]. Chinese Journal of Chromatography, 2018, 36(7): 579-587(in Chinese). doi: 10.3724/SP.J.1123.2018.02021
[10] 中华人民共和国环境保护部. 车内挥发性有机物和醛酮类物质采样测定方法: HJ/T 400—2007[S]. 北京: 中国环境科学出版社, 2008. Ministry of Environmental Protection of the People's Republic of China. Determination of volatile organic compounds and carbonyl compounds in cabin of vehicles: HJ/T 400—2007[S]. Beijing: China Environment Science Press, 2008(in Chinese).
[11] 中华人民共和国环境保护部. 环境空气 醛、酮类化合物的测定 高效液相色谱法: HJ 683—2014[S]. 北京: 中国环境科学出版社, 2014. Ministry of Environmental Protection of the People's Republic of China. Ambient air-Determination of aldehyde and ketone compounds-High performance liquid chromatography: HJ 683—2014[S]. Beijing: China Environment Science Press, 2014(in Chinese).
[12] 中华人民共和国生态环境部. 环境空气 醛、酮类化合物的测定 溶液吸收-高效液相色谱法: HJ 1154—2020[S]. 2020. Ministry of Ecology and Environment of the People's Republic of China. Ambient air—Determination of aldehyde and ketone compounds—Solution absorption-High performance liquid chromatography: HJ 1154—2020[S]. 2020(in Chinese).
[13] 中华人民共和国生态环境部. 固定污染源废气 醛、酮类化合物的测定 溶液吸收-高效液相色谱法: HJ 1153—2020[S]. 2020. Ministry of Ecology and Environment of the People's Republic of China. Stationary source emission—Determination of aldehyde and ketone compounds—Solution absorption- High performance liquid chromatography: HJ 1153—2020[S]. 2020(in Chinese).
[14] GROSJEAN E, GROSJEAN D, FRASER M P, et al. Air quality model evaluation data for organics. 2. C1–C14 carbonyls in los angeles air [J]. Environmental Science & Technology, 1996, 30(9): 2687-2703. [15] UCHIYAMA S, ANDO M, AOYAGI S. Isomerization of aldehyde-2, 4-dinitrophenylhydrazone derivatives and validation of high-performance liquid chromatographic analysis [J]. Journal of Chromatography. A, 2003, 996(1/2): 95-102. [16] 房艳, 张雅莉, 高俊海, 等. 基于超高效液相色谱-二极管阵列检测器/四极杆-飞行时间串联质谱的雪糕中糖精钠假阳性干扰物质鉴定 [J]. 现代食品科技, 2020, 36(3): 260-266. FANG Y, ZHANG Y L, GAO J H, et al. False-positive interfering substance to the measurement of sodium saccharin in ice cream using UPLC-PDA/Q-TOF [J]. Modern Food Science and Technology, 2020, 36(3): 260-266(in Chinese).
[17] 刘宏, 王亮, 陈胜, 等. 食品接触塑料材料及制品中高关注化合物的高分辨质谱分析技术研究进展 [J]. 食品安全质量检测学报, 2020, 11(13): 4139-4149. LIU H, WANG L, CHEN S, et al. Research progress on high-resolution mass spectrometry analysis of high concern compounds in food contact plastic materials and products [J]. Journal of Food Safety & Quality, 2020, 11(13): 4139-4149(in Chinese).
[18] 孙玉明, 王月月, 蔡蕊, 等. 高效液相色谱-光电二极管阵列-高分辨质谱联用鉴定马鞭草提取物中的化学成分 [J]. 色谱, 2017, 35(9): 987-994. doi: 10.3724/SP.J.1123.2017.05010 SUN Y M, WANG Y Y, CAI R, et al. Identification of the chemical compositions of Verbena officinalis L. extract by high performance liquid chromatography-photodiode array-high resolution mass spectrometry [J]. Chinese Journal of Chromatography, 2017, 35(9): 987-994(in Chinese). doi: 10.3724/SP.J.1123.2017.05010
[19] 王勇为, 李秀琴, 田进国. LTQ Orbitrap组合式高分辨质谱仪对饲料中同分异构体除草剂残留的鉴定 [J]. 环境化学, 2010, 29(1): 156-157. WANG Y W, LI X Q, TIAN J G. Identification of isomer herbicide residues in feed by LTQ Orbitrap combined high resolution mass spectrometer [J]. Environmental Chemistry, 2010, 29(1): 156-157(in Chinese).
[20] 张蓓蓓, 章勇, 赵永刚. QTRAP LC-MS/MS技术在污染事故快速定性中的应用 [J]. 环境科学与技术, 2016, 39(4): 79-82. ZHANG B B, ZHANG Y, ZHAO Y G. QTRAP LC-MS/MS: Rapid qualitative analysis technique used in a pollution incident response [J]. Environmental Science & Technology, 2016, 39(4): 79-82(in Chinese).
[21] GARETH C, MARK W, LAUREN M, et al. 环境水样品中药物残留的潜在代谢物的鉴定 [J]. 环境化学, 2015, 34(12): 2330-2333. GARETH C, MARK W, LAUREN M, et al. Identification of potential metabolites of drug residues in environmental water samples [J]. Environmental Chemistry, 2015, 34(12): 2330-2333(in Chinese).